Joint -SNE for Comparable Projections of
Multiple High-Dimensional Datasets

Yingiao Wang, Lu Chen, Jaemin Jo, Yunhai Wang

Abstract— We present Joint t-Stochastic Neighbor Embedding (Joint r-SNE), a technique to generate comparable projections of
multiple high-dimensional datasets. Although r-SNE has been widely employed to visualize high-dimensional datasets from various
domains, it is limited to projecting a single dataset. When a series of high-dimensional datasets, such as datasets changing over
time, is projected independently using -SNE, misaligned layouts are obtained. Even items with identical features across datasets
are projected to different locations, making the technique unsuitable for comparison tasks. To tackle this problem, we introduce edge
similarity, which captures the similarities between two adjacent time frames based on the Graphlet Frequency Distribution (GFD). We
then integrate a novel loss term into the #-SNE loss function, which we call vector constraints, to preserve the vectors between projected
points across the projections, allowing these points to serve as visual landmarks for direct comparisons between projections. Using
synthetic datasets whose ground-truth structures are known, we show that Joint -SNE outperforms existing techniques, including
Dynamic 7-SNE, in terms of local coherence error, Kullback-Leibler divergence, and neighborhood preservation. We also showcase a
real-world use case to visualize and compare the activation of different layers of a neural network.

Index Terms—High-dimensional data, projection, embedding, ¢-stochastic neighbor embedding

+

1 INTRODUCTION

We aim to generate comparable ¢-Stochastic Neighbor Embedding
(t-SNE) [26] projections of a series of multidimensional datasets. Al-
though multidimensional projection (MDP) techniques, such as #-SNE,
play an essential role in high-dimensional data analysis by giving
the users the ability to inspect high-dimensional data with lower-
dimensional (e.g., 2D) representations, most of them are designed
for visualizing a single high-dimensional dataset. Yet, a common data
analysis task is to explore the evolution of a high-dimensional dataset,
which requires comparing the projections between adjacent frames.
One real-world example is a dataset consisting of the activation in each
layer of a deep neural network. Given n input images, we record the
internal representation of each image on layer i having f; dimensions,
which yields a dataset D; consisting of n - f; scalar values. One may
project each dataset D; and compare the projections to understand how
each layer transforms the internal representations. Note that in this
example, the number of items in datasets (i.e., n) does not change, but
the number of dimensions (i.e., f;) can vary.

Since most MDP techniques are designed to visualize one dataset,
there have been a few workarounds to apply them to multiple datasets
and use the results for comparison. The simplest workaround is to
start with the same initial layout when optimizing the projection for
each dataset. However, this straightforward method does not consider
the relationship between adjacent time frames, and as the optimization
process usually resorts to a stochastic process, the alignment between
projections is not guaranteed. Thus, even the items that are invariant
across the datasets can be placed in different locations, making the pro-
jections lack visual landmarks that can be used to facilitate comparison
tasks [15].

Another workaround common in bioinformatics [14] is to concate-
nate all datasets into a single dataset and compute the projection of
the combined dataset. Then, the projection can be visualized as a con-
ventional scatterplot with an additional visual encoding for the source

e Y.Q. Wang and L. Chen contribute equally to this work.

e Y.H. Wang and J. Jo are joint corresponding authors

e Y.Q. Wang, L. Chen, and Y.H. Wang are with Shandong University, CN.
Email: {InfamyWong, chenlu.scien, cloudseawang}@gmail.com.

e J. Jo is with Sungkyunkwan University, KR. E-mail: jmjo@skku.edu.

Manuscript received 21 Mar. 2021; revised 13 June 2021; accepted 8 Aug.
2021. Date of Publication 29 Sept. 2021; Date of current version 29 Sept. 2021.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org. Digital Object Identifier: 10.1109/TVCG.2021.3114765

of data points (i.e., the dataset from which a data point comes), for
example, by adopting color-coding [1] or by connecting the data points
for the same item [3]. However, this workaround does not scale well
visually nor computationally since the number of data points to be
shown increases by a factor of the number of the datasets, which leads
to visual clutters and long computation time.

The most relevant technique to ours is Dynamic ¢-SNE [35]. In
this technique, the projections for multiple time frames are optimized
together with an extra loss term that penalizes the length of the locus
of each data point across projections. The additional loss term makes
each data point stays in a similar position across projections. However,
we identified three major drawbacks of Dynamic #-SNE as follows:

1. Smoothing effects: Dynamic #-SNE tends to keep projections too
rigid, which leads to inaccurate projections when there are abrupt
changes. For example, assume a point p lies inside a cluster A
at time ¢ but moves to another cluster B at t + 1. Although the
local structure around p has been completely changed at 7 + 1, the
extra loss term pulls back p to cluster A to minimize the locus of
p between time ¢ and 7 4 1, which gives users an illusion that p is
gradually moving from cluster A to cluster B.

2. Long-range Interference: Since multiple projections are opti-
mized together, the projection at ¢ even reflects future changes that
will happen after # and past changes happened before 7, leading to
a less faithful projection.

3. Monolithic: All datasets must be available when Dynamic -SNE
is performed, and this makes the technique unsuitable for datasets
generated periodically. To compute the projection P for a new
dataset at ¢ + 1, all the previous projections (P; - - - F;) should be
updated, which can invalidate the findings made previously and
prevent incremental analysis.

To address these limitations, we present Joint t-SNE, a novel multi-
dimensional projection technique that generates coherent projections
of multiple high-dimensional datasets. The main idea of Joint z-SNE
is to preserve the topology between projections selectively based on
their topological similarity. To this end, we first capture the topological
characteristics around each point by employing the Graphlet Frequency
Distribution (GFD) [34]. We then introduce a novel loss term, vector
constraints, that guides the optimization process to preserve edge vec-
tors between projected points across two-time frames. In Joint 7-SNE,
a projection at ¢ + 1 is joined by the previous projection at ¢ to preserve
the edge vectors weighted by their topological similarity.

{InfamyWong, chenlu.scien, cloudseawang}@gmail.com
jmjo@skku.edu

Through benchmarks on synthetic and real-world datasets, we found
that Joint 7-SNE can generate more consistent projections compared
with the existing workarounds and Dynamic #-SNE. We also found that,
compared with Dynamic 7-SNE projections, Joint -SNE projections
are not only more faithful in terms of quality metrics, such as local
coherence error or kNN preservation but also robust to distortion, such
as the smoothing effect. Finally, Joint -SNE breaks the global depen-
dency between projections in the optimization process and naturally
lends itself to dynamic scenarios where datasets arrive over time.

In summary, our contributions are:

* We introduce and implement Joint z-SNE that can generate con-
sistent and faithful projections of multiple datasets by introducing
kernel-based similarity measures and a novel loss term, vector
constraints.

* We quantitatively and qualitatively evaluate Joint -SNE and show
that Joint -SNE outperforms the existing practices and techniques
in terms of visual consistency and projection fidelity.

2 RELATED WORK

In this section, we discuss previous studies targeting comparable pro-
jections and review the related work of a key technical module in
Joint t-SNE, comparing graph similarity using Graphlet Frequency
Distributions (GFD).

2.1 Comparable Projections

A projection [30] is a mapping that projects or embeds high-
dimensional data into a perceptible lower-dimensional space (usually
two or three dimensions) while striving to maintain the relationships
among data points in the original space. Formally, a projection algo-
rithm takes in a high-dimensional dataset X = {xy,x2,...,x, }, Where
each x; is an m-dimensional data point, and computes the projection of
X in a lower-dimensional space, Y = {y,y2,...,yn }, Where each y; is
an injective mapping of x;. Projections are now widely used in various
fields like data mining, machine learning [5, 17], and bioinformatics [8]
for the superiority in revealing the underlying distribution and topol-
ogy of high-dimensional data, making it possible for people to make
analyses and interpretations.

Comparable projections, as extensions of traditional projections, deal
with the problem of projecting a sequence of dynamic high-dimensional
datasets X1,Xp,- -, X7, where each X; is captured at a particular time
frame into a low-dimensional space, resulting in an equal-sized se-
quence of projections Y1,Y2,---,Yr. A simple method would be to
project each X; independently. But due to the stochastic and unpre-
dictable optimization process of many projection techniques, such
method often introduces undesirable variations, such as misalignment
of identical data points. Thus, the common goal of comparable projec-
tions is to achieve visual consistency between sequential projections
while maintaining projection reliability. More specifically, we expect
the algorithm to automatically find and highlight the inheritances and
variations of data across different time frames to provide viewers with
accessible observations into the evolving pattern of streaming data.

Previous attempts for comparable projections can be classified into
two categories based upon the type of data evolution: incremental and
time-dependent method. First, in the scenario for incremental projection
methods, datasets update or expand by an incremental and cumulative
pattern in each frame. For example, Alencar et al. [1] proposed a
technique based on least square projection and a backward strategy for
creating content-based document maps to visualize temporal changes
in document collections. Takanori et al. [13] augmented an existing
incremental PCA algorithm [36] by applying an affine transformation to
find the best overlap of common data points in two adjacent projections
and presenting a position estimation algorithm to support adding data
points with a non-uniform number of dimensions.

On the other hand, in contrast to incremental evolution, where pre-
vious data usually remain static, time-dependent projection methods
deal with dynamic datasets in which the features of all data points can
change over different time frames. With the providers of data points

a) t-SNE b) Dynamic t-SNE ¢) Joint t-SNE
=0 N \ \
'~-"‘.‘\‘~~_,-\ ~~ S ¢
AL S [~
Semo o —n—
N / O
L ZE, |
= L7 ‘.|," N \
N TR b -

>
—: B,
~

- \\/ //

Fig. 1. An illustrative example of z-SNE, Dynamic -SNE, and Joint z-SNE
results. Two intersected 5-node structures, one with changes in topology
and one without, are projected by three methods. a) -SNE projects
both structures differently, making it hard for viewers to distinguish be-
tween changed and unchanged structures. b) Although Dynamic -SNE
smooths the transition between projections, it also introduces distortions
that cannot be ignored. c) Joint :-SNE preserves identical structures
based on measuring edge similarities (encoded as thickness in the fig-
ure) in data space. The unchanged structure is well-preserved and could
serve as a visual landmark for comparison.

7|
1gn a
N [

D44

fixed in consecutive frames, this scenario can be found almost every-
where in today’s information society, such as tracking the physical
status of all patients in a hospital or the traffic volume of all crossroads
in a city. Jéckle et al. [18] proposed temporal MDS plots which reduce
the multivariate data in each time frame to a 1D slice and align these
slices along the time axis by adopting a flipping heuristic to achieve
comparability. However, reducing the dimensionality to one discards
too much information, making it nearly impossible for the users to
analyze in-depth. Ali et al. [2] treated data points in a frame as a high-
dimensional vector and projected the whole time-series dataset into a
single image. Although such a method can provide users with instant
discovery of anomalies and clusters, it is not scalable to datasets which
contain hundreds and thousands of data sources, and could not be used
in dynamically updated scenarios.

Dynamic #-SNE developed by Rauber et al. [35] enhanced the con-
ventional 7-SNE by introducing an additional loss term, which penalizes
the movement of all data points in between multiple projections, into
the objective function of 7-SNE and optimizing the position of all data
points across projections at the same time. Although the purpose of
maintaining visual consistency is achieved, distortions frequently occur
due to its rigid constraints on the absolute position of every single point,
as seen in Fig. 1. And since dynamic #-SNE takes in the full sequence of
datasets at once and optimizes all projections as a whole, it introduces
a heavy computational burden and poses a significant challenge to the
memory, thus not suitable for projecting streaming data.

Our Joint #-SNE is designed for time-dependent data evolution but
can also be applied in incremental evolution scenarios with a simple
modification as discussed in Sect. 6. By applying vector constraints to
adjacent projections based on similarities measured in data space, we
provide consistent projections suitable for comparison tasks.

2.2 Measuring the Similarity between Graphs

Measuring the similarity between graphs, a subarea of graph min-
ing, has gained popularity for many years for its significant value in
various fields like chemistry [39], bioinformatics [12], and computer
vision [44].

One straightforward approach to measure graph similarity is to com-
pare node sequences by traversing the sequence of vertices or edges

such as graph edit distance [7]. These methods have low computa-
tional complexity and are easy to implement but can hardly capture
the topological structure within the graph. A more complicated ap-
proach is to compare feature maps, which are specific distinguishable
attributes extracted from graphs, like fingerprints to humans. Research
has shown the remarkable performance of this method as a number of
different graphs can be distinguished and identified accurately by refer-
ring to feature maps such as degree distribution [33], shortest paths [6],
subtrees [22], and most importantly graphlets [34].

Graphlets, first proposed by Przulj et al. [34], are defined as induced
non-isomorphic k-node subgraph patterns, where k € {3,4,5}. Graphlet
Frequency Distribution (GFD), also known as graphlet concentrations
or graphlet statistics, is a widely used feature for analyzing graphs in
image category recognition [44], biological network comparison [16],
disease gene identification [28] and a host of other areas.

Based on statistics of elementary substructures, GFD is able to reflect
the differences in the topological structure of graphs. Milenkovié and
Przulj [29] generalized the concept of node degree to graphlet degree,
which is defined as the number of graphlets connected to one node. By
using the vector of graphlet degrees to represent and analyze protein
function on protein-protein interaction (PPI) networks, it is proven to be
a robust algorithm in comparing the topological structure of a local area.
The graphlet spectrum [21] presented by Kondor et al. applied a group-
theoretic approach to enhance the capability of graph kernels, enabling
them to capture the relative positions of subgraphs besides numbers.
Recently, Kwon et al. [23] used a supervised machine learning method
to learn the relationship between topological features of existing graphs
measured by GFD and their layouts. The trained model could show the
most topologically similar graphs in different layouts rapidly to provide
users with a quick visual perception of the input graph.

However, one of the biggest challenges of using GFD in practice
is the computational complexity of algorithms since the detection and
enumeration of graphlets are costly computations. A multitude of work
has been done to accelerate such computation. By adopting a Markov
Chain Monte Carlo sampling method, Bhuiyan et al. [4] proposed
GUISE for approximating GFDs of large networks, which provided
significant speedup compared with the brute-force counting method. In
this work, we employ GFD and GUISE to capture the local topological
structures around high-dimensional data points.

3 BACKGROUND
3.1 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (z-SNE) [26], a com-
monly used nonlinear projection method, has been widely acknowl-
edged for its outstanding performance in learning the underlying struc-
ture of high-dimensional data at different scales. The overall process of
t-SNE can be divided into the following three stages:

Computing Probability Distribution of High-dimensional Data
t-SNE starts by calculating the pairwise distance d(x;,x;) (e.g., the Eu-
clidean distance) of data points in high-dimensional space, resulting in
a distance matrix, which is then converted into a probability distribution
P using a Gaussian kernel to model the local structure around each data
point. The conditional probability p ;;, which measures the pairwise
similarity between point x; and x;, can be intuitively interpreted as the
probability of data point x; selecting x; as its neighbor. A symmetrized
joint probability p;; is computed and used to form distribution P.

exp (—d (xi,xj)z /2(7,»2)

Pjli= ; pii=0. (1)
Y4i€Xp (—d (xi,)* /20,-2>
pij= @

Computing Probability Distribution of Projected Points In the
low-dimensional space, r-SNE first randomly initializes the projection
and then calculate the joint probability distribution Q from pairwise
distance matrix, same as it did in high-dimensional space, only this

time using a heavy-tailed Student’s z-distribution.

-1
(1+ bi=xl?)

Yt (1+||Yk*}’l”2>

qij = , qii = 0. 3

Minimizing Mismatch between the Two Distributions Finally,
t-SNE minimizes the Kullback-Leibler divergence between distribution
P and Q to conserve local structures between high and low-dimensional
spaces, using a gradient descent method that updates the position of
each projected point iteratively.

C=KL(P||Q) = ¥ pijlog 2 @)
by qij
aC B
E =4Y (pij— i) 0i —y;)) A+ yi —yjlI*) ! (5)

i#]

Dynamic r-SNE To adapt t-SNE for comparable projections, Dy-
namic z-SNE chooses to penalize the overall movement of each point
across projections by adding an extra loss term that restricts projected
points to stay in the same position as much as possible. Formally,
for a series of high-dimensional datasets X;,X3,---,Xr, the position
of each point yt, where r € [1,T], in the corresponding projections
Y1,Y2,--- Y7 is computed by minimizing the function below:

T A N T-1
CLOtwhE

2
i g+l
Yi—Yi H

where C; is the -SNE cost of projecting X; to ;.

3.2 Graphlet Kernels

Graphlets are non-isomorphic substructures in graphs with k nodes,
typically k € 3,4,5 (see Fig. 2). Any large graph could be disassembled
to these basic structures, thus the frequencies of graphlets could be
used as a fingerprint to differentiate various graphs. Such fingerprint is
defined as Graphlet Frequency Distribution (GFD) and is widely used
to characterize and compare the structure of different graphs.

While GFD is an effective method, counting graphlets is a computa-
tionally expensive task, especially on large graphs. The time complexity
for enumerating k-node graphlets exhaustively on a graph G(V,E) is
O(|V|F), which forces sampling methods to be introduced into the
pipeline.

One work towards the uniform sampling of graphlets is GUISE [4],
an efficient algorithm that uses a Markov Chain Monte Carlo (MCMC)
method to approximate GFD for large graphs. Formally, given a graph
G, assume Sg is a set that contains all the graphlets in G. The key to
uniform sampling is to ensure the probability of selecting each one of
the graphlets g; in Sg is 1/|S¢|. The MCMC algorithm implemented in
GUISE performs a random walk on sample space S with a transition
probability matrix in such a manner that the stationary distribution of
the random walk aligns with the independent and identical distribution.

Graphlet Kernels Graphlet kernels are adaptations of kernel meth-
ods for measuring graph similarities. A kernel, also known as general-
ized dot product, is a function that measures the similarity between two
vectors, X,y € R™, by computing the dot product of their counterparts,
o(x),9(y) € R, in a high-dimensional feature space, where @ is a
mapping that brings x and y into the feature space R”.

Formally, a graphlet kernel k; which measures similarity between
graph Gg and G is defined as the dot product of their feature vectors.

k¢(Go,G1) =< fo,fG, >

where feature vector f is usually based on normalized GFD. Frequently
used kernels include Gaussian kernel, Laplacian kernel and cosine
similarity.

3-node graphlets 4-node graphlets

Fig. 2. All graphlets of 3, 4, or 5 nodes.

a) Data Space

XO X1
b) Projection Space

Y, Y

@)

Fig. 3. Technical lllustration of Joint z-SNE. Note that we only consider
3-node graphlets for simplicity. a) Some changes happened between
Xp and X;. Several points broke the neighborhood relationship with the
original cluster. Joint t-SNE measures the similarity of local structures to
find such changes and computes edge similarities (Se,, > S5 > Se,). b)
Using edge similarity as the weight of the corresponding vector constraint,
Joint 1-SNE generates projection Y;, which keeps the relative position of
points in ¥, accordingly.

4 JOINT t-STOCHASTIC NEIGHBOR EMBEDDING

In this section, we elaborate on Joint 7-SNE. We first investigate the

design considerations and introduce the basic idea of our solution.

Then we give an overview of the algorithm pipeline followed by a
detailed description of two technical highlights of Joint -SNE, graphlet
kernel-based edge similarity and edge vector constrained 7-SNE.

4.1 Design Considerations

The aim of Joint z-SNE is to generate low-dimensional embeddings that
can provide users with consistent visual tracking of data evolution in the
high-dimensional space. For most time-series datasets, there are both
inheritances and variations of data points in each time frame during
the evolution. We expect those inherited structures to be preserved in
the projection space to serve as visual landmarks, whereas the varied
ones to be distinguished from the others. Therefore, the problem of
generating comparable projections can be reduced to realizing the
following three goals:

1. G1: Detecting changes of local structures happening between
time frames in data space,

2. G2: Preserving inherited structures in projection space, and
3. G3: Ensuring projection fidelity.

Note that G1 is the basis of G2, and G2 may be conflicted with G3
since distortions may be introduced.

Conventional dimensionality reduction methods such as PCA and
t-SNE are designed for projecting a single dataset, with G3 as their only

S-node graphlets

concern. When used for projecting datasets from multiple time frames,
such methods would generate misaligned layouts. A common idea in
dealing with time-series data is the sliding window mechanism. The
term “window” refers to an imaginary box holding a batch of data from
consecutive time frames. A window of length / takes in and processes
data from / frames simultaneously and slides to the next position after
finishing the process of current data inside. We adopt such mechanism
and set [= 2 to acquire datasets from adjacent time frames, Xy and X|,
at a time, as well as to avoid the effect of long-range interference. Using
one dataset, say Xy, whose projection ¥ has already been computed as
a reference, we project X1, taking both G2 and G3 into consideration,
resulting in Y;. Note that we will state this process as “Y is joined by
Yo

To meet G2, the major challenge is how to incorporate the DR results
of the previous frames into the next frames. Dynamic t-SNE uses the
absolute positions of the previous frames, which cannot effectively
characterize the change of local structures. Recent work [41,42] has
shown that edge-vector-based constraints outperform previous methods
in preserving local structures. Inspired by that, We develop vector
constraints, which try to keep the relative position of point-pairs, and
integrate such constraint to the loss function of 7-SNE. The goal is
to preserve structures that are inherited in data space and make their
appearances in the later projection the same as in the former. To this end,
we set the weight of each vector as the edge similarity, which measures
the variation of the corresponding edge between high-dimensional data
points, to guide the optimization process.

In order to detect local changes and further measure edge similarities,
we first construct a kNN graph in high-dimensional space for each
dataset to model the neighborhood relationship among data points.
Then we measure the similarity of the local subgraph around each node
between two graphs with the identity of nodes taken into account. To
this end, we use a graphlet kernel to measure such similarity, resulting
in one value for each point which represents how much its surrounding
topology, as well as neighbors, changed from the former time frame
to the latter. Note that high edge similarity indicates minor changes in
local structure, while low similarity reflects major changes.

4.2 Algorithm Pipeline

Given two datasets Xy and X;, the computation pipeline (see Fig. 3) of
Joint #-SNE is as follows:

1. We construct Gy and Gy, the undirected k-Nearest Neighbor
(kNN) graphs of X and Xy, respectively.

2. We compute the Graphlet Frequency Distribution(GFD) vector
of local graph structure around each node in Gy and Gy, fv? for
W e V(Gp) and fv! for v} € V(Gy), respectively (see Fig. 4).

3. For each node pair (v),v}) € {(W0,v]) [V € V(Gy),v} € V(G1)},
we compute its point similarity (Eq. 6) using the feature vectors

of v? and vi1 .

4. Then for each edge pair common in both graphs, i.e., (e?j,e,-lj) €
{(e?j.,e}j)le?j = (v?,.v?.) G.E(Go),eilj :.(vil,v}) EE(GI)} we
compute its edge similarity (Eq. 7) using the point similarity
of its two endpoints.

5. We compute Yy, the z-SNE projection of Xy, using normal 7-SNE
(Sect. 3.1). Note that this is the case at the very beginning; when

G} local subgraph around vt
|V|=25 |E|=43

GY: local subgraph around v”

V|=25 |E|=34 {""s common neighbors

O uncommon neighbors

LAUgE o

a) common neighborhood ratio = 2/3
0" : feature vector of v°
0
1
A .
OB B @ P el e s e g9 @1 @ s 27

b) < fo', fo! >=0.731

fu' : feature vector of v'

7)Ilil;zl‘

Fig. 4. An illustrative example of computing point similarity. a) Node v
loses a neighbor during the transition from time t =0to + = 1. b) The
difference between feature vector fv* and fv! reflects the changes in the
local structures of node v.

the sliding window moves on to subsequent time frames, the latest
computed projection would be taken as the new Y directly.

6. We compute Y1, the 7-SNE projection of X, joined by Y, incor-
porating vector constraints of common edges between Gg and G
(Sect. 4.4).

4.3 Graphlet Kernel based Edge Similarity

Given a hyperparameter k, which indicates the number of neighbors
to consider, Joint -SNE starts with constructing Gy and G|, the kNN
graphs of two datasets X and X7, respectively, using a distance metric
(e.g., Euclidean). We consider the graphs to be undirected, i.e., an
edge ¢;; is present if and only if v; € kNN(v;) or v; € kNN(v;). Note
that hereafter we use the two graphs for computing point similarities
instead of the two raw datasets, which allows us to correlate datasets
with different numbers of dimensions.

Then, we introduce the feature vector of a node v, which charac-
terizes the local structure around v in a kNN graph. Graphlets consist
of 29 unique connected structures of 3 to 5 nodes, and the frequency
distribution of graphlets (GFD) can be used as a measurement of graph
topology. We count the number of each structure in the kNN graph that
includes v, normalize the counts by dividing each count by the sum,
and use the normalized counts as the feature vector f; of v.

Since counting all graphlets is computationally expensive, especially
when k is large, we embed the sampler, the core module of GUISE, into
Joint -SNE and develop an algorithm that computes the feature vectors
of nodes using uniformly sampled graphlets from a global scale. The
pseudo-code of both the original GUISE algorithm and our modified
version is included in our supplementary material.

To capture the structural similarity between two graphs, we present
two types of similarity, point similarity and edge similarity. The point
similarity between v? and vi1 is defined as the cosine similarity between
their feature Vectors multiplied by the fraction of common neighbors
between v and v . Since we assumed the two datasets have the same
items, we can compute the point similarity of every item i between the
two datasets.

[KNN (Go. 1) NKNN(Gy,v))|

Spi = X

< vl > (6)

Although the cosine similarity of feature vectors captures the struc-
tural similarity between the neighbors of two nodes, it does not consider
their identity. For example, suppose an item i lies within cluster A in
Gy but moves to cluster B in G1. Even if the two clusters have identical
structures, the point similarity between v? and vi1 should be zero since

they do not have common neighbors. Therefore, we penalize the cosine
similarity by multiplying the fraction of common kNN items between
v and v . Fig. 4 gives an example of computing point similarity.

The edge similarity between e - and e - is defined as the multiplica-
tion of the point similarities between their two endpoints:

Sei; = Spi *Sp; N

Note that edge similarities can be computed only for the common edges
that exist in both Gy and G| while point similarities can be computed
for all items.

During projecting the datasets separately, we will try to keep the
edge vectors between projected points with high edge similarities in
the data space invariant across projections.

4.4 Edge Vector Constrained t-SNE

Given the two datasets, X and X1, we project Xy using the conventional
t-SNE and get Y), the projection of Xy in a low-dimensional space, that
minimizes the Kullback-Leibler divergence between a joint probability
distribution in the high-dimensional space, p?j, and a joint probability

distribution in the low-dimensional space, q?j as follows:

0
pi .

argmin Cy = Z p?j log % ®)
Yo i#] 4ij

For Xi, Joint -SNE generates a coherent projection Y; joined by
Yy, preserving the topological structures of items that possess high
similarity in data space between Yy and Y;. To this end, we introduced
a novel constraint to the cost function of -SNE: vector constraints.
The cost function for X is as follows:

1
. Dij
argmin C] = Zp}jlog#
Y i#j 9ij
+ = Zsei/ ” Yi _y]) (ytl _y})HZ)
M iZ;

where Se,; is the similarities of common edges between graph Gy and

G constructed from X and X respectively, M is the number of those

common edges, 7 is the weight for vector constraints set by users.
The gradient is computed as follows:

ac,
- 42 —al)(y

i#Jj

Z Sel/

1#/

1 1 12y—1
—yj)(l‘f‘Hyi =yl

W=y -0l =) (10)

For each common edge (¢! €ij e]) (Go, Gy), edge constraints penal-
ize Y if the two vectors calculated by endpoints of common edges are
distant in the Euclidean space, i.e., aim to maintain the relative positions
between points. Vector constraints are weighted by a hyperparameter 7.
The impacts of the hyperparameter are demonstrated in Sect. 5.

5 EVALUATION

In this section, we quantitatively and qualitatively compare four tech-
niques for generating comparable projections, the original t-SNE [26]
(OT), Equal-initialization t-SNE (ET), Dynamic t-SNE [35] (DT), and
our Joint t-SNE (JT). OT served as a baseline; we projected each dataset
D; individually using the original -SNE algorithm with a random ini-
tial layout. For ET, we applied the original -SNE algorithm to each
dataset individually but used the same initial layout, which was gener-
ated randomly. For DT, we used the implementation from the original
paper [35]. We describe the hyperparameter settings used for evaluation
in the supplementary materials.

JT requires two hyperparameters, ¥ and k, while DT requires A. k
was set to 3 in all experiments in our paper and supplementary materials.
Since both loss terms of JT and DT are the averaged displacements of

edges or points, we set Yy = A for direct comparison between JT and
DT. In our paper, they were set to 0.1 by default which was the value
used in a previous experiment [35].

To compare the techniques quantitatively, we used the following
three metrics:

1. Local Coherence Error (LCE) of specific clusters between
frames: We use LCE to quantify the visual consistency of lo-
cal structures across consecutive projections. LCE is defined as
the sum of Euclidean distances between every two edge vectors in
clusters Cy in projections Yy and Y, whose ground-truth topology
is known to be unchanged.

WCEM.) =Y Y 116! —y)—0i —y)I?
GicYo ¥ yleq)
GiCh 3} yiect
i<j

an

2. kNN Preservation (KNN) for a single frame: We use KNN to
measure the preservation of local structures when conducting
dimensionality reduction following a previous paper [20]. KNN
is defined as the proportion of k-nearest neighbors of points in
the original high-dimensional space X that are preserved in the
projection space X, ;.

k() = O)

12

3. KL Divergence (KLD) for a single frame: KLD measures the
faithfulness of modeling between high- and low-dimensional
spaces. See function 4.

Although these metrics are useful in measuring how well projections
preserve local structures, they are not enough to understand the fidelity
and consistency between projections for different frames. To under-
stand them, we also conduct the qualitative evaluation by investigating
projections before and after a certain data transformation. Designing
the experiments, we identified that there is a general trade-off between
the internal and external validity in our evaluation. For example, if we
experiment on the techniques using synthetic high-dimensional data
and transformations whose ground-truth meanings are known (e.g.,
changing the distance between two hypothetical spheres), we can ac-
curately assess the faithfulness and consistency between projections,
but the external validity is hurt. Otherwise, if we use two real-world
datasets, which are externally valid, we cannot judge whether the pro-
jections preserve the structures between the frames faithfully since it
is rare to have the ground truth on the topological changes happening
between the two real-world datasets.

To balance the trade-off, we conduct three experiments with dif-
ferent levels of abstraction. In the first experiment (Sect. 5.1), we
use two synthetic datasets that samples from random Gaussian clus-
ters: the 10-Gaussian dataset [35] and the 5-Gaussian dataset. To
simulate time-dependent changes, we perturb the datasets by applying
known data transformations on clusters, such as translation, split, and
overlapping. This design is the most internally valid; we can assess
the faithfulness and consistency of projections since the structures of
datasets, and the meaning of data transformations are known. To seek
the balance between internal and external validity, in the second ex-
periment (Sect. 5.2), we use a real-world dataset, the MNIST dataset,
with synthetic data transformations, i.e., replacing digits in images
(e.g., “1” to “3”). Finally, in the third experiment (Sect. 5.3), we apply
the four techniques to a real-world dataset, the activation tensors from
the VGG-16 network [38], i.e., the VGG dataset, to understand how
high-dimensional representations are transformed on each layer. In
this experiment, even the meaning of the transformation that happens
between two adjacent datasets is unknown.

5.1 Joint -SNE on Synthetic Datasets

The goal of the first experiment was to assess the faithfulness and
consistency of the four projection techniques when applied to generate
comparable projections.

t=1

t=2

&

;s.-.
T ﬁ«.
&

Fig. 5. Comparison of the 5-Gaussian dataset projection of four different ¢-
SNE methods. a) +-SNE produced misaligned layouts all across four time
frames. b) Equal-initialization z-SNE provides better visual consistency
than ¢-SNE but there are still unnecessary movements of clusters. c)
Dynamic -SNE showed smoothing effect by distorting projections at
t =2 and 3. d) Joint 1-SNE generated coherent and reliable projections
that reflected the ground-truth transformations of clusters.

Datasets and Transformation = We first employed the 10-Gaussian
dataset that was used to evaluate Dynamic #-SNE [35]. The dataset
consisted of 2,000 points in a 100-dimensional space that were sampled
from ten isotropic Gaussian distributions with a variance of 0.1. The
centers of the distributions were chosen randomly between the standard
basis vectors for R100, i.e., the centers were equidistant from each other.

The authors of the Dynamic #-SNE paper simulated time-dependent
changes by contracting each cluster stepwisely. Specifically, they
moved each data point towards the center of the corresponding Gaus-
sian distribution by 10% of the remaining distance to the center. They
repeated this contraction operation nine times to generate nine frames
(i.e.,t =1---9), obtaining the final datasets of ten frames.

To further experiment on richer types of transformations in addition
to the contraction operation, we generated a dataset, the 5-Gaussian
dataset. We started by sampling 500 points from five isotropic Gaussian
distributions (100 for each) in a 100-dimensional space. The centers
of the distributions were chosen randomly between the standard basis
vectors with a variance of 0.05 (the first row of Fig. 5).

We then generated three more frames (f = 1,2,3) by applying one of
the following transformations: translation, splitting, and overlapping,
and before applying each transformation, we contracted all clusters by
10% as in the 10-Gaussian dataset. At¢ = 1, we translated the points in
the first cluster (the blue cluster in Fig. 5) by +0.15 in all dimensions
(i.e., 3 -variance). Att =2, we split the second cluster (the green
cluster in Fig. 5) by half. We used the k-means clustering algorithm
to make two subclusters (k = 2) and translate the subclusters either by
+0.15 (i.e., £1.5 - variance) in all dimensions to the opposite direction.
Att =3, we overlapped the third and fourth clusters (the red and purple
clusters in Fig. 5) by translating them to have the same mean.

Results and Discussion Since the 5-Gaussian dataset illustrates
aricher set of data transformations, we report the projection results of
the 5-Gaussian dataset in Fig. 5. the result for the 10-Gaussian dataset
can be found in the supplementary materials. In Fig. 5, note that for
ease of comparison, we used the Dynamic 7-SNE projection at =0
as the common projection for all four methods even though it suffered
from the long-range interference problem; the blue cluster is already
distant from the other clusters even at ¢ = 0 since it will become distant.

Att =1, a cluster (i.e., the blue cluster) was pushed away from the
other clusters. All the projection results manifested this transformation
by placing the cluster distantly from the other clusters, but the original

Table 1. Averaged Local Coherence Error

Methods
Datasets t-SNE ET DT JT
5-Gaussian 1,972.38 1,468.45 30.21 13.66
10-Gaussian 7,365.81 6,822.01 249.88 61.03

Table 2. Quantitative measurement for projection fidelity

Methods kNN preservation KL divergence
Datasets t-SNE ET DT JT |[+SNE ET DT JT
5-Gaussian 030 030 032 0.34 1.00 1.00 1.05 1.03
10-Gaussian 0.19 0.19 0.16 0.23 162 1.62 1.69 1.69
MNIST 026 026 021 0.24 1.00 1.00 1.16 1.05
VGG 0.57 056 048 0.55 0.60 0.60 1.01 0.65

t-SNE produced a misaligned projection; the blue cluster was near the
bottom-right corner at = 0, but it moved to the top at r = 1. Note that
this misalignment cannot be fixed by a simple Procrustes transform;
one may want to rotate the projection at t = 1 to align the position of
the blue cluster with its previous position, but then the red and green
clusters will become misaligned. In contrast, DT and JT generated
more consistent projections; they preserved the positions of the four
untouched clusters.

At t =2, a cluster (i.e., the green cluster) was split into two sub-
clusters. We could see that the separation between the subclusters was
relatively small in DT compared with the other three techniques due to
the smoothing effect; the two clusters were less separated to minimize
the movement of points. The smoothing effect of DT became clearer
at t = 3. Here, we overlapped two clusters (i.e., the red and purple
clusters) completely, but they overlapped each other only partially in
DT. In contrast, JT alleviated the smoothing effect by considering the
topological similarity of points between two datasets; the two clus-
ters could be placed faithfully since the neighborhood of points in the
clusters was drastically changed, resulting in small edge similarity.

In terms of Local Coherence Error, JT outperformed the other three
techniques (Table 1) for both the 10-Gaussian and 5-Gaussian datasets,
suggesting that JT produced more consistent projections. Regarding
projection fidelity (Table 2), JT outperformed other techniques in terms
of kNN preservation, but it produced higher KL divergence than OT
and ET. This is because JT considered an extra loss term (i.e., vector
constraints) in addition to KL divergence to maintain consistency.

Additionally, we investigated the effect of hyperparameters, y for
JT and A for DT, by testing three values, 0.01, 0.05, and 0.1 (Fig. 6).
Note that we could not test values larger than 0.1 since the optimization
process of DT became unstable and collapsed. This time, we applied the
four transformations to the 5-Gaussian dataset at the same time (f = 1)
for comparison. Fig. 6 shows that JT was more robust to distortion,
such as the smoothing effect, regardless of A (see the overlap of the red
and purple clusters) while DT was sensitive to its hyperparameter A;
for example, the smoothing effect between the red and purple clusters
became more severe as we increase A.

We also investigated
the effect of hyperpa-
rameter k on the final
embeddings with the 5- _ .,
Gaussian dataset in two
aspects, LCE and compu- 150
tational time. The result 100
shows that LCE becomes 0
high both when % is very L e A N T Y
small (2) and very large k
(|nodes|/2), see the inset. This is because small k will lead to an insuf-
ficient number of edges in kNN graphs for modeling the relationship
between nodes effectively, whereas a large k might make GFD becomes
ineffective for measuring node similarities. As for computational time,
it increases with the increase of k. Therefore, we recommend that users
set k to 3, 4, or 5 to achieve a better trade-off between fidelity and
efficiency.

Experiment 1 showed that compared with DT, JT was more con-

400

tvg LCE

a) v/ = 0.01 b) /A = 0.05 ¢) 7/A = 0.1
Iy Lohle . .
e S SRERES. goee | oA
E L i g S |
At SR P
Ml TN
I | g, =" IO ;
- '4‘%:; e AT
viver | ReEsnL
o
a8
I
o
j=)
I

Fig. 6. Comparison of the effect of hyperparameters in Dynamic and
Joint -SNE. We used the result from Dynamic r-SNE as the projection of
the first time frame for ease of comparison. For Dynamic -SNE, as 4
increases from 0.01 to 0.1, the effect of long-range interference att =0
becomes more obvious as the red and purple clusters gets closer, which
is a future change. The same is true for smoothing effect at r = 1. Joint
+-SNE is robust to the change of y; see the red and purple clusters fully
overlap regardless of y.

sistent and faithful for the tested dataset in terms of both qualitative
and quantitative evaluation. Compared with OT and ET, JT was more
consistent and had comparable fidelity. These findings suggest that JT
achieves all three design goals mentioned in Sect. 4.1, and solved the
conflict between G2 and G3 elegantly.

5.2 Joint :-SNE on the MNIST Dataset

The goal of the second experiment was to assess the consistency of
projections generated on a real-world dataset with synthetic transfor-
mations.

Datasets and Transformation We used the MNIST dataset [24]
which consisted of the 60,000 black-and-white images of hand-written
digits. As the initial dataset at t = 0, we collected the first 100 images
of five digits (i.e., [0, 4]) from the MNIST dataset. In contrast to the
Gaussian datasets in the previous experiment, mutating the images
by adding or subtracting a constant to each pixel was not meaningful.
Instead, we applied two replacement transformations at r = 1 with
different levels of resulting similarity. First, we replaced the images
of digit 0 with those of digit 9; we used the first 100 images of digit 9.
We hypothesized that the existing cluster of digit 4 and the replaced
cluster of digit 9 should become closer since the two digits were similar.
Second, we replaced the images for digit 1 with those of digit 3; we
used 100 images of digit 3 that were different from the images of digit
3 att = 1. We hypothesized the two clusters should overlap completely
att = 1 since they depicted the same digit, 3.

Results and Discussion We show the projection results of ET,
DT, and JT att =0 and 7 = 1 in Fig. 7. First, ET produced the pro-
jections that supported our hypotheses; the clusters for digits O and 4
(the blue and brown clusters) became closer as digit 0 was replaced
with digit 9 at # = 1. Furthermore, the clusters for digits 1 and 3 (the
green and purple clusters) were distant at # = 0 but overlapped att = 1
after digit 1 (the green cluster) was replaced with digit 3. However, ET
altered even an untouched cluster, the red cluster for digit 2, possibly
giving the user misunderstanding that its local structure also changed.

The results from DT suffered from long-range interference and
smoothing effects that we mentioned. At ¢ = 0, the clusters for digits O
and 4 (the blue and brown clusters) were close to each other even before
the transformation took place. Because they would become similar at
t =1, DT placed them nearby to minimize the length of the locus of
points. The projection was distorted early due to the changes happening

d) local subspace

R
'n'?i'-‘%?:;ﬁo. .‘.:ﬂ

DR
-

® e
o Bp
‘i
.--'; %’2\:::-:'."'!
B TR TR

1)
e ”

Fig. 7. Comparison of the MNIST dataset projection of three -SNE techniques. Note that since the effect of long-range interference of Dynamic
t-SNE was too serious in this case, we did not use its result for = 0 as the initial projection for other methods as we did in other cases. a) Projecting
each frame separately in Equal-initialization -SNE could faithfully reveal the underlying structure. But when used for comparison tasks, the results
can be misleading; for example, people can think that the red cluster for digit 2 changed and the purple cluster of digit 3 moved to the green cluster of
digit 1, but the ground truth is the opposite. b) In Dynamic -SNE, the changes between two frames are subtle even though there were substantial
changes. These projections are too consistent, sacrificing fidelity. ¢) Joint -SNE successfully detected the changes in topology while preserving the
local structure of the red cluster for digit 2 where no change was made. d) Comparison of local subspace shows that Dynamic r-SNE created an

artifact of digit 2 on the right side, whereas other methods did not.

in the future, i.e., long-range interference. The two clusters for digit
3 at t = 1 exhibited the smoothing effect; they should fully overlap
each other but were separated because the points were forced to move
minimally, maintaining their previous positions at t = 0. Due to these
problems, DT generated very consistent but unfaithful projections.

In contrast, JT successfully displayed changes with a consistent
layout. The two changes we made were clearly visible at r = 1; two
clusters for digit 3 (the green and purple clusters) fully overlapped while
the clusters for digits 4 and 9 (the brown and blue clusters) partially
overlapped. Note that JT also preserved the local structure of the cluster
of digit 2 (the red cluster) where no change was made, allowing the user
to perform comparison tasks using that cluster as visual landmarks.

Experiment 2 showed that JT could capture the similarity of local
structures between two frames. For similar structures (e.g., the red
cluster of digit 2), JT placed the structures consistently in the projection
space. Even for the structures that changed abruptly (e.g., the over-
lapped clusters of digit 3), it could project them faithfully. Note that
maintaining the consistency can lower local quality metrics (Table 2)
compared with unbound techniques such OT, but we believe the benefit
of having consistent projections for comparison tasks can pay the cost.

5.3 Joint -SNE on the VGG Dataset

As a real-world use case, we tested the four techniques on the VGG
dataset [38]. We investigated how each layer in the VGG network
transforms intermediate representations of images by projecting and
comparing the activation. Note that in contrast to previous experi-
ments, it is very difficult to have ground-truth interpretation on the
transformation happening on a layer due to the high dimensionality and
complexity of the dataset and network.

Dataset As input images, we collected 700 images of ten classes
(70 images for each class) from ImageNet [11]. The ten classes con-
sisted of eight animal species and two unrelated classes, which were cats
(tiger cat and tabby cat), dogs (giant schnauzer and standard schnauzer),
sharks (great white shark and tiger shark), fish (goldfinch and bram-
bling), beach wagon, and military uniform.

The VGG-16 network has 23 layers where the first layer represents
a raw input image, and the last layer corresponds to output class proba-
bilities. Given the input images, the activation recorded on each layer
forms a single high-dimensional dataset whose rows represent input im-
ages and columns represent the activation at each neuron. The datasets
had different numbers of columns ranging from 1,000 to 3,497,984.
For datasets that had more than 4,096 dimensions, we used random
projection [25] to reduce the dimensionality to 4,096.

Results and Discussion Fig. 8 shows the evolution of activation
on the last four layers, excluding the final softmax prediction layer in
the VGG-16 network, projected by four different techniques. Overall,
the separation between classes became clear at the first fully connected
layer (fc). In OT and ET, the positions of clusters changed drastically;
for example, ET placed the clusters of birds (the red and pink clus-
ters) on the left part of the projection at block5-conv, but the clusters
moved to the lower part at fc/ and finally to the lower-right part at fc2.
Although it is known that the absolute position of the cluster is not
important for -SNE [43], the moving cluster makes the comparison
between layers more challenging.

DT manifested several problems. First, the two classes of birds (the
red and pink clusters) were largely separated at the fc2 layer while
other techniques placed them nearby. This phenomenon can be seen
as an example of the smoothing effect; because the two clusters were
distant previously (i.e., at block5-conv), placing the two clusters closer
faithfully would cause a substantial loss. A similar problem happened
for the two classes of dogs (the green and light green clusters) at

fel. A small subcluster of tiger cats (the light blue cluster) in a lower

part remained separated, possibly causing misunderstanding that this
subcluster is significantly different from other clusters for cats. Finally,
we found that DT did not work on the full dataset due to a scalability
issue while other techniques did since it tried to load all datasets in
memory to optimize them together.

In contrast, JT generated projections that are locally similar to OT
or ET projections but with consistent global structures. For example,
two clusters for sharks (the purple and light purple clusters) became
separated at fc/, which was visible in all three techniques. However, OT
and ET flipped the two clusters vertically between fc/ and fc2, which
did not happen in Joint -SNE projections.

6 GENERAL DISCUSSION

Benefits of Joint z-SNE Through a series of experiments, we
could identify the benefits of Joint z-SNE as follows: 1) Joint -SNE
provides visual consistency between projections. The vector constraints
we added guide the optimization process to place invariant structures to
consistent locations. Note that keeping projections consistent with the
vector constraints naturally induces a loss in KL divergence (Table 2),
but the loss was small compared to its benefits and can be controlled
by a hyperparameter A. 2) Joint £-SNE is more faithful than Dynamic
t-SNE. Even the high-dimensional topology changes abruptly, the GFD-
based edge similarity we proposed captures the changes and allows the
optimization process to faithfully project the topology. 3) Joint -SNE

a) t-SNE

tiger cat
>
g
o
3 B by
h®
Q
2
m giant schnauzer
é I standard schnauzer
v
-
Q
=]
) goldfinch
I brambling
it

fc2

"

great white shark

I tiger shark

beach wagon

I nilitary uniform

Fig. 8. Comparison of the VGG dataset projections of four z-SNE techniques. a) and b) -SNE and Equal-initialization -SNE produced faithful but
inconsistent projections. See the red and pink clusters moving around the center. c) Dynamic ¢-SNE produced projections that are too rigid to reflect
abrupt changes in topology. For example, the green and light green clusters remain separated at the end, failing to escape from their initial positions.
d) Joint 1-SNE generated more faithful projections that are robust to such abrupt changes. See the points from a pair of classes (two classes with the
same hue) gather as in the -SNE and Equal-initialization -SNE projections while providing visual consistency.

is more flexible than Dynamic 7-SNE since generating a projection
at ¢ only depends on the previous one ¢ — 1 and does not change the
previous projection. It is more suitable for dynamic datasets where new
time frames are added incrementally and causes a low computational
burden since only two adjacent projections reside in memory at a time.

Analysis of Algorithmic Complexity Our implementation of Joint
t-SNE mainly consists of three major parts: graphlet construction,
graphlet-based similarity computation, and Joint -SNE optimization.
For a dataset with n nodes and k neighbors of each node are considered,
suppose the number of graphlets is m, the time complexities of three
parts are O(km), O(n), and O(n?), respectively. In total, the time
complexity of Joint #-SNE is O(n? + km). When the graph is dense, m
might be much larger than n2, and the complexity is O(nz) for sparse
graphs. We report the actual running time of the three methods in the
supplementary material.

Extending to -SNE Variants and Other Projection Techniques
Since vector constraints do not change the inner workings of a projec-
tion technique, they can be integrated into accelerated -SNE algorithms
(e.g., Barnes-Hut #-SNE [40]), variants that use -SNE internally (e.g.,
Hierarchical SNE [31] or progressive ¢-SNE algorithms [19, 32]), or
even other gradient-based projection algorithms.

One of the most promising extensions is the use of Barnes-Hut 7-
SNE [40] that can improve the time complexity of Joint -SNE from
O(n?) to O(nlogn). Barnes-Hut ¢-SNE internally builds kD trees to
identify the kpy neighbors of each point. Note that k, the number of
neighbors used for computing feature vectors in our work, and kpy,
the number of neighbors for the approximation in Barnes-Hut #-SNE,
have different meanings and scales. For kpy, the original paper [40]
suggested a number |3 - perplexity| which is about 50 times larger than
the minimum value we suggest for & (i.e., k = 3) assuming perplexity
is set to 50 as in common settings. One benefit of having smaller k
than kpp is that we can reuse the kNN graph built for the Barnes-Hut
approximation to reduce the overhead of introducing vector constraints.

Although Joint #-SNE is based on 7-SNE, our concepts, measur-
ing graph similarities and applying vector constraints, can be easily
adapted to other projection techniques, such as Multidimensional Scal-
ing (MDS) [9] or Uniform Manifold Approximation and Projection
(UMAP) [27]. For MDS, we can directly add the vector constraints

to the loss function; see the supplementary materials for an example.
UMAP constructs a weighted directed kNN graph G and converts it to
symmetric adjacency matrix B. In this case, for GFD computation, we
need to sample edges with probabilities proportional to their weights in
B in the random walk as in a previous framework [37].

Future Work The computation pipeline of Joint #-SNE can be
further improved by using approximation [40] or exploiting loop-based
parallelism [10] although we used a single-threaded version in the
experiments. We can also consider an estimation framework [37] to
speed up the graphlet counting process. We leave accelerating Joint
t-SNE as future work. Another interesting future work would be to
integrate vector constraints in hierarchical projection techniques, such
as Hierarchical SNE [31], to speed up the computation and ensure the
coherency between the projections at different levels.

7 CONCLUSION

We present Joint #-SNE to generate comparable projections of multiple
high-dimensional datasets. Based on the GFD feature vectors capturing
the local topological structures of points, we introduce a novel loss
term to #-SNE, vector constraints, to guide the optimization process to
preserve edge vectors between data points depending on their similarity
between time frames. Through a series of experiments, we found that
Joint #-SNE can generate consistent projections compared with the
previous techniques while keeping projection fidelity. Over the years,
multidimensional projections have been proven to be of great utility for
giving an overview of a single high-dimensional data. Our study further
extends their utility to a new dimension, enabling them to be used for
multiple high-dimensional datasets such as multivariate time-oriented
data even with changing numbers of dimensions.

ACKNOWLEDGMENTS

This work is supported by the grants of the NSFC (61772315,
61861136012), the Open Project Program of State Key Labora-
tory of Virtual Reality Technology and Systems, Beihang University
(No.VRLAB2020C08), and the CAS grant (GJHZ1862).

REFERENCES

(1]

(2]

(3]

[4]

(51

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. B. Alencar, K. Borner, F. V. Paulovich, and M. C. E. de Oliveira. Time-
aware visualization of document collections. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pp. 997-1004, 2012. doi:
10.1145/2245276.2245469

M. Ali, M. W. Jones, X. Xie, and M. Williams. Timecluster: dimension re-
duction applied to temporal data for visual analytics. The Visual Computer,
35(6):1013-1026, 2019. doi: 10.1007/s00371-019-01673-y

J. Bernard, N. Wilhelm, M. Scherer, T. May, and T. Schreck. Timeseries-
paths: Projection-based explorative analysis of multivariate time series
data. 2012.

M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. Guise: Uni-
form sampling of graphlets for large graph analysis. In IEEE International
Conference on Data Mining, pp. 91-100, 2012. doi: 10.1109/ICDM.2012.
87

A. Boggust, B. Carter, and A. Satyanarayan. Embedding comparator:
Visualizing differences in global structure and local neighborhoods via
small multiples. arXiv preprint arXiv:1912.04853, 2019.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In
IEEE International Conference on Data Mining, pp. 8-pp, 2005. doi: 10.
1109/1CDM.2005.132

H. Bunke, P. J. Dickinson, M. Kraetzl, and W. D. Wallis. A graph-theoretic
approach to enterprise network dynamics, vol. 24. Springer Science &
Business Media, 2007. doi: 10.1007/978-0-8176-4519-9

X. Chen, D. Xie, L. Wang, Q. Zhao, Z.-H. You, and H. Liu. Bnpmda: bi-
partite network projection for mirna—disease association prediction. Bioin-
Sformatics, 34(18):3178-3186, 2018. doi: 10.1093/bioinformatics/bty333
M. A. A. Cox and T. F. Cox. Multidimensional Scaling, pp. 315-347.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. doi: 10.1007/978-3
-540-33037-0_14

L. Dagum and R. Menon. Openmp: an industry standard api for shared-
memory programming. /[EEE Computational Science and Engineering,
5(1):46-55, 1998.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A
large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248-255, 2009. doi: 10.1109/CVPR.
2009.5206848

A.J. Enright and C. A. Ouzounis. Biolayout—an automatic graph layout
algorithm for similarity visualization. Bioinformatics, 17(9):853-854,
2001. doi: 10.1093/bioinformatics/17.9.853

T. Fujiwara, J.-K. Chou, S. Shilpika, P. Xu, L. Ren, and K.-L. Ma. An
incremental dimensionality reduction method for visualizing streaming
multidimensional data. IEEE Transactions on Visualization and Computer
Graphics, 26(1):418-428, 2019. doi: 10.1109/TVCG.2019.2934433

X. Gao, D. Hu, M. Gogol, and H. Li. Clustermap: compare multiple single
cell rna-seq datasets across different experimental conditions. Bioinfor-
matics, 35(17):3038-3045, 2019. doi: 10.1093/bioinformatics/btz024
M. Gleicher, D. Albers, R. Walker, 1. Jusufi, C. D. Hansen, and J. C.
Roberts. Visual comparison for information visualization. Information
Visualization, 10(4):289-309, 2011. doi: 10.1177/1473871611416549
W. Hayes, K. Sun, and N. PrZulj. Graphlet-based measures are suitable
for biological network comparison. Bioinformatics, 29(4):483-491, 2013.
doi: 10.1093/bioinformatics/bts729

A. Hidaka and T. Kurita. Consecutive dimensionality reduction by canoni-
cal correlation analysis for visualization of convolutional neural networks.
In Proceedings of the ISCIE International Symposium on Stochastic Sys-
tems Theory and its Applications, pp. 160-167, 2017. doi: 10.5687/SSS.
2017.160

D. Jickle, F. Fischer, T. Schreck, and D. A. Keim. Temporal mds plots
for analysis of multivariate data. /[EEE Transactions on Visualization and
Computer Graphics, 22(1):141-150, 2015. doi: 10.1109/TVCG.2015.
2467553

J. Jo, J. Seo, and J.-D. Fekete. Panene: A progressive algorithm for index-
ing and querying approximate k-nearest neighbors. IEEE Transactions on
Visualization and Computer Graphics, 2018. doi: 10.1109/TVCG.2018.
2869149

D. Kobak and P. Berens. The art of using t-sne for single-cell transcrip-
tomics. Nature Communications, 10(1):1-14, 2019. doi: 10.1038/s41467
-019-13056-x

R. Kondor, N. Shervashidze, and K. M. Borgwardt. The graphlet spectrum.
In Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 529-536, 2009. doi: 10.1145/1553374.1553443

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

[31]

(32]

[33]

(34]

(35]

(36]

[37]

[38]

[39]

(40]

[41]

(42]

[43]

[44]

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other
discrete structures. In Proceedings of the 19th International Conference
on Machine Learning, pp. 315-22, 2002.

O.-H. Kwon, T. Crnovrsanin, and K.-L. Ma. What would a graph look like
in this layout? a machine learning approach to large graph visualization.
IEEE Transactions on Visualization and Computer Graphics, 24(1):478—
488, 2017. doi: 10.1109/TVCG.2017.2743858

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

P. Li, T. J. Hastie, and K. W. Church. Very sparse random projections.
In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 287-296, 2006. doi: 10.
1145/1150402.1150436

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579-2605, 2008.

L. Mclnnes, J. Healy, and J. Melville. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

T. Milenkovié, V. MemiSevi¢, A. K. Ganesan, and N. Przulj. Systems-
level cancer gene identification from protein interaction network topology
applied to melanogenesis-related functional genomics data. Journal of
the Royal Society Interface, 7(44):423-437, 2010. doi: 10.1098/rsif.2009.
0192

T. Milenkovi¢ and N. Przulj. Uncovering biological network function via
graphlet degree signatures. Cancer Informatics, 6:CIN-S680, 2008.

E. V. Paulovich, M. C. F. Oliveira, and R. Minghim. The projection ex-
plorer: A flexible tool for projection-based multidimensional visualization.
In Brazilian Symposium on Computer Graphics and Image Processing, pp.
27-36, 2007. doi: 10.1109/SIBGRAPI.2007.21

N. Pezzotti, T. Hollt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hi-
erarchical stochastic neighbor embedding. Computer Graphics Forum,
35(3):21-30, 2016. doi: 10.1111/cgf. 12878

N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Hollt, E. Eisemann, and
A. Vilanova. Approximated and user steerable tsne for progressive visual
analytics. IEEE Transactions on Visualization and Computer Graphics,
23(7):1739-1752, 2016. doi: 10.1109/TVCG.2016.2570755

N. Przulj. Biological network comparison using graphlet degree distribu-
tion. Bioinformatics, 23(2):e177—-e183, 2007. doi: 10.1093/bioinformatics/
bt1301

N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale-
free or geometric? Bioinformatics, 20(18):3508-3515, 2004. doi: 10.
1093/bioinformatics/bth436

P. E. Rauber, A. X. Falcdo, and A. C. Telea. Visualizing time-dependent
data using dynamic t-sne. In EuroVis (Short Papers), pp. 73-77, 2016.
D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning
for robust visual tracking. International Journal of Computer Vision,
77(1-3):125-141, 2008. doi: 10.1007/s11263-007-0075-7

R. A. Rossi, R. Zhou, and N. K. Ahmed. Estimation of graphlet counts in
massive networks. IEEE Transactions on Neural Networks and Learning
Systems, 30(1):44-57, 2018. doi: 10.1109/TNNLS.2018.2826529

K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

I. Takigawa and H. Mamitsuka. Graph mining: procedure, application to
drug discovery and recent advances. Drug Discovery Today, 18(1-2):50—
57,2013. doi: 10.1016/j.drudis.2012.07.016

L. Van Der Maaten. Accelerating t-sne using tree-based algorithms. The
Journal of Machine Learning Research, 15(1):3221-3245, 2014.

Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a unified
framework for interactive constrained graph visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):489-499, 2017. doi:
10.1109/TVCG.2017.2745919

Y. Wang, Y. Wang, H. Zhang, Y. Sun, C.-W. Fu, M. Sedlmair, B. Chen,
and O. Deussen. Structure-aware fisheye views for efficient large graph
exploration. /EEE Transactions on Visualization and Computer Graphics,
25(1):566-575, 2018. doi: 10.1109/TVCG.2018.2864911

M. Wattenberg, F. Viégas, and L. Johnson. How to use t-sne effectively.
Distill, 2016. doi: 10.23915/distill.00002

L. Zhang, Y. Han, Y. Yang, M. Song, S. Yan, and Q. Tian. Discovering
discriminative graphlets for aerial image categories recognition. /EEE
Transactions on Image Processing, 22(12):5071-5084, 2013. doi: 10.
1109/TIP.2013.2278465

	Introduction
	Related Work
	Comparable Projections
	Measuring the Similarity between Graphs

	Background
	t-Distributed Stochastic Neighbor Embedding
	Graphlet Kernels

	Joint t-Stochastic Neighbor Embedding
	Design Considerations
	Algorithm Pipeline
	Graphlet Kernel based Edge Similarity
	Edge Vector Constrained t-SNE

	Evaluation
	Joint t-SNE on Synthetic Datasets
	Joint t-SNE on the MNIST Dataset
	Joint t-SNE on the VGG Dataset

	General Discussion
	Conclusion

