
Libra: An Interaction Model for Data Visualization

(Supplemental Material)

Abstract—In this supplemental material, we first show the Unified Modeling Language (UML) diagram of the Libra.js in detail.
Then, we show the classification of data services and show how to specify new components. Next, we show more details of Libra.js
for creating expressive interactive visualizations. Finally, we perform an additional metric-based analysis for only the interaction-related
code.

1 UML DIAGRAM OF Libra.js

Understanding the relationships between the components of Libra.js is key to grasping the robust functionality it provides. With a complex
system like this, visual aids can offer clarity and context. To this end, this section begins with an exploration of the Unified Modeling Language
(UML) diagram.

Fig. 1: The UML diagram of Libra.js with the diagram legend shown in the bottom right and the concrete classes in D3 or Vega with the gray
background. Here we show the interfaces used in communication between classes and list some typical variables and methods in each class.

Libra.js is designed with a component-based architecture, reflecting a clear separation of concerns. This separation enables reusability
and extensibility of its interaction components. As shown in Figure 1, at the heart of the system lies the instrument, a mediator responsible for
translating user input into high-level actions, which are then orchestrated across various graphical layers. Each layer corresponds to a specific
visualization or interaction task, including background, main, selection, and transient layers. The UML diagram highlights how graphical
transformers serve as key components within each layer, converting data models into visual forms. These transformers ensure consistency and
flexibility, supporting diverse use cases from simple selection to complex layout manipulations. Inter-layer communication is facilitated by shared
services, such as the selection service and layout service, which decouple data manipulation logic from visual rendering. This modularity not only
simplifies the implementation of interactions but also enables undo/redo functionalities and feedforward mechanisms. For instance, the selection
service maintains state across data and visual spaces, updating both dynamically as users interact with the visualization.



2 CLASSIFICATION OF DATA SERVICES IN Libra.js

As we explore the multifaceted aspects of data services in our model, it becomes increasingly clear that their depth and range are vast,
accommodating varied visualization and interaction needs. The main body of the paper has provided a snapshot of their functionality, focusing
primarily on the selection service. However, to truly appreciate the breadth of their applications, it’s essential to understand their different
classifications and specialized roles. In this section, we delve into this, presenting a detailed exploration of other types of services such as
layout services and analysis services. These services, each with their unique attributes and applications, offer expansive utility in visualization
and interactive scenarios, providing additional depth to the interaction pipeline. Let’s embark on this in-depth exploration, beginning with the
fundamentals of the layout service, followed by a deep dive into the analysis service.

2.1 Layout Service

Most visualization toolkits provide a few layout algorithms allowing direct manipulation, such as force-directed graph layouts. Layout services
allow the decoupling of the implementation of the actual layout and the direct manipulation to control it. A layout service computes a new layout
with the interaction parameters, such as the new position of a set of items. Once a new layout is obtained, it updates the visual encoding through
the shared variables. As shown in the excentric labeling example in the main paper, a label layout service is inserted for further manipulating the
selected items passed from the selection service. Here, Libra.js does not use a selection layer but a layer for showing the arranged labels.

2.2 Analysis Service

Visual analytics applications use data analysis algorithms such as clustering, regression, and classification. Our model can provide such an
analysis service for running statistics or machine learning (ML) algorithms on the data of interest and managing the results as one of our services;
see the histogram service in the excentric labeling example. The underlying data model managed by these services can be visualized in a specific
layer. For example, the histogram service visualizes the distribution of one quantitative attribute of the selected items that can be visualized on top
of the main layer, as shown in the excentric labeling example.

3 SPECIFYING COMPONENTS IN Libra.js

Customizing Libra.js’s components is a crucial aspect of its flexible design, allowing developers to tailor the interaction model to their specific
needs. In this section, we will explore how to create new interactors, services, and graphical transformers in Libra.js.

3.1 Indicating a new Interactor

Fig. 2: Specifying the interactor by overriding its transitions, where (a) encapsulates the low-level touch events directly and (b) offers customized
functions.

Interactors in Libra.js are responsible for handling low-level user input events and translating them into high-level actions. To create a new
interactor, ID needs to specify the input event types, the corresponding state transitions, and the associated actions. Figure 2 shows two examples
of creating custom interactors in Libra.js.

In Figure 2a, we extend the mouse trace interactor to support touch events. This is achieved by adding new transitions that map touch events
to the appropriate states and actions. For example, the touchstart event (newly added in red color) is mapped to the start state, and the
touchmove and touchend events are mapped to the drag and end states, respectively.

Besides the traditional browser-encapsulated event type, we can also support the definition of other modalities, such as speech. Figure 2b
demonstrates how to create a voice-based interactor. In this case, we override the default transitions and provide custom functions to handle voice
input. Here we use the Web Speech API [5] to get the transcripts and recognize the user command.

3.2 Developing the Services and Transformers

Figure 3 provides a comprehensive example of implementing a custom service and transformer for an interactive k-means clustering visualization.
In Figure 3a, we define the overall structure of the interaction, specifying the layers, instruments, and services involved.

To create a custom transformer, developers can reuse their existing rendering code by invoking it within the transformer’s redraw function,
as shown in Figure 3b. This allows developers to leverage their existing visualization code while integrating it seamlessly with Libra.js’s
interaction model.

For complex operations not provided by Libra.js, such as k-means clustering, developers can implement a custom service. In Figure 3c, we
create a new KMeansService that performs the clustering algorithm based on the current centroids. The service exposes a evaulate function
that takes the data points and the current centroids as input and returns the updated clustering result.

By creating custom interactors, services, and transformers, ID can extend Libra.js to support a wide range of interaction techniques and
adapt them to their specific requirements. The modular and composable nature of Libra.js’s architecture enables developers to reuse and
compose components, promoting code reusability and maintainability.



Fig. 3: Comprehensive depiction of Libra.js’s full code example, which shows the overall interaction structure (a), reusable transformer code (b),
and an instance of algorithm integration, specifically k-means clustering (c).

4 ADDITIONAL EXPRESSIVENESS

4.1 Various Brush Techniques

In this section, we discuss the versatility of brush instruments in Libra by showcasing various examples of rectangular, circular, and lasso brushes
(see Figure 4).

Fig. 4: Changing the selection service to generate various brush instruments: (a) a rectangular brush, (b) a circular brush, and (c) a lasso brush.

Rectangular Brush. A rectangular brush is the most common type of brush instrument, allowing users to select data points within a rectangular
area. In this example, we start with the default brush instrument in Libra, which employs a rectangular shape. By creating a rectangle on the
screen, users can interactively select and highlight data points that are intersected with the boundaries of the rectangle.

Circular Brush. To change the rectangular brush to a circular brush, we simply need to change the selection service to the circle selection service.
The circular brush allows users to select data points within a circular area. By clicking and dragging the mouse, users can define the radius of the
circle, and all data points within the circle will be selected and highlighted accordingly.

Lasso Brush. The lasso brush offers a more flexible and free-form selection experience. By replacing the selection service with the lasso selection
service, users can draw an irregular, closed shape around the desired data points.

By simply changing the selection service, developers can offer various brush instruments, catering to different scenarios and user preferences.

4.2 Comparing the implementation of DimpVis

In this section, we further dig into the DimpVis interaction, and comparing the impelementation of Libra.js with D3 and Vega.
As shown in Figure 5, where the last two are provided by the DimpVis authors [1] and Vega authors [9]. Since the Vega-lite implementation [10]

only provides the hover interactions without the drag ones, we do not consider it. Although the D3 implementation nicely structures the involved
functions, it still requires ID to manually maintain the communication between different functions and the state of transient objects (e.g., time
trajectory). Vega eases the implementation of callback functions but manages all selections in data space, whereas searching the nearest point in
the time trajectory is natural in the visual space. Hence, its specification takes an approximate method based on the previous and next time points;
they might yield incorrect nearest points in some cases.

4.3 Reusing Interaction to Other Visualizations

One of the key strengths of the Libra interaction model is its ability to reuse and adapt interactions across different types of visualizations with
minimal effort. By defining interactions as standalone, modular instruments, developers can port the same interaction to new visualization
applications while maintaining consistency and flexibility.

Figure 6 demonstrates this capability by applying the same interaction initially designed for the MNIST dataset to two distinct visualization
types: a scatterplot matrix and a node-link diagram. For the Scatterplot Matrix (Figure 6(a-c)), the interaction designed for a single scatterplot
was seamlessly extended to a matrix of scatterplots, where each cell represents a pairwise comparison of features. The modular design of the
interaction ensured that it could be reused across all cells without requiring redundant implementation. Figure 6(d-f) was applied to the same
interaction for a graph-based representation, where nodes and edges are the primary elements of interest. Despite the structural differences
between scatterplots and node-link diagrams, the instrument’s modularity allowed for a straightforward extension to this new context with minor
adjustments to the interaction parameters.

In both cases, the interactions were implemented using a few lines of code by referencing the pre-defined instrument by name and applying it
to the target visualization. Default parameters were automatically applied, ensuring functionality out of the box, while developers retained the
ability to deeply customize these parameters for the specific requirements of their applications.



Fig. 5: Implementing the DimpVis interaction technique. (a) Two snapshots of this interaction; (b) Libra specification (custom components in orange);
and (c) communication between all components, where the orange ones are defined by ID. (d) D3 code requiring ID to provide callback functions for
all three events. (e) Vega specification for finding the point nearest to the point dragged on the time trajectory.

4.4 Creating a new Interaction

To demonstrate the generative power of Libra, we present a novel combination of Dust & Magnet [12] and excentric labeling [2]. This combination
enhances data exploration by enabling detailed inspection of point clusters while maintaining the force-based exploration mechanism.

To implement this combined technique, ID first defines four main layers: the magnet layer showing attributes as colored rectangles that can
be dragged, the dust layer displaying all data items as points that can be hovered, the background layer for creating new magnets (all from Dust
& Magnet), and a new label layer for showing arranged labels (from excentric labeling). She then associates the magnet layer with the drag
instrument and implements three custom services: the magnet position service, dust layout service, and label layout service.

The magnet position service computes the positions of magnets based on user’s drag actions, while the dust layout service calculates new
positions of data points based on their attraction to magnets. These positions are shared with respective layers’ graphical transformers to update
the visualization. For the excentric labeling functionality, she attaches a hover instrument to the dust layer and implements a label layout service
that arranges non-overlapping labels for points near the cursor.

The communication between these objects follows a clear pattern: when a drag action occurs, it triggers the magnet position service and dust
layout service to compute new positions. Simultaneously, when the hover action is detected, the label layout service activates to generate and
position labels for nearby points. The separation of services ensures that the drag and hover interactions do not conflict, allowing users to inspect
point details even during magnet manipulation.

The interaction flow proceeds as follows: users can drag magnets to attract or repel data points, with the dust layout service continuously
updating point positions based on magnetic forces. When users hover over regions containing multiple points, the label layout service automatically
arranges and displays labels showing detailed information about nearby points. These labels update dynamically as users move their cursor,
providing immediate feedback about the local data distribution. Users can also create new magnets by clicking on the background layer, which
triggers the magnet position service to initialize the new magnet’s position and the dust layout service to recalculate point positions.

4.5 Diverse Interaction Techniques

In this section, we show several diverse interaction techniques implemented with Libra.js and their corresponding interaction taxonmies in
Table 1.

Cross-filtering. The cross-filtering technique [4, 8, 11] allows users to dynamically filter and explore multidimensional data through multiple
coordinated visualizations. As shown in Figure 7a, selecting a region in one view highlights the data points within that region and updates the
other views to show the selected points. AD can also implement this interaction technique by reusing the built-in brush instrument. She first
separates this chart into one scatterplot layer and four histogram layers where each layer has its own associated data fields. As illustrated in
Figure 7b, she inherits the brush instrument (line 2) and then associates this instrument with all scatterplot and histogram layers (line 3). Since
each layer shares the same processing pipeline but uses different data fields, she sets the selection service to use different data fields with a
function defined in lines 7-13, which uses the layer’s index to find the corresponding data fields (line 9). Subsequently, she inserts a filter service
(line 12) to update the data rendered in each layer.

Overview & Detail. As shown in Figure 8a, the overview and detail technique [3] combines two linked visualizations: a high-level overview of
the entire dataset and a detailed view of a specific subset of the data. Users can navigate and explore the data by selecting regions in the overview,
which are then magnified and displayed in the detail view. To implement this, AD first separates the visualization into two layers: the overview
layer and the detail layer, as illustrated in Figure 8b. She then associates the overview layer with the brush instrument and inserts a scale service to



Fig. 6: Implement the same interaction illustrated in the teaser of the main paper to (a-c) the scatterplot matrix, and (d-f) the node-link diagram.

Table 1: The relationship between each visualization and its respective interaction category. The symbols ✓ and × indicate the inclusion or exclusion
of an interaction within a given category, respectively.

Select Explore Reconfigure Encode Abstract/Elaborate Filter Connect

Hover on MNIST dataset ✓ × × × ✓ × ×
Click on MNIST dataset ✓ × × ✓ × ✓ ×

Interactive k-means on MNIST dataset ✓ × × ✓ × × ✓
Excentric labeling ✓ × × ✓ ✓ ✓ ×
Hover on bar chart ✓ × × × ✓ × ×

Multiple click on scatter plot ✓ × × ✓ × × ×
Brush on scatter plot ✓ × × ✓ × × ×

Pan & Zoom × ✓ × × ✓ × ×
Index chart × × ✓ × × × ×
DimpVis ✓ ✓ × × ✓ ✓ ✓
Figure 7 ✓ × × ✓ × ✓ ✓
Figure 8 ✓ ✓ × × × × ✓
Figure 9 ✓ × ✓ × × × ×

Figure 10 ✓ × ✓ × ✓ × ×
Figure 11 ✓ × × ✓ × × ✓
Figure 12 ✓ × × × × ✓ ✓

compute the corresponding scaling factor based on the selected region. This scaling factor is shared with the detail layer’s graphical transformer
to update the detailed view accordingly. Figure 8c shows the communication between the objects, where the brush action triggers the selection
service and the scaling service, and the detail transformer to update the detail view.

Matrix Reordering. Matrix reordering [7] is an interaction technique that allows users to rearrange the rows and columns of a matrix visualization
to reveal patterns and relationships in the data, as shown in Figure 9a. Users can interactively drag and drop rows and columns to reorder the
matrix. To support this interaction, AD associates the main layer with the drag instrument, as shown in Figure 9b. She then inserts the scale
inversion service that finds the original and new row or column indices based on the user’s drag action. Those indices are shared with the reorder
service to sort the data, and then the main layer’s graphical transformer will re-draw the sorted matrix. Figure 9c illustrates the communication
flow, where the drag action triggers the scale inversion service to compute the new indices, which are then used to reorder and redraw the matrix.

Dust & Magnet. The Dust & Magnet technique [12] enables users to explore and analyze multidimensional data by directly manipulating data
points (dust) and attributes (magnets) on a two-dimensional screen space, as shown in Figure 10a. Users can place magnets as data attributes by
clicking the empty region on the screen, and observe the movement of data points as they are attracted by these magnets based on their attribute
values. To implement this technique, ID defines two main layers: the dust layer and the magnet layer. As illustrated in Figure 10b, she associates
the magnet layer with the drag instrument and implements two custom services: the magnet position service and the dust layout service. The
magnet position service computes the positions of the magnets based on the user’s drag actions, while the dust layout service calculates the
new positions of the data points based on their attraction to the magnets. These new positions are shared with the respective layers’ graphical
transformers to update the visualization. The definition of clicking is similar to the one of dragging. She also attached a hover instrument to the
dust layer to highlight her interest points. Figure 10c shows the communication between the objects, where the drag action or the click action
triggers the magnet position service and the dust layout service to compute the new positions, while the hover action is not conflicted with the
dragging and clicking.
Interactive K-Means. Figure 11a shows an example of an interactive k-means clustering instrument applied to a multidimensional dataset
visualized as a scatterplot matrix. Here, a user can interactively move a cluster centroid if she believes that it is misplaced. This triggers new



Fig. 7: Implementing a cross-filtering instrument for the coordinated scatterplot and four histograms. (a) Snapshots of the interaction; (b) the Libra.js
specification that attaches the scatterplot layer to the brush instrument with filtering service, and (c) the objects involved and the communication
between them.

Fig. 8: Implementing an overview and detail instrument. (a) The snapshots of the interaction, showcasing the overview and the corresponding
detailed view; (b) the Libra.js specification that attaches the overview layer to the brush instrument with the scale service, and (c) the involved
objects and communication between them.

iterations of the k-means algorithm starting from the specified configuration, leading to a possible better solution. With a few interactions, the
user can check if the clustering is stable or fix it. For example, the green and purple centroids are moved by the user on the left of Figure 11a, and
then a new clustering result is quickly obtained, as shown in the right of Figure 11a.

Figure 11b provides the core part of the Libra.js specification. Given a scatterplot matrix, ID needs to define two main layers: a centroid
layer and a cluster layer. Then, she associates the centroid layer with the drag instrument to perform interactive k-means clustering. It is done
in three steps: i) using the selection service to find the changed centroid, ii) joining this centroid with other unmoved centroids (line 7), and
iii) sharing all centroids with the k-means service for generating new clustering results (line 11). During the dragging action, the intermediate
clustering results are shown in the transient layer. To quickly generate such a preview, the k-means clustering is executed with a small number of
iterations. Once the centroid is dropped, the iterations continue to completion. Figure 11c shows the communication between these objects, where
the drag action triggers the centroid selection and then the k-means service for updating the clustering result. To persist the clustering result,
the command is executed to update the centroid data while re-drawing the layer consisting of all points after the clustering is computed. Since
the k-means service is independent of the main visualization, this instrument can be extended with many other ML algorithms for supporting
interactive visual analysis.
Dynamic Query. All the above interactions use direct manipulation of visualization objects. Yet, indirect manipulation is also required for
many interactions. For example, dynamic queries [6] are a classic interaction technique for selecting data items via moving a slider widget. By
taking the widget as an individual layer, Libra.js can handle it as the multiple-view visualization. Figure 12 shows an example where a drag
instrument is associated with the widget layer, and the result of the selection service is passed to the graphical transformer for updating the main
layer. Based on the layer representation, Libra.js unifies the interaction specifications for direct and indirect manipulation interfaces.

Furthermore, we have provided detailed technique documentation and have created a collection of examples that demonstrate the capabilities
of Libra for reusing, compositing, and extending, shown in the following website:



Fig. 9: Implementing a matrix reordering instrument. (a) The snapshots of the interaction, displaying the initial state, user selection, and reordered
matrix; (b) the Libra.js specification that attaches the matrix layer to the drag instrument with reordering service, and (c) the involved objects and
communication between them.

Fig. 10: Implementing the Dust & Magnet interactive visualization system. (a) The snapshots of the interaction, displaying the initial state, user
manipulation of magnets, and the resulting movement of data points (dust); (b) the Libra.js specification that attaches the magnet layers to the
drag instruments with corresponding services, and (c) the involved objects and communication between them.

https://libra-js.github.io/.

We encourage readers to play these examples to gain a deeper understanding of our model Libra.

5 ADDITIONAL METRICS-BASED ANALYSIS

When examining only the interaction-related code (Figure 13), we observe a significant reduction in all metrics across libraries. Notably,
Libra.js-D3 and Libra.js-Vega show particularly consistent performance across different interaction complexities, with similar values for
sprawl and specification length. This consistency arises from Libra.js using a shared interaction model across libraries, with only library-specific
code differing (e.g., updating the main layer). However, this also results in Libra.js-D3 having a slightly larger sprawl than Libra.js-Vega.

In contrast, D3 exhibits significant variations in vocabulary size, largely attributed to its approach of predefining many commonly used
interactions. While this design simplifies the implementation of standard interactions, it places a substantial burden on developers for new or more
complex interactions. Developers are required to handle low-level event management, state transitions, and interaction feedback manually, which
often results in verbose and less maintainable code. This manual effort can also lead to inconsistencies in how interactions are implemented
across different applications. Vega, on the other hand, shows notable variations in specification length and sprawl. These variations stem from
the tight coupling between Vega’s signals, event streams, and visual representations. While this coupling allows for efficient specification of
straightforward interactions, it increases complexity for more intricate or customized interaction designs. The dependency on a specific dataflow
model makes extending or reusing interactions more challenging, particularly for applications requiring a high degree of customization.
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