
F2-Bubbles: Faithful Bubble Set Construction and Flexible Editing

Yunhai Wang, Da Cheng, Zhirui Wang, Jian Zhang,
Liang Zhou, Gaoqi He, Oliver Deussen

(a) F2-Bubbles (b) Manually Made (c) Bubble Sets

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Fig. 1. Using F2-Bubbles, a set overlay visualization can be generated automatically (a) that is comparable to manually made bubble
sets (b). In comparison, the visualization of Bubble Sets (c) does not retain a similar style. Note that the curved vertical lines in (a) are
manually added, (b,c) are obtained from [10].

Abstract—In this paper, we propose F2-Bubbles, a set overlay visualization technique that addresses overlapping artifacts and
supports interactive editing with intelligent suggestions. The core of our method is a new, efficient set overlay construction algorithm
that approximates the optimal set overlay by considering set elements and their non-set neighbors. Thanks to the efficiency of the
algorithm, interactive editing is achieved, and with intelligent suggestions, users can easily and flexibly edit visualizations through direct
manipulations with local adaptations. A quantitative comparison with state-of-the-art set visualization techniques and case studies
demonstrate the effectiveness of our method and suggests that F2-Bubbles is a helpful technique for set visualization.

Index Terms—Set visualization, Edge Crossing, Minimal Spanning Tree

1 INTRODUCTION

Set visualizations—depicting how elements belong to sets—are often
used as overlays on top of other visualizations, since they help to un-
derstand set relationships in context. Even though in our case elements
have to be drawn at fixed positions, creating faithful visualizations with
minimal overlap and edge crossings that accurately depict set mem-
bership while being aesthetic is still a challenge [3]. In this paper, we
propose F2-Bubbles—a bubble set construction method that creates set
visualizations with minimal overlaps close to artistic renditions. Due to

• Y. Wang, D. Cheng, and Z. Wang are with Shandong University. Email:
{cloudseawang,sduchd,russellwzrr}@gmail.com .

• J. Zhang is with CNIC, CAS, China. E-mail: zhangjian@sccas.cn.
• L. Zhou is with National Institute of Health Data Science, Peking University,

China. E-mail: zhoul@bjmu.edu.cn.
• G. He is with East China Normal University, China. E-mail:
gqhe@cs.ecnu.edu.cn.

• O. Deussen is with Konstanz University, Germany. E-mail:
oliver.deussen@uni-konstanz.de.

• Y. Wang and D. Cheng are joint first authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

its efficiency, the visualization can be edited interactively, on a global
scale and for local adaptations.

Our approach was inspired by Bubble Sets [10], a well-received
set visualization technique. This method finds a minimum spanning
tree for the elements of each set, computes an energy field for each of
these trees and derives isocontours from the fields. All isocontours are
then blended together to create the final visualization. Some drawbacks
come with this elegant technique: it generates overlapping artifacts and
areas that do not belong to any set overlap; results become sometimes
cluttered due to wide expansions of isocontours; due to its computa-
tional requirements the method does not support direct editing; thus,
generating a desired look by parameter tuning is difficult.

A different form of set overlay techniques are line-based approaches,
such as LineSets [1]. The method uses curves to connect set elements
to yield minimal overlaps between sets. Kelp diagrams [12] use circles
to highlight set elements and connect them with links, which are further
routed for generating aesthetically pleasing diagrams. However, the
curves produced by both techniques might not be effective in conveying
the sense of grouping for sets with spatially close points [25]; lines
may be too thin for being perceived without zooming. KelpFusion [25],
a hybrid technique, combines line-based and area-based visualization
methods and tries to overcome some of the drawbacks of Bubble Sets.
However, KelpFusion results in more visual clutter than LineSets and
does not enable users to interactively edit results because of its slow
routing.

{cloudseawang, sduchd, russellwzrr}@gmail.com
zhangjian@sccas.cn
zhoul@bjmu.edu.cn
gqhe@cs.ecnu.edu.cn
oliver.deussen@uni-konstanz.de


With our method, F2-Bubbles, we try to overcome most limitations
of the aforementioned systems . We start by identifying limitations of
Bubble Set visualizations and formulate objective functions to reduce
node overlap and edge crossing as much as possible for supporting
data with elements belonging to multiple sets. Since this is an NP-hard
problem [9, 18], we heuristically optimize these objective functions by
finding the spanning trees of the overlay areas with a joint construction
algorithm. Then we generate relation-aware energy fields that remove
occlusions as much as possible while producing contours with adaptive
widths to mimic human-drawn enclosures. Due to the efficient joint
construction of spanning trees, our visualization is fully editable: users
can interactively modify intermediate structures, e.g., nodes, spanning
trees, and final contours with intuitive interactions. Compared to global
parameter tuning, which impacts the whole visualization, our editing
allows to modify the visualization locally and, therefore, the user to
directly follow his/her intention. F2-Bubbles is available as a web-based
online tool1. In summary, our method has the following important
benefits:

• A faithful and heuristic creation method for bubble sets that heuris-
tically minimizes node overlap and edge crossing;

• A set of intelligent interaction methods that enable users to fully
edit the visualization toward desired effects; and

• A quantitative evaluation and several case studies demonstrate
the effectiveness and usefulness of our method.

2 RELATED WORK

Sets are a traditional topic in mathematics. Set theory was formulated
by Cantor [8] and became a foundation of modern mathematics. By
definition, a set is a collection of non-ordered, unique objects called
set elements. Grouping data points to different sets based on their
attributes is a basic step in data analysis, for example, grouping cars by
their manufactures, or grouping wines by their colors.

Set visualization is an active research area. A survey on set visual-
ization techniques is given by Alsallakhi et al. [3]. Different strategies
are employed to visualize set memberships, including Euler and Venn
diagrams [4, 27, 30, 36–38, 46], node-link diagrams [13, 28, 39], matrix-
based methods [22, 26, 34], and aggregation methods [2, 17, 21]. Note
that these methods are dedicated to show the relationship between
elements and sets without concerning the context of the data, for exam-
ple, locations of elements on a geological map or a timeline. For this
purpose overlay methods have been developed, which place a set mem-
bership visualization on top of a different visualization to understand
such data in context. Depending on how the overlays are represented,
methods fall into three categories: area-based, line-based, and hybrid
methods.

Area-based methods represent set membership with “bubbles” – con-
tours that tightly enclose set members, whereas early attempts can only
handle proximal groupings. Byelas et al. [6, 7] aim to mimic the way
humans draw set enclosure by splatting skeletons. Collins et al. [10]
introduce Bubble Sets that allow contiguous sets to be drawn over
arbitrary layouts. The method finds a minimum-spanning tree for the
elements within a set, and then computes an energy field based on the
density of the elements to generate iso-contours using marching squares.
c Colors and opacity are used to encode sets, which are blended together
in case of overlaps. An inverse distance-based potential field as pro-
posed by Vihrovs et al. [41] is able to reduce false overlaps in Bubble
Sets. Region-based methods are well perceived when only few overlaps
exist since colored regions are pronounced and members within regions
can be easily tracked. Another advantage is that regions containing
elements intuitively convey the set concept as they are essentially Euler
diagrams. Because of these benefits, Gansner et al. [15] and Dinkla
et al. [11] create appealing contours to depict node and link groups
of the input graph. However, region-based methods tend to produce
clutter due to the overlap between sets, which makes them ineffective
for dense visualizations.

1https://multisetvis.github.io/

Line-based methods use lines to represent set membership and to
reduce clutter. The LineSets [1] method computes a path through
all members of a set using the Lin-Kernighan’s travelling salesman
heuristic [23] to approximately minimize path length while preserv-
ing geometric simplicity; a smooth curve is generated subsequently.
The main advantage of LineSets is that line crossings only happen at
common elements of sets, i.e., no false overlaps are produced. How-
ever, studies [25] show that the implied sequential order of LineSets
cannot effectively convey the group structures. Kelp diagrams [12]
use a circle to surround each element and connect them with a graph
structure, whereas computing the graph structure is too expensive to
be interactive. The major drawback of line-based methods is that lines
may be too thin to be perceived for complex visualizations.

Hybrid methods take advantage of area-based and line-based tech-
niques. KelpFusion [25] blends a area-based method (Bubble Sets [10])
and a line-based method (Kelp diagrams [12]) by using lines as well
as filled regions. The method computes shortest-path graphs for the
linear features and then fills faces in the graphs to create filled convex
hulls. By generating the bubble contours with spatially varying widths,
F2-Bubbles is also a hybrid method that smoothly combines lines and
regions.

Hypergraph supports. Sets with fixed node positions can be regarded
as an embedding of a hypergraph [3], where each set is a hyperedge
connecting an arbitrary number of nodes. Most of existing set visual-
ization techniques are based on hypergraph supports, which connect all
elements of a set using links in terms of various criteria such as edge
length and edge crossing. For example, Bubble Sets [10] need to com-
pute a customized minimal spanning tree for each set in terms of edge
length and node-edge crossing; LineSets [1] computes a single line
per set in terms of the minima total edge length; Kelp diagrams [12]
computes a sparse spanning graph for all sets by considering edge
length, edge bend and edge crossing; and KelpFusion [25] builds on the
shortest-path graphs. However, Bubble Sets, LineSets and KelpFusion
all optimize edge properties by constructing the support for each set
individually, which may lead to significant edge crossing between sets.
Kelp diagrams jointly construct the supports for all sets based on the
tangent visibility graphs [43], which is very expensive to compute. In
contrast, F2-Bubbles minimizes edge length and crossings for all sets
based on the complete graph of the input data in each step and yields
better performance (see Section 6).

Finding an optimal support in a hypergraph is hard—in fact, the
problem is NP-hard for minimal total edge length for two sets if pla-
narity is required [9]. Hurtado et al. [18] show that length minimization
is NP-hard for more than two sets [18] and provides a polynomial-time
algorithm. Therefore, heuristics are used to approximate the optima by
existing methods and also by F2-Bubbles. Here, spanning trees of all
sets are generated jointly and the minimal solution is approximated in
polynomial time.

Evaluation. A number of empirical evaluations for Bubble Sets, Line-
Sets, Kelp diagrams, and KelpFusion are available. Alper et al. [1]
compare LineSets with Bubble Sets on tasks such as identifying the
number or sizes of sets, set intersections, and set memberships. They
show that LineSets is faster and more accurate than Bubble Sets sug-
gesting that less cluttered visualizations are more effective. Another
study by Meulemans et al. [25] suggests that KelpFusion is never out-
performed by Bubble Sets or LineSets for the same tasks, while it is
aesthetically more pleasing than the other methods. However, a study
on group information finds that Bubble Sets is more effective than
LineSets for group tasks [19]. Last but not least, a task-based evalua-
tion [31] of Bubble Sets, EulerView [36], KelpFusion, and LineSets, in
conjunction with network visualization tasks for social network data
analysis finds no significant differences between Bubble Sets, KelpFu-
sion, and LineSets. These studies suggest that the effectiveness of these
techniques is data-dependent, and accordingly, we conducted a large
scale quantitative evaluation on 30 data sets by using aesthetic criteria
such as overlap ratios, the number of edge crossing, edge length and
number of bends.



(a)

(b) (c) (d)

(e) (f) (g)
Fig. 2. Components involved in the pipelines of the Bubble Sets (top row) and our approach (bottom row) using the same input with three sets of
points (a). (b,e) Spanning trees, the brown boxes indicate the crossing regions; (c,f) Energy fields, the overlapping regions in (c) misrepresent set
relations (red boxes) while our method does not have such overlaps; (d,g) final contours, our method (g) exhibits waisted contours with a more
pronounced separation.

Editing. Overlay techniques inherently do not support for direct ma-
nipulation of parts of the visualization and can only achieve that
by re-parameterization and rerunning the entire layout algorithm,
e.g., [10, 12, 25]. However, it is difficult, if not impossible, to achieve
a desired and satisfactory visualization with re-parametrization, since
the results might not be predictable. Such a lack of direct editing could
discourage users from using them as has been pointed out for other
types of visualizations such as tag-clouds [20], or edge bundling [42].
Our F2-Bubbles fills this gap by providing flexible control over set
visualizations.

3 BACKGROUND: BUBBLE SETS

Given an array of 2D points {p1, · · · ,pn} with k sets, each point can be
associated with more than a single set. Bubble Sets attempt to reveal set
memberships by using continuous bounding contours with four design
requirements:

(i) R1: all members of a set should be enclosed by a continuous and
connected contour;

(ii) R2: all non-set members should be excluded from the contour
(iii) R3: visual and interactive hints should clarify membership where

non-set members are enclosed; and
(iv) R4: flexible manipulation of the end result must be possible.
In the following, we briefly review how the algorithm of Bubble
Sets [10] meets these requirements, but then discuss its limitations.

3.1 Algorithm Pipeline
Collins et al. [10] proposed an implicit surface-based algorithm, which
involves three steps: spanning tree construction, energy field calcu-
lation and contour extraction. The top row in Fig. 2 illustrates the
corresponding pipeline.

Spanning Tree Construction. Given the s−th set, all its members
are first sorted by their distance to the set center defined as the mean
position of all members. For each member pi, its optimal neighbor p j
is the one with the least cost, defined as:

cost(pi,p j) = pd(pi,p j)∗nn(pi,p j) , (1)

where pd(pi,p j) is the Euclidean distance between pi and p j, and
nn(pi,p j) is the number of non-set members that have intersecting
bounding boxes with the straight edge between pi and p j . Incorporating
nn() helps for satisfying R2 and reducing crossings between contours
and non-set members. After selecting a node j from the sorted list, an
edge routing algorithm [29] is applied to find the best route between
these two nodes during tree construction. Note that routing might result

in multiple additional virtual nodes. Finally, all nodes are connected by
a spanning tree (see Fig. 2(b)).

In short, this algorithm first sorts the nodes in ascending order ac-
cording to their distances to the center and then at a time adds the next
node with an edge having the smallest weight. Specifically, the algo-
rithm does not select the edge with the smallest weight from the whole
graph. In doing so, a blobby shape can be ensured as demonstrated by
the original authors [10].

Energy Field Calculation. Given a set of virtual edges E =
{e1, · · · ,em} defined in spanning trees and two parameters R0 and
R1, the energy value φ(q) at each point q in 2D space consists of
two parts: radius-nearest nodes Ωv = {pi|pd(pi,q) < R1} and edges
Ωe = {ei|ld(ei,q)< R1}, and

φ(q) =
∑pi∈Ωv

wi(R1−pd(pi,q))2+∑e j∈Ωe
w j(R1−ld(e j,q))2

(R1−R0)2 , (2)

where ld(ei,q) is the shortest distance from q to the line segment
of the virtual edge ei, wi is the weight assigned to ei or p j, and R0
and R1 are two distances with energy values 1 and 0, respectively. In
other words, a rectangular energy field is formed around each edge ei
and a circular one for each point sample pi. To meet R2, positive and
negative energies are introduced by adjusting wi, where wi is 1 for the
nodes and edges coming from the same set, and -0.8 and 0 for the nodes
and edges from the other sets, respectively. Fig. 2(c) shows the energy
fields of three sets, with a heavy overlap between green and red sets.

Contour Extraction. To meet R1, this step iteratively applies the
marching squares algorithm [24] to the obtained energy field of each
set with different thresholds, until the set center is enclosed by the cor-
responding contour. Fig. 2(d) is the contour representation of Fig. 2(c).
Crossing regions have similar widths as others.

To enable interactive rendering, Collins et al. [10] suggested to
compute the energy field in a low-resolution display space but this
introduces visual artifacts. By doing so, it allows users to edit the
end results, but only provides node-level operations, such as adding,
moving, and deleting nodes.

3.2 Existing Limitations
Based on the above brief review and previous evaluations [25, 32], we
believe that Bubble Sets completely meets R1 but have three aspects
that might be further improved.

First, Bubble Sets often generate heavy visual clutter and strong
overlap, resulting in poor readability and misleading relations. For



example, the contours highlighted by the boxes in Fig. 2(d) make it
hard to discern set relations. If there are many such areas, even using
additional visual hints cannot clearly depict the underlying relations.

Second, while carefully comparing boundaries of hand-drawn en-
closures and contours created by Bubble Sets (see an example in
Fig. 1(b,c)) we observe two prominent differences. One is that the
contour thickness of hand-drawn enclosures is not fixed but varies in
terms of the number of closeby members. For regions far away from the
nearest members, contours are often drawn thinner than for other parts
(see orange contours in Fig. 1(c)), this results in a smooth combination
of lines and regions. However, adjusting R0 and R1 of Bubble sets can
only globally change the contour thickness. KelpFusion also attempts
to meet this goal, however, the resulting boundaries are not as smooth
as human-drawings (see Fig. 1(b)), typically caused by routing and
smoothing. The other difference is spatial imprecision, humans tend
to draw sketchy features [47], where set contours do not strictly follow
the border of the boundary members, see the shape of the yellow set in
Fig. 1(b). However, such a style is not easy to simulate by automatic
methods. One possible solution would be through contour-level editing,
which allows users to fine-tune the contour shapes.

Last, editing node positions inevitably involves re-construction of
the spanning tree for the corresponding set, because the set center will
be changed. Hence, a simple movement might result in completely
different spanning trees and finally generate substantially different
contours. Hence, such interactions contradict the consistency principle
for efficient user interaction design [35].

To address these limitations, we propose two new algorithms for
constructing spanning trees and for computing energy fields (Section 4),
while providing flexible interactions for users to edit nodes, edges and
contours of interest (Section 5).

4 OUR METHOD

To produce faithful and aesthetic Bubble Sets, we introduce two addi-
tional design requirements:

(i) R5: minimizing contour crossings as much as possible; and
(ii) R6: smoothly combining lines and regions for achieving ink

minimization [40],
while at the same time aiming for better satisfying R2 and R4. To
realize this, we propose to explicitly incorporate edge crossing and
node overlapping into the construction of spanning trees and energy
fields. As shown at the bottom of Fig. 2(e), F2-Bubbles generates
set skeletons with a joint spanning trees algorithm, which explicitly
reduces edge crossings. Given the skeletons, relation-aware energy
fields are generated to produce hybrid contour representations as hand-
drawn enclosures, while reducing as many overlaps as possible, see
Fig. 2(f).

4.1 Joint Construction of Spanning Trees
To construct Bubble Sets, a well-constructed spanning tree for each set
is indispensable. To fulfill R5, we define the weight of the i-th edge as:

ωi = nec(ei)+welen(ei) , (3)

where len(ei) is the length of the edge ei, nec(ei) is the number of edge
crossing between ei and edges from the other sets, we is the weight
(default we = 1.0). To reduce edge crossing, we give nec(ei) more
weight by normalizing the len(ei) with the largest edge length in the
whole graph. The set index for an edge is defined as the set index
of its nodes (edges can only span between nodes of the same set).
Accordingly, we find the optimal forest F with k spanning trees by
minimizing the sum of edge weights

min
F ∑

i
ωi , (4)

where all nodes in F are the input points P. However, the derivation
of an optimal solution of Eq. 4 is an NP-hard problem [5], because
calculating nec(ei) requires the forest to be available. Therefore, we
propose a heuristic algorithm to approximate it, which simultaneously
constructs the forest of spanning trees of all sets.

(a) (b)

eob

enb

Fig. 3. Selecting a proper edge to construct a spanning tree: (a) the
weight of edges that intersect the newly added orange edge are updated
(highlighted dotted lines) (b) from all potential edges that connect blue
dots in (a) the edge with smallest weight is added to the spanning tree.

Inspired by Kruskal’s MST algorithm [44], we initialize the forest by
taking each point as an individual tree and then gradually merge them
by adding edges one by one. If there are edges that are pre-defined
in the input data, we keep them and gradually add new edges. Before
constructing the forest, we build a graph G with k complete sub-graphs
for each point set in P and define the edge weight by using Eq. 3, where
nec(ei) is zero. After initialization, we first select an edge eob with the
smallest weight and add it to the forest F . Then, we repeatedly merge
two trees with the following three steps until k (= number of sets) trees
are left:

1. update ωi for all unselected edges in G that intersect with eob,

2. select an edge enb with minimal weight from the unselected edges
in G that does not form a cycle with the edges in F ; and

3. add enb to F and apply the surface routing method proposed by
Bubble Sets [10] to the edge enb if it overlaps with non-set points
and set eob = enb.

Note that only the weights of edges that cross a newly added edge eob
among the to-be-selected edges can change. Therefore, in the update
phase, only the number of crossings of these edges needs to be changed.
Fig. 3 illustrates these two steps within one iteration.

Algorithm 1 Joint Construction of Spanning Trees
Require: an array of points P with k sets
Ensure: a forest F with k spanning trees

1: initialize a forest F = {E,V}, where E= /0 and V = P
2: construct a graph G with k complete sub-graphs based on P
3: calculate edge weights in G with Eq. 3
4: find the edge eob with the minimum weight in G
5: repeat
6: update the weights of unselected edges in G with eob
7: add the edge enb with the minimum weight and set eob = enb
8: run surface routing algorithm for the new edge
9: until F has only k trees

The most expensive part of Algorithm 1 is to calculate edge weights
in line 3 , which involves counting the number of edge crossing in m
edges with the time complexity O(m2). In the worst case, m is kn2 for
each of k overlapped sets with n nodes and thus the time complexity
is O(k2n4). Since the number of sets k is typically small, the time
complexity is further reduced to O(n4). More details are provided in
the supplemental material. Nonetheless, it took less than 1s for 200
points with 6 classes in our experiments. Figs 2(b,e) compares spanning
trees constructed by Bubble Sets and our method for three sets, where
the numbers of edge crossing in both trees are 10 for BubbleSets and
5 for our method. Since our method is an edge-based solution, it
inherently supports edge-level editing (see Section 5.2)

4.2 Relation-Aware Energy Fields
Similar to Bubble Sets, our energy field computation also takes all
nodes and edges in each spanning tree as items. To meet R2 and R6,
we propose to create energy fields with adaptive radius R1 and refine



their faithfulness and aesthetics by using two strategies: membership
correction and completeness refinement.

Adaptive Radius. According to the “minimal ink” principle [40],
“arms” connecting two areal regions in the isocontour should not
be too wide—this inspired the design of Kelp diagrams [12] and
KelpFusion [25]. This is also in line with hand-made set overlays
(e.g., Fig. 1(b)). Unlike Kelp diagrams and KelpFusion, arms in man-
ually made visualizations typically have smooth transitions between
their endpoints. We would like to resemble such a look in F2-Bubbles:
arms should exhibit a smooth transition from a large diameter around
endpoints to the thinnest in between.

For an edge ei with two nodes ps and pt , we determine the adaptive
radius for any point q in 2D space by:

R(q) =
R1

1+wr · f (q,ps,pt)
, (5)

with f (q,ps,pt) =
min

(
pd(ps,q′), pd(pt ,q′)

)
pd(ps,pt)

,

where q′ is the projected point (see the inset) of q on the edge
between ps and pt , and wr is a weight with the default set to 3.

ps

pt

q
q'

R1

pd(pt ,q')

pd(ps ,q')
Doing so, the width of the contour at

different points on an edge is inversely pro-
portional to the distance from the position
to the closer endpoint, which lets the en-
ergy field gradually attenuate from the end-
point to the midpoint of the edge (see the inset). Note that we only
apply this adaptive contour to the edges whose length is larger than a
threshold. Incorporating the adaptive radius into Eq. 2, we can obtain
energy fields with spatial varying widths (see Fig. 2(f)).

Unlike Bubble Sets, we only compute the positive energy generated
by each item in the set, where wi in Eq. 2 is 0 for the nodes and edges
from the other sets. However, the resulting energy fields still have
occlusions between sets and thus we have to further refine them to
better respect set relations.

Membership Correction. The pixel-based representation of the en-
ergy fields consists of item-based pixels and non-item-based pixels,
where items refer to the nodes or edges in the spanning trees. To meet
R1 and R2, an item should always be covered by the energy field of
its own set, and non-set items should be excluded from this energy
field. However, there are two cases that might result in membership
ambiguities: i) edges of different sets could cross each other; and ii)
the energy fields of different sets could overlap. Therefore, individually
computing the energy field of each set is infeasible. An example of the
first case is shown in the red box in Fig. 4(a). To address this issue, we
loosen the aforementioned restrictions and only ensure that set items
are always included in their energy field so that the generated bubble
set always contains all elements and its connectivity is ensured. For the
second case, the middle area between two or more items might have
non-zero energy values for each individual energy field, resulting in
membership uncertainty, see the yellow box in Fig. 4(a). Accordingly,
we aim to determine certain memberships for such pixels, similar to
probability-based image segmentation [16].

Based on the computed k energy fields, we adjust the energy value
of each pixel. The procedure is summarized in Algorithm 2 with time
complexity of O(HW ) (for a field of H ×W pixels). Every set is
processed successively. If pixel x is covered by an item of the current
set s, we set its energy value to the value of its energy field Es(x),
otherwise, we set its value to 0. If the pixel x is not covered by any
item but other energy fields, we set its energy value to Es(x), if the
value of Es(x) is greater than the values of the energy fields of all other
sets; otherwise to zero. Fig. 4(b) shows the energy fields after the
correction, where only one edge intersection remains in the red box
and the boundary between the blue and green sets in the orange box
is clearly located. In doing so, the occlusions among different sets are
minimized as much as possible.

(a) (b)
Fig. 4. Energy fields before and after membership correction. (a) The
edge-edge overlap and node-node overlap are highlighted by red and
orange boxes in (a), respectively; (b) the energy field after applying
membership correction.
Algorithm 2 Membership Correction

1: given the initial energy field Es for each set s ∈ S
2: for each set s ∈ S do
3: initialize E ′s with a copy of Es
4: for each pixel x ∈ E ′s do
5: if x is covered by an item of s then
6: E ′s(x) = Es(x)
7: else if p is covered by an item of another set then
8: E ′s(x) = 0
9: else

10: if ∀i ∈ S and i 6= s, Es(x)> Ei(x) then
11: E ′s(x) = Es(x)
12: else E ′s(x) = 0
13: return E ′s for each set s ∈ S

Continuity Refinement. The membership correction ensures faithful-
ness, but it might result in two problematic cases: isolated small regions
and discontinuities between components, see examples in Fig. 5. Small
regions result from crossings between a node and an edge from another
set, while discontinuities result from crossings of two edges from dif-
ferent sets. Therefore, we further have to refine the energy fields to
improve the aesthetic appearance of the final bubble set.

To solve the first case, we find the connected components of the
energy field of each set and remove any connected component that does
not belong to any item. Fig. 5(a) shows an example, the region below
the horizontal edge of the red set is to be removed since it does not
belong to any component of the green set.

To solve the second case, the membership correction created overlap
reduced energy fields around regions of edge crossings that appear to
be hourglass-shaped (see Fig. 5(b)). Such shapes weaken the continuity
of contours; therefore, we define a rectangular energy field centered
at the crossing point with the width R1 (see the dash rectangles in
Fig. 5(b)) and fill it with the original energy values. To prevent false
memberships, we ensure that the filling is only done for the area without
non-set members. Doing so, the final contours of this region will not
result in false memberships.

Using these refined energy fields, we generate smooth bubbles by ex-
tracting isocontours with marching squares and then fitting the contours
with B-Splines. As shown in Fig. 1(a), such smooth and connected
contours correctly reveal set relations, while resembling hand-drawn
enclosures.

Node duplication. Our method can work on elements contained in
multiple sets. This is achieved by duplicating the node ts−1 times if it
belongs to ts different sets so that each duplicated node is contained by
one set. Once it is done, we compute an energy field for each set.

5 FLEXIBLE EDITING

The efficiency of the above algorithms allows us to provide new or
refined types of interactions enabling users to create visually pleasing
Bubble Sets. During editing, the user has full control over set points,
intermediate structures (spanning trees) and the resulting contours
with flexible yet easy-to-use interactions. To make the interaction
more effective, F2-Bubbles provides suggestions to users as guidance,
while locally updating spanning trees and energy fields for consistent



(a)

(b)

R1

Fig. 5. Continuity refinement for membership correction: (a) introducing
artificial gaps for corrected edge-node regions; (b) two dashed rectangles
defined for filling the gaps introduced by corrected edge-edge crossings.

editing [35].

5.1 Node-Level Editing
Similar to Bubble Sets, users are allowed to add new points to existing
sets or newly created sets, and move and delete existing points.

Adding Points. For a new point added to one of existing sets, we
update the complete graph G by connecting the point to all points in
the corresponding set and compute the weights for all new edges. Then,
we find the edge with the smallest cost starting from this point (see
Eq. 3) and add it to the forest F . If the point is inserted into a new set,
we wait for one more point to compute its Bubble representation.

Deleting Points. When the user deletes a point, all edges in F related
to this point will be removed, the corresponding spanning tree becomes
a few disconnected trees. We take these trees as the input of our
joint construction of spanning trees and compute a new forest F while
keeping all existing edges.

Moving Points. Users can move a point to any position in 2D space.
Doing so, the spanning trees should be updated to keep them optimal.
However, doing the spanning tree construction from scratch might
generate completely different tress, which is typically not desirable
since small changes of nodes are expected to lead to small changes in
the resulting trees (see Fig. 6(b)).

Thanks to our edge-based construction of the spanning trees, we can
heuristically optimize the trees by only modifying the affected parts so
as to minimize the overall changes. Specifically, we update the forest F
for a moved point in three steps. First, we delete all edges connected to
the point at the original position, which disassembles the corresponding
spanning tree into a few connected components. Then, we select a
region Θ with a radius of 10% of the overall visualization around the
new position and remove all edges from the same set in this region.
Last, we take the remaining connected components and the points in Θ

as inputs of our joint construction algorithm, which computes a new
spanning tree while keeping all existing edges.

When the user moves a node to a new position, the method will con-
nect it to a nearby point, at the same time, only the local neighborhood
part is changed during re-optimization of the spanning tree. The effect
of moving a node is shown in Fig. 6. Compared to Bubble Sets, the
induced change of the spanning tree with F2-Bubbles is much smaller.
Because this local editing relies on the current status of the forest F ,
moving a node that is not newly added to a new position and then back
to its old position might not yield the same forest.

5.2 Edge-Level Editing
Like node-level editing, users can add and delete edges to change the
connectivity between elements. They can also adjust edge routing by

(a)

(b)
Fig. 6. Node-level editing operations: moving the purple node, deleting
the yellow node and adding a brown node with Bubble Sets (a) and
F2-Bubbles (b). Bubble Sets removes four unrelated edges (shown as
dotted lines) and adds four edges in (a), while our method preserves the
input spanning tree in (b).

(a) (b)
Fig. 7. Editing contours with edge- and contour-level editing operations:
(a) The solid orange edge is a user-added edge, while the dotted orange
edge is suggested for deleting because of a cycle. The dotted pink edge
on the left is moved by adjusting its control points; (b) contour control
points are moved to change its boundary.

adding control points to one of existing edges or delete them.

Adding Edges. Users can add an edge by connecting two selected
points from the same set. This, however, might form a loop in the
spanning tree. To address this issue, we first detect whether there is a
cycle, calculate the costs of the loop-involved edges, and suggest the
one with the highest cost for deletion. Once an edge is added, we apply
surface routing to let the edge bypass all data points from the other sets.
To always keep user-added edges during the tree construction, we set
their costs to -1.

Deleting Edges. After deleting an edge, the corresponding spanning
tree becomes disconnected, and another edge needs to be added else-
where. We re-calculate the edge weights for all edges that could be
added in the current state and suggest the edge with the lowest cost for
adding. In Fig. 7(a), the dotted orange edge is deleted by the user and
the solid orange line is suggested for adding. If the user is not satisfied
with the suggested edge, the system will suggest the edge with the
second lowest cost until the user selects one. For the selected edge, we
apply surface routing to bypass any obstacles. To ensure that deleted
edges will not be re-created later again, we set their costs to +∞.

Editing Control Points. Users can select an edge and then add control
points by clicking a position along the edge and dragging it to a desired
new position. Likewise, users can also delete control points from a
selected edge. This form of editing with bend edges allows to form a
desired look for the entire visualization. An example is the leftmost
edge in Fig. 7(a), which are routed to resolve the edge crossing by
moving its control points towards the left border.

5.3 Contour-Level Editing

We allow users to directly interact with the final generated contours to
change their shape. In addition, the width of specific “arms” within the



isocontours can be modified interactively, which is not possible with
Bubble Sets.

Contour Spline Editing. After running marching squares, B-spline
interpolation is used to smooth the contours. To change the contour,
we allow users to freely edit its control points. When users move a
control point outwards of the existing contour, we fill the newly formed
area with the energy value at the original position to extend the energy
field. If the control point is moved inwards, we fill the removed regions
with zero energy. Fig. 7(b) shows local contour editing of Fig. 7 (a) by
dragging control points.

Local Radius Editing. Adjusting parameters R1 and R0 in Equation 2
can change the amount of energy generated by an edge, and modifies
the isocontour thereof. However, adjusting these values changes the
energy fields globally, whereas the user may only want to change the
contour width near a certain edge in the spanning tree. To do so, we
allow users to adjust wr (see Eq. 5) to increase or decrease the radius
of the selected edges.

With the synergy of the aforementioned interactions, the user is able
to conveniently achieve visualizations that are comparable to manually
made set overlays within a short time. Examples can be seen in Fig. 1
and Fig. 9 in the case studies.

6 EVALUATION

We performed a quantitative evaluation of F2-Bubbles against Bubble
Sets [10], Kelp diagrams [12], KelpFusion [25], and LineSets [1] to
evaluate our automatic adaptive construction method. The comparison
against Bubble Sets is done in terms of four measures: the number
of edge crossings, the total edge length, the number of bends, and
the ratio of overlapping areas to all enclosed regions. The first three
measures evaluate the quality of the generated supports, while the last
one assesses the faithfulness of the Bubble contours. Overlap ratios
of KelpFusion and Line Sets are better than what Bubble Sets that
can produce due to their minimal “ink” strategy. We formulate the
following hypothesis:

• F2-Bubbles has a lower overlap ratio than Bubble Sets and fewer
edge crossings, a smaller total edge length and lowest number of
edge bends than all other methods.

Since the code of Kelp diagrams and KelpFusion is not available
from the authors nor online, we implemented F2-Bubbles, Line Sets
(based on an open-source Java code [45]), Kelp diagrams and Kelp-
Fusion in JavaScript, and used a publicly available Java package of
Bubble Sets from the original authors for the evaluation. A total of
30 datasets were used in the evaluation: 10 of which are real-world
datasets, and 20 are synthetic datasets generated with randomly placed
set elements. The number of points in all datasets are less than 200. De-
fault parameter settings of our method, Bubble Sets, and Line Sets were
used, no editing was done. Kelp diagrams and KelpFusion do not have
a default configuration, so we empirically set the parameters bt = 2,
cd = 1, cα = 100, cI = 100 for Kelp diagrams to generate proper links
and t = 3 for KelpFusion and node radius r = 15 for both of them to
achieve a “medium” effect that balances linear and areal regions. A
comprehensive documentation of the evaluation with visualizations of
all datasets can be found in the supplemental material, while a summary
statistics of the results on all datasets and real-world datasets are shown
as the red and blue boxplots in Fig. 8.

Fig. 8(a) shows that the number of edge crossing in spanning trees
with F2-Bubbles is about 1/2 of that of Bubble Sets, Kelp diagrams,
and Line Sets, while it is 1/3 of KelpFusion. Since the objective of Kelp
diagrams considers edge crossing, it performs slightly better the other
methods but still worse than our method. Fig. 8(b) shows that the total
edge length in spanning trees with F2-Bubbles is less than about 10%
to 25% of that of the other methods. Since the objective of Line Sets
only considers edge length, it performs slightly worse that our method.
Fig. 8(c) shows that KelpFusion results in the largest number of bends
and LineSets performs the best, while our method is comparable to
Bubble Sets, and is less than 10% to 25% of that of Kelp Diagrams. In
contrast, the overlap ratio with F2-Bubbles is typically 1/3 to 1/5 of
Bubble Sets as shown in Fig. 8(d). Comparing the red and blue boxplots

0

20

40

60

O
ve

rla
p 

R
at

io
(%

)

F2-Bubbles Bubble 
Sets

10

30

50

O
ve

rla
p 

R
at

io
(%

)

0

10

20

30

40

50

60

(d)

All datasets Real-world datasets

0

50

100

150

Bubble Sets Kelp Diagrams KelpFusion LineSetsF2-Bubbles

N
um

be
r o

f C
ro

ss
in

g

(a)

5k

10k

15k

20k

To
ta

l E
dg

e 
Le

ng
th

(p
x)

Bubble Sets Kelp Diagrams KelpFusion LineSetsF2-Bubbles

(b)
0

(c)
0

200

400

600

N
um

be
r o

f B
en

ds

Bubble Sets Kelp Diagrams KelpFusion LineSetsF2-Bubbles

F2-Bubbles Bubble
Sets

Fig. 8. Performance evaluation for set overlay techniques on all datasets
(red boxplots), and on real-world datasets (blue boxplots) with four dif-
ferent measures: numbers of edge crossings (a), total edge lengths(b),
numbers of bends(c), and the overlap ratios(d). Outliers are shown as
dots in the boxplots.

indicates that the distributions of the first two measures for all methods
on real-world datasets is more concentrated, while F2-Bubbles and
Bubble Sets both result in a slightly larger overlap ratios on real-world
datasets. On the other hand, F2-Bubbles resulted distributions of three
measures are less spread than that of others.

We then used statistical inference to check if significant differences
exist between our method and the other approaches. The Wilcoxon
signed-rank test—a non-parametric method—was used for testing sta-
tistically significant differences. Such differences were found between
F2-Bubbles and Bubble Sets on the overlap ratio (p < 0.0001), the
number of edge crossings as well as the total edge length between
F2-Bubbles and Bubble Sets, Kelp diagrams, KelpFusion, and Line
Sets. Tests on real-world datasets show that our hypothesis still holds
(p < 0.05). For the number of bends, our method is significant lower
than Kelp diagrams and KelpFusion and is significantly higher than
LineSets, but its difference from Bubble Sets is not significant. Namely,
F2-Bubbles performs only worse than Line Sets among all methods.
Therefore, our hypothesis can be partially accepted.

Moreover, the computation of our method is fast (within 2 seconds
for all data) and comparable to that of Bubble Sets and Line Sets. In
comparison, KelpFusion typically takes hundreds of seconds (Median
= 450.3s, Min = 3.4s, Max = 2804.6s) to generate a result, while Kelp
diagrams is even slower. We speculate that it is caused by the expensive
computation ofthe shortest paths from the tangent visibility graphs [43],
which are based on Voronoi diagrams of the input data. The evaluation
provides evidence that F2-Bubbles is able to effectively and efficiently
construct set overlays automatically. The construction method of F2-
Bubbles generates fewer edge crossings and overlaps in comparison to
existing techniques, which provides a good basis for further interactive
editing (see Section 7).

It should be noted that using fixed parameters with KelpDiagrams
and KelpFusion might not generate good results for every dataset and
thus we cannot conclude that they always perform poorly in terms of
our used measures. To obtain a more complete view, we show the
results yielded by different parameters in the supplementary material.
Moreover, our implementations of KelpDiagrams, KelpFusion and
LineSets are not optimized and thus running times could be further
reduced.

7 CASE STUDIES

To demonstrate the usefulness of our overall method—the set over-
lay construction and the flexible, intelligent editing thereafter— we



(a) (b)

(c) (d)
Fig. 9. Set visualization of (a) F2-Bubbles right after adaptive construction, (b) after editing, (c) Bubble Sets [10], and (d) KelpFusion [25]. All sets are
visualized over the map of Manhattan (New York). Hotels, subway stations, and clinics are visualized as bubble sets in orange, brown, and purple.

created set overlays on top of a wide range of data types, including a
geographical map, scatterplots, and a timeline.

Geographical Map—Manhattan. Sets of hotels (orange), subway
stations (brown), and clinics (purple) in Manhattan (New York) are
visualized in Fig. 9. For Bubble Sets (Fig. 9(c)) the overlaps between
“bubbles” make tracking set elements difficult—users have to zoom in
and out to correctly identify and track the set of interest which might
break their mental map. For example, the brown set overlaps with the
orange set around Tribeca, and a brown element is close to an orange el-
ement on the boundary of the brown set (the bottom zoom-in); a similar
case is seen for the brown point in the overlap of the brown and purple
sets around the Union Square (the top zoom-in). Moreover, overlaps
may be misleading to users as they may suggest false set relationships,
e.g., blended regions of set contours and the underlying map could be
misinterpreted as new, isolated sets. KelpFusion (Fig. 9 (d)) clearly
separates each set with the line and polygon-based rendering, and the
memberships of set elements in the overlapped area of Bubble Sets
are clearly seen (top zoom-ins). However, the lines of KelpFusion in
Fig. 9 (d) share a similar style with the subway lines of the underlying
map, which might might confuse viewers, especially on colored maps.
Moreover, polygonal areas may mislead people to suggest more set ele-
ments since they are pronounced perceptually (for example, the brown
areas). Note that such effect might not exist when using different t
values. By contrast, F2-Bubbles creates a clutter-reduced visualization
with an automatic adaptive construction (Fig. 9 (a)), no ambiguity is
present for the problematic regions of Bubble Sets (both zoom-ins of
Figs. 9(a, c)). However, F2-Bubbles might yield contours that are too
thin to be identified, which might result in membership mis-estimations.
The part of the purple contour between the brown and orange sets in
the top zoom-in of Fig. 9(a) is an example. To address this issue, we
delete the corresponding edge in the forest and add a new edge as well

as control points to form new contours. After interactive editing, a
further fine-tuned visualization is achieved (see Fig. 9 (b)). Tracking of
each set is easy as few overlaps occur, set information can be perceived
without zooming-in, and, therefore, a good focus-and-context effect
is achieved without a high mental load of the user. In addition, our
version looks more pleasing than Bubble Sets due to the smoother long
arms and less “ink”; our result looks more faithful than KelpFusion and
is less likely to be misinterpreted as part of the map.

Furthermore, the Bubble Sets and KelpFusion cannot be edited
directly, whereas our result in Fig. 9 (a) was interactively edited for the
regions around the Union Square with edge editing (the red box), and
close to Soho with isocontour editing (the blue box).

Scatterplots. Fig. 10 shows set visualizations over 2D scatterplots
for total fertility (horizontal axis) and life expectancy (vertical axis)
of countries and regions during the year 1981 from Gapminder [33].
The sets are color-coded based on geographic regions. The Bubble Sets
visualization in Fig. 10 (a) is cluttered due to many overlaps. This is
especially the case for high-density regions (e.g., the red and gray sets
are almost fully covered by others). Moreover, overlaps are misleading
and cause confusions, in particular, when close-by data points are from
different sets (see zoom-ins). For example, elements of gray and blue
sets are close-by (the central zoom-in) and their set contours overlap.
Thus, users are typically unsure if these are from the data or caused
by a bug; moreover, blending generates new colors close to set colors
(the brown points on the boundary of the red contour, seen in the top
left zoom-in) making a correct perception difficult. In comparison, the
automatic adaptive construction of F2-Bubbles (Fig. 10 (b)) already
creates a much clearer visualization with no severe overlaps. However,
there are still edge crossings in the overlapping area (see the blue zoom-
in in Fig. 10 (b)). To alleviate such crossings, we route the gray contour
by deleting its original edge and add a new curved edge. The same holds



1981

Total Fertility
1 2 3 4 5 6 7 8 9

Europe & Central Asia

Middle East & North Africa

America
East Asia and Pacific
South Asian

Li
fe

 e
xp

ec
ta

nc
y

80

75

70

65

60

55

50

45

Sub-Saharan Africa

1981

Total Fertility
1 2 3 4 5 6 7 8 9

Europe & Central Asia

Middle East & North Africa

America
East Asia and Pacific
South Asian

Li
fe

 e
xp

ec
ta

nc
y

80

75

70

65

60

55

50

45

Sub-Saharan Africa

1981

Total Fertility
1 2 3 4 5 6 7 8 9

Europe & Central Asia

Middle East & North Africa

America
East Asia and Pacific
South Asian

Li
fe

 e
xp

ec
ta

nc
y

80

75

70

65

60

55

50

45

Sub-Saharan Africa

(a) (b) (c)
Fig. 10. Set visualization of (a) Bubble Sets, (b) F2-Bubbles, and (c) F2-Bubbles after editing 2D scatterplots of life expectancy versus total fertility of
countries and regions of the year 1981. Sets are colored based on geographic regions of the world as shown in the legend.

(a) Bubble Sets (b) F2-Bubbles

Fig. 11. Visualizations of NBA (National Basketball Association) season awards for the years 2010 to 2020 with (a) Bubble Sets, and (b) F2-Bubbles.
The horizontal axis of the timeline shows the teams in which the awarded players served, while the vertical axis is the year of the season. Players are
indicated by their photos, the winner teams are shown with winner cups. Sets are color-coded by the award type as shown in the legend.

for the contours in the red zoom-in in Fig. 10 (b). After fine-tuning
with intelligent suggestions (Fig. 10 (c)), even better visualization is
achieved with ease: optimal edge configurations are suggested after
deleting unwanted edges, and control points are added to avoid dense
areas.

Timeline—NBA Awards. Fig. 11 shows set overlays of NBA
season awards on top of a timeline visualization of years 2010 to 2020
(the vertical axis) versus teams of awarded players (the horizontal axis).
Players are shown with their photos, and the winner teams are tagged
with winner cups. The sets are color-coded by the type of awards as
indicated in the legend. The Bubble Sets visualization (Fig. 11 (a))
conveys the overall set information but generates many overlaps that
hinder the understanding of set relationships. In fact, as photos, instead
of colored set elements are used in this example, it is impossible to
identify which award a player received when his photo is shown in
overlapped regions (highlighted in red boxes). Such ambiguities can
only be resolved with background knowledge, which reduces the value
of the visualization. With F2-Bubbles (Fig. 11 (b)), the visualization
is clear and without any ambiguity—sets are clearly separated in the
erroneous regions in Bubble Sets (regions within red boxes). The
visualization of F2-Bubbles is more accessible and easier to understand
than Bubble Sets, and, therefore, can be readily used as visualization
for the public, e.g., as an infographic in a news report.
8 CONCLUSION & FUTURE WORK

In this paper, we have introduced F2-Bubbles for the generation of
faithful set overlays with interactive editing. We have designed our
method to improve faithfulness and enable users to directly edit the
visualization with intuitive interactions. The generation of F2-Bubbles
has been modeled as an optimization problem, which is approximated
by our pipeline consisting of the joint production of spanning trees,
structure-aware energy fields, and isocontour smoothing. Intelligent

interactions allow users to edit visualizations with guided direct ma-
nipulation towards desired effects. The effectiveness of our method
was evaluated by comparing it to existing methods on various datasets
with quantitative comparisons. Through case studies, we demonstrated
the capability of F2-Bubbles in achieving artistically-made set overlays
within several interactions.

However, our method still has several limitations. First, our adaptive
radius based thinning strategy may prevent users from noticing cluster
patterns or areas of the underlaying data that are largely covered by a
single set. An example is the purple contour in top zoom-in of Fig. 9(a),
which can be improved by further interactive edting. In the future, we
would like to automatically detect such cases and adapt surface routing
to avoid them. Second, our results seem to be more naturally looking
than other methods, whereas the perceived quality is not explicitly
measured. Hence, we would like to conduct a user study to learn how
well F2-Bubbles works for different set-related tasks and how much
they are preferred by users. Last, our method still takes around one
minute for data with more than 1000 points, which results in a latency
for further interactive editing. In the future, we will accelerate F2-
Bubbles by exploring advanced MST optimization methods [14] and
using the GPU to further reducing construction time.

ACKNOWLEDGMENTS

This work is supported by the grants of the National Key Research &
Development Plan of China (2019YFB1704201), NSFC (61772315,
61861136012), the Open Project Program of State Key Laboratory
of Virtual Reality Technology and Systems, Beihang University
(No.VRLAB2020C08), CAS grant (GJHZ1862), Beijing Advanced
Discipline Construction Project (BMU2019GJJXK001), PKU-Baidu
Fund (2019BD017), and Deutsche Forschungsgemeinschaft (DFG)
Project DE 620/26-1.



REFERENCES

[1] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design Study of
LineSets, a Novel Set Visualization Technique. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2259–2267, 2011. doi: 10.
1109/TVCG.2011.186

[2] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial Sets: Interac-
tive Visual Analysis of Large Overlapping Sets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2496–2505, 2013. doi: 10.
1109/TVCG.2013.184

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers.
The State-of-the-Art of Set Visualization. Computer Graphics Forum,
35(1):234–260, 2016. doi: 10.1111/cgf.12722

[4] M. E. Baron. A Note on the Historical Development of Logic Diagrams:
Leibniz, Euler and Venn. The Mathematical Gazette, 53(384):113–125,
1969. doi: 10.2307/3614533

[5] B. Bollobas. Graph Theory: An Introductory Course. Springer-Verlag,
New York, 1979. doi: 10.1007/978-1-4612-9967-7

[6] H. Byelas and A. Telea. Visualization of Areas of Interest in Software Ar-
chitecture Diagrams. In Proceedings of the ACM Symposium on Software
Visualization, pp. 105–114, 2006. doi: 10.1145/1148493.1148509

[7] H. Byelas and A. Telea. Towards realism in drawing areas of interest on
architecture diagrams. Journal of Visual Languages Computing, 20(2):110–
128, 2009. doi: 10.1016/j.jvlc.2008.09.001

[8] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathe-
matische Annalen, 46(4):481–512, 1895. doi: 10.1007/BF02124929

[9] T. Castermans, M. van Garderen, W. Meulemans, M. Nöllenburg, and
X. Yuan. Short plane supports for spatial hypergraphs. In International
Symposium on Graph Drawing and Network Visualization, pp. 53–66.
Springer, 2018. doi: 10.1007/978-3-030-04414-5_4

[10] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing Set Rela-
tions with Isocontours over Existing Visualizations. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1009–1016, 2009. doi: 10
.1109/TVCG.2009.122

[11] K. Dinkla, N. H. Riche, and M. A. Westenberg. Dual adjacency matrix:
exploring link groups in dense networks. 34(3):311–320, 2015. doi: 10.
1111/cgf.12643

[12] K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg.
Kelp Diagrams: Point Set Membership Visualization. Computer Graphics
Forum, 31(3pt1):875–884, 2012. doi: 10.1111/j.1467-8659.2012.03080.x

[13] M. Dörk, N. Henry Riche, G. Ramos, and S. Dumais. PivotPaths: Strolling
through Faceted Information Spaces. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2709–2718, 2012. doi: 10.1109/TVCG.
2012.252

[14] R. Dorrigiv, R. Fraser, M. He, S. Kamali, A. Kawamura, A. López-Ortiz,
and D. Seco. On minimum-and maximum-weight minimum spanning
trees with neighborhoods. Theory of Computing Systems, 56(1):220–250,
2015. doi: 10.1007/s00224-014-9591-3

[15] E. R. Gansner, Y. Hu, and S. G. Kobourov. Gmap: Drawing graphs as
maps. In International Symposium on Graph Drawing, pp. 405–407.
Springer, 2009. doi: 10.1007/978-3-642-11805-0_38

[16] R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Com-
puter vision, graphics, and image processing, 29(1):100–132, 1985. doi:
10.1016/S0734-189X(85)90153-7

[17] H. Hofmann, A. P. J. M. Siebes, and A. F. X. Wilhelm. Visualizing
Association Rules with Interactive Mosaic Plots. In Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 227–235, 2000. doi: 10.1145/347090.347133

[18] F. Hurtado, M. Korman, M. van Kreveld, M. Löffler, V. Sacristán, A. Sh-
ioura, R. I. Silveira, B. Speckmann, and T. Tokuyama. Colored spanning
graphs for set visualization. Computational Geometry, 68:262–276, 2018.
doi: 10.1016/j.comgeo.2017.06.006

[19] R. Jianu, A. Rusu, Y. Hu, and D. Taggart. How to Display Group Infor-
mation on Node-Link Diagrams: An Evaluation. IEEE Transactions on
Visualization and Computer Graphics, 20(11):1530–1541, 2014. doi: 10.
1109/TVCG.2014.2315995

[20] K. Koh, B. Lee, B. Kim, and J. Seo. ManiWordle: Providing Flexible
Control over Wordle. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1190–1197, 2010. doi: 10.1109/TVCG.2010.175

[21] R. Kosara, F. Bendix, and H. Hauser. Parallel Sets: interactive exploration
and visual analysis of categorical data. IEEE Transactions on Visualization
and Computer Graphics, 12(4):558–568, 2006. doi: 10.1109/TVCG.2006.
76

[22] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. UpSet:
Visualization of Intersecting Sets. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1983–1992, 2014. doi: 10.1109/TVCG.2014.
2346248

[23] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2):498–516, 1973.
doi: 10.1287/opre.21.2.498

[24] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. vol. 21, pp. 163–169. ACM New York,
NY, USA, 1987. doi: 10.1145/37401.37422

[25] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer.
KelpFusion: A Hybrid Set Visualization Technique. IEEE Transactions
on Visualization and Computer Graphics, 19(11):1846–1858, 2013. doi:
10.1109/TVCG.2013.76

[26] L. Micallef, P. Dragicevic, and J. Fekete. Assessing the Effect of Visualiza-
tions on Bayesian Reasoning through Crowdsourcing. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2536–2545, 2012. doi:
10.1109/TVCG.2012.199

[27] L. Micallef and P. Rodgers. eulerAPE: Drawing Area-Proportional 3-
Venn Diagrams Using Ellipses. PLOS ONE, 9(7):1–18, 2014. doi: 10.
1371/journal.pone.0101717

[28] K. Misue. Drawing Bipartite Graphs as Anchored Maps. In Proceedings
of the 2006 Asia-Pacific Symposium on Information Visualisation - Volume
60, pp. 169–177, 2006. doi: 10.1145/1151903.1151929

[29] D. Phan, L. Xiao, R. Yeh, and P. Hanrahan. Flow map layout. In Proc.
IEEE Symposium on Information Visualization., pp. 219–224. IEEE, 2005.
doi: 10.1109/INFVIS.2005.1532150

[30] P. Rodgers, J. Flower, G. Stapleton, and J. Howse. Drawing Area-
Proportional Venn-3 Diagrams with Convex Polygons. In A. K. Goel,
M. Jamnik, and N. H. Narayanan, eds., Diagrammatic Representation
and Inference, pp. 54–68. Springer Berlin Heidelberg, 2010. doi: 10.
1007/978-3-642-14600-8_9

[31] P. Rodgers, G. Stapleton, B. Alsallakh, L. Michallef, R. Baker, and
S. Thompson. A task-based evaluation of combined set and network
visualization. Information Sciences, 367-368:58–79, 2016. doi: 10.1016/j.
ins.2016.05.045

[32] P. Rodgers, G. Stapleton, B. Alsallakh, L. Michallef, R. Baker, and
S. Thompson. A task-based evaluation of combined set and network
visualization. Information Sciences, 367:58–79, 2016. doi: 10.1016/j.ins.
2016.05.045

[33] H. Rosling, R. A. Rosling, and O. Rosling. New software brings statistics
beyond the eye. Statistics, knowledge and policy: Key indicators to inform
decision making, pp. 522–530, 2005.

[34] R. Sadana, T. Major, A. Dove, and J. Stasko. OnSet: A Visualization
Technique for Large-scale Binary Set Data. IEEE Transactions on Vi-
sualization and Computer Graphics, 20(12):1993–2002, 2014. doi: 10.
1109/TVCG.2014.2346249

[35] B. Shneiderman. Designing the user interface: strategies for effective
human-computer interaction. Pearson Education India, 2010. doi: 10.
1007/BF01934418

[36] P. Simonetto, D. Auber, and D. Archambault. Fully Automatic Visuali-
sation of Overlapping Sets. Computer Graphics Forum, 28(3):967–974,
2009. doi: 10.1111/j.1467-8659.2009.01452.x

[37] G. Stapleton, J. Flower, P. Rodgers, and J. Howse. Automatically drawing
Euler diagrams with circles. Journal of Visual Languages Computing,
23(3):163–193, 2012. doi: 10.1016/j.jvlc.2012.02.001

[38] G. Stapleton, P. Rodgers, J. Howse, and L. Zhang. Inductively Generat-
ing Euler Diagrams. IEEE Transactions on Visualization and Computer
Graphics, 17(1):88–100, 2011. doi: 10.1109/TVCG.2010.28

[39] J. Stasko, C. Görg, and Z. Liu. Jigsaw: Supporting Investigative Analysis
through Interactive Visualization. Information Visualization, 7(2):118–
132, 2008. doi: 10.1057/palgrave.ivs.9500180

[40] E. R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 2 ed., 2002. doi: 10.1075/idj.4.3.12cos

[41] J. Vihrovs, K. Prūsis, K. Freivalds, P. Ručevskis, and V. Krebs. An inverse
distance-based potential field function for overlapping point set visual-
ization. In 2014 International Conference on Information Visualization
Theory and Applications (IVAPP), pp. 29–38, 2014.

[42] Y. Wang, M. Xue, Y. Wang, X. Yan, B. Chen, C. W. Fu, and C. Hurter.
Interactive Structure-aware Blending of Diverse Edge Bundling Visual-
izations. IEEE Transactions on Visualization and Computer Graphics,
26(1):687–696, 2020. doi: 10.1109/TVCG.2019.2934805

[43] R. Wein, J. P. Van den Berg, and D. Halperin. The visibility–voronoi



complex and its applications. Computational Geometry, 36(1):66–87,
2007. doi: 10.1016/j.comgeo.2005.11.007

[44] M. A. Weiss. Data structures and algorithm analysis. Benjamin-
Cummings Publishing Co., Inc., 1995.

[45] D. Welch. An implementation of linesets in processing/java. https:
//github.com/dtwelch/Line-Sets. [Online; accessed 12-Jul.-2021].

[46] L. Wilkinson. Exact and Approximate Area-Proportional Circular Venn
and Euler Diagrams. IEEE Transactions on Visualization and Computer
Graphics, 18(2):321–331, 2012. doi: 10.1109/TVCG.2011.56

[47] J. Wood, P. Isenberg, T. Isenberg, J. Dykes, N. Boukhelifa, and A. Slingsby.
Sketchy rendering for information visualization. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2749–2758, 2012. doi: 10.
1109/TVCG.2012.262

https://github.com/dtwelch/Line-Sets
https://github.com/dtwelch/Line-Sets

	Introduction
	Related Work
	Background: Bubble Sets
	Algorithm Pipeline
	Existing Limitations

	Our Method
	Joint Construction of Spanning Trees
	Relation-Aware Energy Fields

	Flexible Editing
	Node-Level Editing
	Edge-Level Editing
	Contour-Level Editing

	Evaluation
	Case Studies
	Conclusion & Future Work

