# F2-Bubbles: Faithful Bubble Set Construction and Flexible Editing

Yunhai Wang, Da Cheng, Zhirui Wang, Jian Zhang, Liang Zhou, Gaoqi He, and Oliver Deussen

**Abstract**—In this supplemental material, we document contents that are left out from the paper for conciseness. We start by showing the analysis of computational complexity of our method. Then, full results of the evaluation are reported. Finally, all visualizations of all datasets used in the evaluation are shown.

#### 1 TIME COMPLEXITY ANALYSIS OF THE JOINT CONSTRUCTION OF SPANNING TREES ALGORITHM

In this section, we provide the detailed time complexity analysis of the joint spanning tree construction algorithm. To facilitate the explanation, we include it as Algorithm 1.

Algorithm 1 Joint Construction of Spanning Trees

Require: an array of points P with k sets

**Ensure:** a forest *F* with *k* spanning trees

1: initialize a forest  $F = \{\mathbb{E}, \mathbb{V}\}$ , where  $\mathbb{E} = \emptyset$  and  $V = \mathbf{P}$ 

2: construct a graph G with k complete sub-graphs based on  $\mathbf{P}$ 

- 3: calculate edge weights in G with Eq.3 of the paper
- 4: find the edge  $e_{ob}$  with the minimum weight in G
- 5: repeat

6: update the weights of un-selected edges in G with  $e_{ob}$ 

- 7: add the edge  $e_{nb}$  with the minimum weight and set  $e_{ob} = e_{nb}$
- 8: run surface routing algorithm for the new edge
- 9: **until** F has only k trees

The time complexity of Algorithm 1 is analyzed line by line. For a dataset of n nodes with k sets, we assume that some nodes belongs to multiple sets. To derive the bound of the complexity, we analyze two cases: i) the data set without any node duplication, and ii) all the nodes duplicated for k times to form k sets.

We start by analyzing the non-duplicate case. The time complexities for initializing the forest *F* (Line 1) and constructing the complete graph *G* (Line 2) are O(n), and O(m), respectively, in which *m* is the number of the edges in *G*. Edge weight computation (Line 3) requires intersection tests for all pairs of nodes in *G*, which yields a complexity of  $O(m^2)$ . Finding the minimal weight (Line 4) takes  $O(m \log m)$  to initialize the heap, and  $O(\log m)$  to find the minimal. The analysis of the loop (Lines 5–9) is as follows. The update of the weight of un-selected edges in *G* (Line 6) needs to compute the intersection of  $e_{ob}$  against all other edges, and is of O(m). Line 7 has a total complexity of  $m(O(\log m) + O(\log n)) = O(m \log(mn))$ : finding the minimal weight takes  $O(\log m)$ , and loop detection in *F* takes  $O(\log n)$ ; in the worst case, all the selected edges form a loop with edges in *F*, and, therefore, this step has to be repeated for *m* times. The surface routing algorithm takes O(n) to detect if the newly added edge intersects with any nodes. In this case, the loop iterates for *n* times, and therefore, its complexity is  $O(mn + mn\log(mn) + n^2) = O(mn\log(mn))$ , and since  $m = n^2$ , the complexity can be simplified as  $O(n^3 \log n)$ . The most expensive part is Lines 1–3 with the complexity  $O(m^2) = O(n^4)$ .

For the worst case in which all the nodes duplicate for k times, the complexity of Line 6 is  $O(kn^2)$ . Line 7 has to repeat for  $n^2$  times, which yields a complexity of  $O(n^2 \log(kn^2) + n^2 \log n) = O(n^2 \log(kn^3))$ . Lines 6–8 repeats for kn times, and, results in a total complexity of  $O(kn^3 \log(kn^3))$  for the loop. Line 3 has a complexity of  $O(k^2n^4)$ . Since the number of sets k is typically small, the complexity of the duplicate case is  $O(n^4)$ . In all, the time complexity of Algorithm 1 is  $O(n^4)$ .

## 2 EVALUATION RESULTS

In our paper, only part of the evaluation results are included due to the page limit. Here, we show results that are left out from the paper.

Summary statistics of the evaluation results of the overlap ratio of F2-Bubbles and Bubble Sets [2] are shown in Table 1. Whereas, summary statistics of the number of edge crossings of F2-Bubbles, Bubble Sets [2], Line Sets [1], Kelp Diagrams [3] and KelpFusion [4] are shown in Table 2, and total edge length of these methods are shown in Table 3. The associated boxplots are shown in Fig. 1. Full results of the evaluation are documented in Table 6.

- Y. Wang, D. Cheng, and Z. Wang are with Shandong University. Email: {cloudseawang, sduchd, russellwzrr}@gmail.com.
- J. Zhang is with CNIC, CAS, China. E-mail: zhangjian@sccas.cn.
- L. Zhou is with National Institute of Health Data Science, Peking University, China. E-mail: zhoul@bjmu.edu.cn.
- G. He is with East China Normal University, China. E-mail: gqhe@cs.ecnu.edu.cn.
- O. Deussen is with Konstanz University, Germany. E-mail: oliver.deussen@uni-konstanz.de.

• Y. Wang and D. Cheng are joint first authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx. 201x. For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org. Digital Object Identifier: xx.xxx/TVCG.201x.xxxxxx

Table 1: Summary statistics of the overlap ratio.

| Method     | Туре      | Min  | Q1   | Median | Mean | Q3   | Max  |
|------------|-----------|------|------|--------|------|------|------|
| Ours       | real      | 4.73 | 5.96 | 7.86   | 8.39 | 10.1 | 15.0 |
| Ours       | synthetic | 1.1  | 3.06 | 4.81   | 5.82 | 7.92 | 13.4 |
| BubbleSets | real      | 24.0 | 27.0 | 31.3   | 35.9 | 43.4 | 59.7 |
| BubbleSets | synthetic | 8.98 | 20.1 | 29.6   | 30.6 | 41.4 | 61.3 |

| TT 1 1 0 0  |                     | C (1        | 1 C 1        | •          |
|-------------|---------------------|-------------|--------------|------------|
| Table 7. St | immary statistics   | of the nu   | mber of edge | erneeinge  |
| 14010 2. 50 | anniar y statistics | o or the nu | moor or cuge | crossings. |

| Method       | Туре      | Min | Q1   | Median | Mean | Q3   | Max |
|--------------|-----------|-----|------|--------|------|------|-----|
| Ours         | real      | 4   | 12   | 17.5   | 19.6 | 18.8 | 56  |
| Ours         | synthetic | 2   | 6.75 | 18     | 17.2 | 24.2 | 46  |
| BubbleSets   | real      | 8   | 35.2 | 39.5   | 44.9 | 53.8 | 102 |
| BubbleSets   | synthetic | 7   | 18   | 38     | 44.1 | 72   | 97  |
| KelpDiagrams | real      | 6   | 17.8 | 26     | 29.7 | 40   | 66  |
| KelpDiagrams | synthetic | 10  | 16.8 | 30     | 37.7 | 56   | 92  |
| KelpFusion   | real      | 9   | 31.2 | 43     | 50.7 | 71.8 | 107 |
| KelpFusion   | synthetic | 20  | 26.8 | 42.5   | 65.2 | 94   | 161 |
| LineSets     | real      | 4   | 26.2 | 34     | 42.8 | 52.8 | 126 |
| LineSets     | synthetic | 13  | 21.8 | 32     | 40.3 | 60   | 84  |

For real-world datasets, results of Wilcoxon tests show significant differences between F2-Bubbles and Bubble Sets on overlap (V = 0, p = 0.001953), the number of edge crossings (V = 0, p = 0.005857) and total edge length (V = 2, p = 0.005859), but difference on the number of bends is not significant (V = 15.5, p = 0.7778); significant differences between F2-Bubbles and KelpFusion on the number of edge crossings (V = 0, p = 0.001953), total edge length (V = 0, p = 0.001953), and the number of bends (V = 0, p = 0.005857); F2-Bubbles and Line Sets on the number of edge crossings (V = 0, p = 0.009152), total edge length (V = 0, p = 0.001953), and the number of bends (V = 55, p = 0.001953, and LineSets has fewer bends); F2-Bubbles and KelpDiagrams on the number of edge crossings (V = 2, p = 0.01072), total edge length (V = 0, p = 0.001953), and the number of bends (V = 2, p = 0.01072), total edge length (V = 0, p = 0.001953), and the number of edge crossings (V = 0, p = 0.001953), and the number of edge crossings (V = 0, p = 0.001953), and the number of edge crossings (V = 0, p = 0.001953), and the number of edge crossings (V = 0, p = 0.001953), and the number of edge crossings (V = 2, p = 0.01072), total edge length (V = 0, p = 0.001953), and the number of bends (V = 0, p = 0.001953), and the number of bends (V = 0, p = 0.001953).

Results of Wilcoxon test for synthetic datasets find significant differences between F2-Bubbles and Bubble Sets on overlap ( $V = 0, p = 1.907 \times 10^{-6}$ ); significant differences between F2-Bubbles and Bubble Sets ( $V = 0, p = 9.556 \times 10^{-5}$ ), F2-Bubbles and KelpFusion ( $V = 0, p = 9.436 \times 10^{-5}$ ), F2-Bubbles and Line Sets ( $V = 0, p = 9.516 \times 10^{-5}$ ), F2-Bubbles and KelpDiagrams ( $V = 0, p = 9.516 \times 10^{-5}$ ) for the number of edge crossings; significant differences between F2-Bubbles and Bubble Sets ( $V = 0, p = 1.907 \times 10^{-6}$ ), F2-Bubbles and KelpFusion ( $V = 0, p = 1.907 \times 10^{-6}$ ), F2-Bubbles and Line Sets ( $V = 3, p = 9.537 \times 10^{-6}$ ), F2-Bubbles and KelpFusion ( $V = 0, p = 1.907 \times 10^{-6}$ ), F2-Bubbles and Line Sets ( $V = 3, p = 9.537 \times 10^{-6}$ ), F2-Bubbles and KelpDiagrams ( $V = 0, p = 1.907 \times 10^{-6}$ ) for the total edge length; significant differences between F2-Bubbles and Bubble Sets (V = 35, p = 0.02902, Bubble Sets has shorter edge length), KelpFusion ( $V = 0, p = 9.556 \times 10^{-5}$ ), KelpDiagrams( $V = 0, p = 9.542 \times 10^{-5}$ ), and Line Sets (V = 35, p = 0.02902, Line Sets is significantly lower) for the number of bends.

## **3** VISUALIZATIONS USED IN THE EVALUATION

In this section, we include visualizations of techniques used in the evaluation that are left out from the paper. For each dataset, we compare results of our method to Bubble Sets, Line Sets, KelpFusion and KelpDiagrams visualizations. Since we evaluate only the edge crossings and the total edge length for Line Sets, KelpFusion and KelpDiagrams, we computed only the skeletons instead of the full visualizations of KelpFusion and KelpDiagrams due to its long computational time even for moderate-sized datasets (the scalability issue of KelpFusion has been pointed out by its creators [4]).

## 3.1 Real-World Data

We show results of real-world datasets used in the evaluation in Figs 2—11. The datasets are categorized into two groups: scatterplots (co2\_gdppercapita, co2\_income, life\_children, life\_income, and life\_fertility) and geographical maps (Bronx, Brooklyn, Citywide, Manhattan, and Staten Island).

**Scatterplots.** Scatterplots are taken from the Gapminder Tools. Five datasets were used in the evaluation. Dataset co2\_gdppercapita describes per capita carbon dioxide emissions from the fossil fuel consumption, cement production and gas flaring, minus export, plus import during the given year. Dataset co2\_income describes carbon dioxide emissions per person and income per person. Dataset life\_children describes the average

| Method       | Туре      | Min  | Q1   | Median | Mean  | Q3    | Max   |
|--------------|-----------|------|------|--------|-------|-------|-------|
| Ours         | real      | 1428 | 2716 | 7007   | 6535  | 10745 | 11461 |
| Ours         | synthetic | 5571 | 7223 | 8309   | 9618  | 12292 | 15255 |
| BubbleSets   | real      | 1754 | 3814 | 7821   | 7797  | 12519 | 13925 |
| BubbleSets   | synthetic | 6275 | 8413 | 9232   | 10830 | 14232 | 17376 |
| KelpDiagrams | real      | 1501 | 7448 | 10378  | 10084 | 14550 | 1691  |
| KelpDiagrams | synthetic | 2682 | 8791 | 10596  | 11287 | 14391 | 18778 |
| KelpFusion   | real      | 1449 | 8044 | 11194  | 10842 | 14641 | 18737 |
| KelpFusion   | synthetic | 2406 | 9222 | 11348  | 11960 | 14970 | 20780 |
| LineSets     | real      | 1588 | 3334 | 8455   | 7791  | 12433 | 13886 |
| LineSets     | synthetic | 6685 | 7821 | 10418  | 10612 | 12751 | 16180 |

Table 3: Summary statistics of the total edge length.

Table 4: Summary statistics of the number of bends.

| Method       | Туре      | Min | Q1   | Median | Mean | Q3  | Max |
|--------------|-----------|-----|------|--------|------|-----|-----|
| Ours         | real      | 28  | 66.8 | 114    | 120  | 185 | 212 |
| Ours         | synthetic | 70  | 97.2 | 144    | 155  | 181 | 356 |
| BubbleSets   | real      | 30  | 69.8 | 120    | 133  | 213 | 247 |
| BubbleSets   | synthetic | 73  | 103  | 150    | 155  | 189 | 356 |
| KelpDiagrams | real      | 31  | 80.8 | 150    | 166  | 258 | 328 |
| KelpDiagrams | synthetic | 85  | 147  | 206    | 209  | 252 | 474 |
| KelpFusion   | real      | 31  | 108  | 199    | 214  | 344 | 383 |
| KelpFusion   | synthetic | 94  | 185  | 247    | 264  | 335 | 601 |
| LineSets     | real      | 17  | 45.5 | 83     | 86   | 133 | 156 |
| LineSets     | synthetic | 50  | 72.5 | 108    | 109  | 127 | 246 |

number of years a newborn child would live and the death of children under five years of age per 1,000 live births. Dataset life\_income describes the average number of years a newborn child would live and income per person. Dataset life\_fertility describes the average number of years a newborn child would live and the number of children that would be born to each woman with prevailing age-specific fertility rates. The results are shown in Figs. 3, 4, 7, 8 and 9.

**Geographic Maps.** The geographic map datasets are based on NYC Open Data<sup>1</sup>. The data sets we used are from the NYC Recovery Resiliency Projects Map which shows completed, ongoing, and planned recovery and resiliency projects throughout New York City. We extracted five datasets from the map according to the boroughs of New York, and for each data set we determined set relationship by dividing the points according to the status of the project. The results are shown in Figs. 2, 5, 6, 10 and 11.

## 3.2 Synthetic Data

We generate synthetic datasets using randomly placed set elements from a 2D uniform distribution for ex1 through ex13; on top of these, we limit the spatial spread of elements of each set for ex14 to ex20. The number of elements of each set is randomly generated within a range. Representative examples of synthetic datasets are shown in Figs. 12-21.

## 3.3 Different Parameters for Kelp Diagrams and KelpFusion

Kelp diagrams and KelpFusion do not have a default configuration, so we empirically set the parameters  $b_t = 2$ ,  $c_d = 1$ ,  $c_\alpha = 100$ ,  $c_I = 100$  for Kelp diagrams to generate proper links and t = 3 for KelpFusion and node radius r = 15 for both of them to achieve a "medium" effect that balances linear and areal regions. However, these parameters have the influence on the results. Here we present the results of Kelp Diagrams and KelpFusion with different parameters.

The boxplots in Fig. 22 to Fig. 27 show the summarized performance of Kelp Diagrams and KelpFusion on all datasets (red), and on real-world datasets (blue) with different parameters, where the corresponding visualizations of Kelp Diagrams(KD) are shown in Fig. 28 to Fig. 37 and the ones of KelpFusion(KF) are shown in Fig. 38 to Fig. 47.

## ACKNOWLEDGMENTS

This work is supported by the grants of the NSFC (61772315, 61861136012), the Open Project Program of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (No.VRLAB2020C08), CAS grant (GJHZ1862), Beijing Advanced Discipline Construction Project (BMU2019GJJXK001), PKU-Baidu Fund (2019BD017), and Deutsche Forschungsgemeinschaft (DFG) Project DE 620/26-1.



Fig. 1: Boxplots of evaluation performance of set overlay techniques on all datasets (red), and on real-world datasets (blue). The number of edge crossings are shown in (a), while total edge length are shown in (b), with overlap ratio in (c). Outliers are shown as points in the boxplots.



(b) Bubble Sets

(a) Ours



(e) Kelp Diagrams

Fig. 3: Life Children (138 points)

(c) KelpFusion

(d) Line Sets

Table 5: Comparisons of the overlap ratio (Overlap), the number of edge crossings (#Cross) of F2-Bubbles (Ours) and existing methods: Bubble Sets [2] (BS), Kelp Diagrams [3] (KD) KelpFusion [4] (KF), and Line Sets [1] (LS).

| Dataset        | #Elements | Ours-   | BS-     | Ours-  | BS-    | KF-    | KD-    | LS-    |  |
|----------------|-----------|---------|---------|--------|--------|--------|--------|--------|--|
|                |           | Overlap | Overlap | #Cross | #Cross | #Cross | #Cross | #Cross |  |
| Bronx          | 25        | 7.39%   | 27.01%  | 4      | 8      | 9      | 6      | 4      |  |
| Brooklyn       | 52        | 10.34%  | 37.35%  | 19     | 38     | 30     | 31     | 34     |  |
| Citywide       | 87        | 7.16%   | 33.87%  | 12     | 26     | 35     | 20     | 25     |  |
| co2_gdpperc    | apita 93  | 5.56%   | 24.03%  | 18     | 41     | 44     | 24     | 43     |  |
| co2_income     | 110       | 4.73%   | 27.12%  | 18     | 54     | 44     | 28     | 34     |  |
| ex1            | 41        | 4.12%   | 9.96%   | 6      | 10     | 20     | 11     | 13     |  |
| ex10           | 56        | 6.36%   | 12.41%  | 11     | 19     | 35     | 18     | 18     |  |
| ex11           | 151       | 13.35%  | 49.13%  | 46     | 82     | 161    | 92     | 84     |  |
| ex12           | 162       | 8.42%   | 40.36%  | 24     | 47     | 84     | 61     | 50     |  |
| ex13           | 155       | 12.43%  | 50.55%  | 38     | 91     | 132    | 81     | 84     |  |
| ex14           | 128       | 3.20%   | 21.65%  | 7      | 14     | 22     | 15     | 26     |  |
| ex15           | 173       | 4.51%   | 47.96%  | 26     | 97     | 57     | 31     | 48     |  |
| ex16           | 150       | 4.76%   | 37.60%  | 21     | 53     | 38     | 29     | 42     |  |
| ex17           | 254       | 4.73%   | 61.29%  | 22     | 90     | 109    | 55     | 63     |  |
| ex18           | 119       | 2.00%   | 23.44%  | 4      | 7      | 21     | 10     | 14     |  |
| ex19           | 122       | 2.24%   | 29.56%  | 5      | 18     | 31     | 16     | 34     |  |
| ex2            | 88        | 4.86%   | 18.19%  | 12     | 28     | 47     | 31     | 28     |  |
| ex20           | 109       | 2.63%   | 31.81%  | 7      | 31     | 22     | 16     | 23     |  |
| ex3            | 117       | 7.75%   | 44.63%  | 26     | 75     | 151    | 76     | 69     |  |
| ex4            | 98        | 8.91%   | 38.60%  | 25     | 54     | 87     | 56     | 66     |  |
| ex5            | 116       | 7.29%   | 29.66%  | 23     | 71     | 110    | 56     | 59     |  |
| ex6            | 75        | 1.43%   | 12.92%  | 3      | 18     | 27     | 19     | 15     |  |
| ex7            | 67        | 1.10%   | 8.98%   | 2      | 11     | 26     | 17     | 13     |  |
| ex8            | 58        | 6.89%   | 20.73%  | 15     | 21     | 32     | 26     | 27     |  |
| ex9            | 81        | 9.37%   | 22.87%  | 21     | 45     | 89     | 38     | 30     |  |
| life_children  | 138       | 5.00%   | 28.76%  | 17     | 53     | 94     | 43     | 56     |  |
| life_fertility | 193       | 14.95%  | 59.70%  | 56     | 102    | 107    | 66     | 126    |  |
| life_income    | 134       | 8.34%   | 26.72%  | 28     | 56     | 81     | 54     | 58     |  |
| Manhattan      | 59        | 11.05%  | 48.54%  | 12     | 35     | 21     | 8      | 18     |  |
| StatenIsland   | 59        | 9.35%   | 45.41%  | 12     | 36     | 42     | 17     | 30     |  |

Table 6: Comparisons of the total edge length (#Length), the number of bends (#Bends) of F2-Bubbles (Ours) and existing methods: Bubble Sets [2] (BS), Kelp Diagrams [3] (KD) KelpFusion [4] (KF), and Line Sets [1] (LS).

| Dataset        | #Elements | Ours-    | BS-      | KD-      | KF-      | LS-      | Ours-  | BS-    | KD-    | KF-    | LS-    |  |
|----------------|-----------|----------|----------|----------|----------|----------|--------|--------|--------|--------|--------|--|
|                |           | #Length  | #Length  | #Length  | #Length  | #Length  | #Bends | #Bends | #Bends | #Bends | #Bends |  |
| Bronx          | 25        | 1428.13  | 1753.65  | 1500.94  | 1561.99  | 1588.27  | 28     | 30     | 31     | 31     | 17     |  |
| Brooklyn       | 52        | 3128.50  | 4118.54  | 4395.94  | 3565.54  | 3453.90  | 72     | 72     | 77     | 101    | 44     |  |
| Citywide       | 87        | 6068.68  | 7265.97  | 8006.75  | 8592.77  | 7318.55  | 111    | 119    | 160    | 196    | 81     |  |
| co2_gdpperc    | apita 93  | 8744.77  | 8375.94  | 11292.37 | 11035.43 | 10755.88 | 118    | 120    | 141    | 202    | 85     |  |
| co2_income     | 110       | 7945.63  | 10407.72 | 10962.96 | 10944.40 | 9590.63  | 159    | 153    | 202    | 268    | 102    |  |
| ex1            | 41        | 6248.58  | 6312.42  | 7407.85  | 7320.71  | 7169.25  | 46     | 51     | 63     | 83     | 35     |  |
| ex10           | 56        | 7961.99  | 8490.37  | 10287.28 | 11730.74 | 9082.39  | 65     | 69     | 92     | 130    | 50     |  |
| ex11           | 151       | 13232.66 | 14869.57 | 17032.24 | 18432.25 | 14041.36 | 194    | 247    | 277    | 383    | 143    |  |
| ex12           | 162       | 11765.30 | 13701.18 | 16338.36 | 15691.78 | 12554.42 | 212    | 233    | 328    | 370    | 156    |  |
| ex13           | 155       | 13696.28 | 15783.19 | 17160.29 | 18237.84 | 14707.08 | 200    | 234    | 291    | 380    | 147    |  |
| ex14           | 128       | 7837.78  | 8335.59  | 12010.40 | 11229.72 | 9801.39  | 153    | 162    | 251    | 303    | 120    |  |
| ex15           | 173       | 7158.31  | 8574.05  | 9785.03  | 9049.58  | 6769.47  | 266    | 225    | 302    | 380    | 165    |  |
| ex16           | 150       | 7775.70  | 8963.88  | 10412.66 | 9335.87  | 8446.81  | 208    | 194    | 257    | 332    | 142    |  |
| ex17           | 254       | 12818.29 | 14762.00 | 16861.30 | 16245.86 | 12802.58 | 356    | 356    | 474    | 601    | 246    |  |
| ex18           | 119       | 5570.90  | 6275.21  | 8325.93  | 7817.13  | 6992.70  | 141    | 147    | 189    | 237    | 111    |  |
| ex19           | 122       | 6411.34  | 7119.88  | 9157.58  | 8703.49  | 7542.81  | 147    | 152    | 212    | 257    | 114    |  |
| ex2            | 88        | 9661.98  | 10384.63 | 13052.95 | 13926.70 | 11534.91 | 109    | 113    | 148    | 190    | 82     |  |
| ex20           | 109       | 5593.68  | 6352.59  | 7644.23  | 6744.38  | 6684.92  | 138    | 138    | 186    | 206    | 101    |  |
| ex3            | 117       | 15255.12 | 17376.44 | 19843.32 | 20973.60 | 16180.36 | 153    | 160    | 217    | 290    | 109    |  |
| ex4            | 98        | 11669.31 | 13558.02 | 16913.53 | 14987.91 | 12700.20 | 140    | 136    | 203    | 220    | 90     |  |
| ex5            | 116       | 14905.35 | 16629.03 | 18417.38 | 19978.38 | 15468.98 | 157    | 164    | 210    | 277    | 108    |  |
| ex6            | 75        | 7287.87  | 8946.73  | 11382.53 | 9962.85  | 8098.78  | 89     | 101    | 152    | 170    | 71     |  |
| ex7            | 67        | 7701.51  | 8633.62  | 10926.02 | 11612.34 | 8530.73  | 79     | 83     | 121    | 163    | 63     |  |
| ex8            | 58        | 8655.52  | 9500.83  | 11436.60 | 10436.88 | 11035.36 | 70     | 73     | 86     | 104    | 50     |  |
| ex9            | 81        | 11154.98 | 12027.78 | 16086.51 | 17043.97 | 12105.46 | 100    | 104    | 145    | 205    | 73     |  |
| life_children  | 138       | 10972.86 | 12519.37 | 15244.10 | 15168.11 | 12953.45 | 189    | 195    | 254    | 343    | 130    |  |
| life_fertility | 193       | 11461.27 | 13925.04 | 15187.75 | 13950.46 | 13885.87 | 277    | 269    | 348    | 444    | 181    |  |
| life_income    | 134       | 10744.54 | 12811.90 | 14134.62 | 14713.94 | 12432.51 | 178    | 187    | 243    | 356    | 126    |  |
| Manhattan      | 59        | 2143.75  | 2980.85  | 2752.04  | 2557.40  | 2591.82  | 83     | 75     | 88     | 94     | 51     |  |
| StatenIsland   | 59        | 2715.77  | 3813.67  | 3332.94  | 3729.31  | 3334.41  | 74     | 74     | 85     | 105    | 51     |  |









(a) Ours



(b) Bubble Sets



Fig. 19: EX18 (119 points)





(d) Line Sets

(e) Kelp Diagrams



(a) Ours



(b) Bubble Sets



(c) KelpFusion

Fig. 20: EX19 (122 points)



(d) Line Sets



(e) Kelp Diagrams



(a) Ours



(b) Bubble Sets



(c) KelpFusion

(d) Line Sets



(e) Kelp Diagrams



Fig. 21: EX20 (109 points)

Fig. 22: Boxplots of the number of bends of Kelp Diagrams on all datasets (red), and on real-world datasets (blue). Outliers are shown as points in the boxplots.



Fig. 23: Boxplots of the number of edge crossings of Kelp Diagrams on all datasets (red), and on real-world datasets (blue). Outliers are shown as points in the boxplots.



Fig. 24: Boxplots of the total edge length of Kelp Diagrams on all datasets (red), and on real-world datasets (blue).



Fig. 25: Boxplots of the number of bends of KelpFusion on all datasets (red), and on real-world datasets (blue). Outliers are shown as points in the boxplots. Outliers are shown as points in the boxplots.



Fig. 26: Boxplots of the number of edge crossings of KelpFusion on all datasets (red), and on real-world datasets (blue). Outliers are shown as points in the boxplots.



Fig. 27: Boxplots of the total edge length of KelpFusion on all datasets (red), and on real-world datasets (blue).



(a) KD bt=1.2 re=15



(b) KD bt=1.8 re=15



(c) KD bt=2 re=12

Fig. 28: Citywide (87 points)



(d) KD bt=2 re=15



(e) KD bt=2 re=20



(a) KD bt=1.2 re=15



(b) KD bt=1.8 re=15





Fig. 29: Brooklyn (52 points)







(e) KD bt=2 re=20













(a) KD bt=1.2 re=15

(b) KD bt=1.8 re=15

Fig. 35: EX11 (151 points)

(c) KD bt=2 re=12

(d) KD bt=2 re=15

(e) KD bt=2 re=20



(a) KD bt=1.2 re=15



(b) KD bt=1.8 re=15



(c) KD bt=2 re=12

Fig. 36: EX18 (119 points)



(d) KD bt=2 re=15



(e) KD bt=2 re=20



(a) KD bt=1.2 re=15



(b) KD bt=1.8 re=15



(c) KD bt=2 re=12

Fig. 37: EX19 (122 points)



(d) KD bt=2 re=15



(e) KD bt=2 re=20



(a) KF t=2 re=15



(b) KF t=3 re=12



(c) KF t=3 re=15

Fig. 38: Citywide (87 points)



(d) KF t=3 re=20



(e) KF t=10 re=15



(a) KF t=2 re=15



(b) KF t=3 re=12



(c) KF t=3 re=15





(d) KF t=3 re=20



(e) KF t=10 re=15





(a) KF t=2 re=15

(b) KF t=3 re=12

(c) KF t=3 re=15

Fig. 45: EX11 (151 points)



(a) KF t=2 re=15



(b) KF t=3 re=12



Fig. 46: EX18 (119 points)



(d) KF t=3 re=20



(e) KF t=10 re=15



Fig. 47: EX19 (122 points)

## REFERENCES

- B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design Study of LineSets, a Novel Set Visualization Technique. *IEEE Transactions on Visualization and Computer Graphics*, 17(12):2259–2267, 2011. doi: 10.1109/TVCG.2011.186
- [2] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations. IEEE Transactions on Visualization and Computer Graphics, 15(6):1009–1016, 2009. doi: 10.1109/TVCG.2009.122
- [3] K. Dinkla, M. J. van Kreveld, B. Speckmann, and M. A. Westenberg. Kelp Diagrams: Point Set Membership Visualization. Computer Graphics Forum, 31(3pt1):875–884, 2012. doi: 10.1111/j.1467-8659.2012.03080.x
- [4] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer. KelpFusion: A Hybrid Set Visualization Technique. IEEE Transactions on Visualization and Computer Graphics, 19(11):1846–1858, 2013. doi: 10.1109/TVCG.2013.76