
Online Submission ID: 1471

Supplementary Material of
Joint t-SNE for Comparable Projections of

Multiple High-Dimensional Datasets
Category: Research

Paper Type: algorithm/technique

1 INTRODUCTION

We provide technical details and more experimental results that are not presented in the paper due to the page limit.
This supplementary material is organized as follows: Section 2 gives the pseudo-code of both the original GUISE
algorithm and our modified version. Section 3 provides the parameter settings for all our experiments. We also compare
the original graphlet enumeration algorithm with our random walk algorithm in terms of time cost and accuracy in
Section 4. Section 5 and 6 present projection results of the 10-Gaussian dataset and the VGG dataset, respectively.
The detailed quantitative measurement for the four datasets is shown in Section 7. We discuss the generalization of
our method to other multidimensional projection schemes in Section 8.

2 ALGORITHM DETAILS

In this section, we provide algorithm details of Joint t-SNE , including computation of GFD-based feature vector,
original and modified version of GUISE, computation of point and edge similarity.

Algorithm 1 Compute the normalized GFD around one node
Require: GL is a set of graphlets contained in a graph, v is the target vertex to compute the feature vector
Ensure: A vector of size 29 that represents the normalized frequencies of 29 graphlets which contain node v

1: procedure NODE FEATURE(GL, v)
2: nodeGFD← ZEROS(29)
3: for gl ∈ GRAPHLETS WITH NODE(GL, v) do
4: type← GET GRAPHLET TYPE(gl)
5: nodeGFD[type]← nodeGFD[type]+1
6: end for
7: NORMALIZE(nodeGFD)
8: return nodeGFD
9: end procedure

3 PARAMETER SETTINGS

For all techniques, we adopted the same optimization procedure as the original t-SNE paper except for the number
of iterations T = 2,000. A common hyperparameter perplexity was chosen depending on the dataset: 70 for the
10-Gaussian datasets, 40 for the 5-Gaussian datasets, 40 for the MNIST dataset, and 50 for the VGG dataset.

k is set to 3 for all dataset.As for γ or λ , they are set to 0.1 in the 5-Gaussian datasets, the 10-Gaussian datasets
and the MNIST dataset, and exclusively 0.01 for the VGG dataset.

4 PERFORMANCE

We evaluate the effectiveness and efficiency of counting graphlets using a random walk-based method. First, we
compute the average L1 loss between feature vectors calculated by random walk and those by enumeration in Table 1.
Second, we compare the average time taken to compute feature vectors with different graph sizes between our method

1

Algorithm 2 Accelerating graphlet enumeration using random walk
Require: G is a graph
Ensure: GL is a set of uniformly sampled graphlets in G

1: procedure GUISE ON DISCONNECTED GRAPH(G)
2: GL← /0
3: ConnCpnts← GET CONNECTED COMPONENTS(G)
4: for cpnt ∈ConnCpnts do
5: SCount← cpnt.size()×1000
6: GL.append(GUISE(cpnt,SCount))
7: end for
8: return GL
9: end procedure

Algorithm 3 Compute point similarity
Require: Two points v0

i ∈V (G0) and v1
i ∈V (G1), GL0 and GL1 are two sets of graphlets of graph G0 and G1 respec-

tively, k is the number of nearest neighbors considered
Ensure: The point similarity between v0

i and v1
i

1: procedure POINT SIMILARITY(v0
i ,v

1
i ,G0,G1,GL0,GL1,k)

2: f v0
i ← NODE FEATURE(GL0,v0

i)
3: f v1

i ← NODE FEATURE(GL1,v1
i)

4: rate←‖kNN(G0,v0
i ,k)∩ kNN(G1,v1

i ,k)‖/k
5: return rate·< f v0

i , f v1
i > . < ·, ·> is the cosine similarity

6: end procedure

Algorithm 4 Compute edge similarity
Require: Two edges e0

i j ∈ E(G0) and e1
i j ∈ E(G1), GL0 and GL1 are two sets of graphlets of graph G0 and G1 respec-

tively, k is the number of nearest neighbors considered
Ensure: The edge similarity between e0

i j and e1
i j

1: procedure EDGE SIMILARITY(e0
i j,e

1
i j,G0,G1,GL0,GL1,k)

2: (v0
i ,v

0
j)← e0

i j

3: (v1
i ,v

1
j)← e1

i j

4: si← POINT SIMILARITY(v0
i ,v

1
i ,G0,G1,GL0,GL1,k)

5: s j← POINT SIMILARITY(v0
j ,v

1
j ,G0,G1,GL0,GL1,k)

6: return si · s j

7: end procedure

2

Online Submission ID: 1471

Algorithm 5 Compute common edge similarities
Require: G0 and G1 are two graphs, k is the number of nearest neighbors considered
Ensure: Similarities of common edges between G0 and G1

1: procedure COMMON EDGE SIMILARITIES(G0,G1,k)
2: GL0← GUISE ON DISCONNECTED GRAPH(G0)
3: GL1← GUISE ON DISCONNECTED GRAPH(G1)
4: (V0,E0)← G0
5: (V1,E1)← G1
6: Ecom← E0∩E1
7: sims← /0
8: for (e0

i j,e
1
i j) ∈ Ecom do

9: sims[e0
i j,e

1
i j]← EDGE SIMILARITY(e0

i j,e
1
i j,G0,G1,GL0,GL1,k)

10: end for
11: return sims
12: end procedure

Algorithm 6 Joint t-SNE
Require: X0 and X1 are datasets from two adjacent time frames, Y0 is the projection of X0, Perp is the perplexity in

the t-SNE loss function, k is the parameter for building kNN graph, and γ is the weight for vector constraint
Ensure: The projection of X1

1: procedure JOINT t-SNE(X0, X1, Y0, Perp, k = 3, γ = 0.1)
2: G0← BUILD KNN GRAPH(X0,k)
3: G1← BUILD KNN GRAPH(X1,k)
4: Se← COMMON EDGE SIMILARITIES(G0,G1,k)
5: Y1← arg min LOSS(Y0,X1,Perp,Se,γ)
6: return Y1
7: end procedure

3

Algorithm 7 Uniform Sampling Algorithm
1: procedure GUISE(G,SCount)
2: graphlets← []
3: gx← GET A INITIAL GRAPHLET(G)
4: dgx ← POPULATE NEIGHBORHOOD(gx)
5: sampled← 0
6: while True do
7: choose a neighbor gy uniformly from all possible neighbors
8: dgy ← populate neighborhood(gy)

9: acceptance probability← min(|dgx |
|dgy |

, 1)
10: if uni f orm(0,1)≤ acceptance probability then
11: gx← gy

12: dgx ← dgy

13: end if
14: sampled← sampled +1
15: graphlets.append(gx)
16: if sampled > SCount then return graphlets
17: end if
18: end while
19: end procedure
20: procedure POPULATE NEIGHBORHOOD(gx)
21: neighbor list← generate all potential neighboring graphlets
22: return neighbor list
23: end procedure

and simple enumeration in Figure 1. It shows that the random walk-based method is much faster than brute-force
enumeration with a reasonable loss which is less than 0.5.

We also report the actual running time of Joint t-SNE as well as other methods in Table 3.

Table 1: error caused by random walk

of Edges L1 error
100 0.0103226
200 0.349447
300 0.499137
400 0.532747
500 0.439423
600 0.424821
700 0.424222
800 0.462328
900 0.434751

1,000 0.396056

5 PROJECTING 10-GAUSSIAN DATASET

This synthetic dataset is generated as described in section 5.1 in the paper. The projection results are shown in Figure 2.

6 PROJECTING THE ACTIVATION OF VGG-16 NETWORK

Dataset We use the same VGG dataset as in the paper but apply t-SNE , Equal-initialization t-SNE , and Dynamic

4

Online Submission ID: 1471

Fig. 1: Time cost of graphlet enumeration vs. random walk

Table 2: Quantitative measurement for projection fidelity

Datasets
Methods kNN preservation KL divergence

t-SNE ET DT JT t-SNE ET DT JT
5-Gaussian 0.30 0.30 0.32 0.34 1.00 1.00 1.05 1.03
10-Gaussian 0.19 0.19 0.16 0.23 1.62 1.62 1.69 1.69

MNIST 0.26 0.26 0.21 0.24 1.00 1.00 1.16 1.05
VGG 0.57 0.56 0.48 0.55 0.60 0.60 1.01 0.65

Table 3: Comparison of time performance between three methods

Datasets
Time(s)

t-SNE DT JT

5-Gaussian 74.67 142.35 187.10
10-Gaussian 924.87 1736.14 1506.24

MNIST 24.74 73.83 47.34
VGG 175.50 269.02 391.33

5

Fig. 2: Comparison of the 10-Gaussian dataset projection of four different t-SNE techniques. Both t-SNE and Equal-
initialized t-SNE failed in terms of maintaining visual consistency. For Dynamic t-SNE , the results seem more stable
than ours since Joint t-SNE focuses on preserving relative positions of points within a cluster. However, our result can
achieve smaller LCE than Dynamic t-SNE (Tables 10, 11, 12).

6

Online Submission ID: 1471

Fig. 3: The layer activation of 700 images of 10 classes in the VGG-16 network with different techniques excluding
Dynamic t-SNE .

7

t-SNE on the activation of the complete 22 layers(from input 1 to predictions). Note that we do not include the result
of Dynamic t-SNE since the optimization process of Dynamic t-SNE always collapsed.

Projection Parameters Different with the default hyperparameters, we use γ = λ = 0.01, perplexity = 50, k = 3.

7 QUANTITATIVE ANALYSIS

We report the projection fidelity and LCE of each dataset here. As we can see, in most cases, Joint t-SNE can achieve
better performance than other techniques.

Table 4: Projection fidelity for MNIST dataset

kNN preservation KL divergence
t-SNE ET DT JT t-SNE ET DT JT

t=0 0.59 0.59 0.49 0.59 0.52 0.52 0.98 0.52
t=1 0.54 0.54 0.47 0.52 0.67 0.68 1.03 0.78

Table 5: Projection fidelity for 5-Gaussian dataset

kNN preservation KL divergence
t-SNE ET DT JT t-SNE ET DT JT

t=0 0.32 0.32 0.32 0.32 1.37 1.37 1.37 1.37
t=1 0.29 0.30 0.33 0.34 0.94 0.94 0.98 0.97
t=2 0.28 0.29 0.33 0.36 0.77 0.77 0.83 0.82
t=3 0.29 0.30 0.29 0.33 0.92 0.92 1.00 0.96

Table 6: Projection fidelity for 10-Gaussian dataset

kNN preservation KL divergence
t-SNE ET DT JT t-SNE ET DT JT

t=1 0.21 0.21 0.21 0.21 2.51 2.51 2.51 2.51
t=3 0.30 0.30 0.21 0.25 1.97 1.97 2.00 1.99
t=6 0.16 0.16 0.14 0.24 1.19 1.19 1.27 1.31
t=9 0.09 0.09 0.09 0.22 0.80 0.80 0.96 0.94

8 GENERATION TO OTHER ALGORITHM

We take MDS as an example to illustrate how we adapt our concepts to other projection algorithms. In general, given
the two datasets, X0 and X1, we project X0 using conventional MDS as follows:

8

Online Submission ID: 1471

Table 7: Projection fidelity for VGG dataset

kNN preservation KL divergence
t-SNE ET DT JT t-SNE ET DT JT

Block5 conv 0.07 0.07 0.07 0.07 1.86 1.86 1.86 1.86
Block5 pool 0.19 0.19 0.17 0.16 1.36 1.37 1.48 1.44

fc1 0.33 0.34 0.25 0.31 0.69 0.68 0.85 0.69
fc2 0.38 0.38 0.27 0.36 0.44 0.44 0.73 0.47

Table 8: Local Coherence Error for MNIST dataset

cluster 0
t-SNE ET DT JT

t=1 15,951.53 6,710.96 5.80 190.42
Table 9: Local Coherence Error for 5-Gaussian dataset

cluster 0 cluster 4
t-SNE ET DT JT t-SNE ET DT JT

t=1 2,191.86 2,191.86 71.84 59.45 2,171.73 1,689.15 34.76 0.99
t=2 2,071.51 1,855.28 24.54 1.02 2,156.03 1,372.43 40.93 2.94
t=3 1,666.01 609.04 3.74 6.71 1,577.11 1,035.27 5.45 10.81

Table 10: Local Coherence Error for 10-Gaussian dataset cluster 0-2

cluster 0 cluster 1 cluster 2
t-SNE ET DT JT t-SNE ET DT JT t-SNE ET DT JT

t=3 9,356.08 8,908.52 104.96 6.55 8,225.19 12,243.68 145.37 6.93 10,204.24 9,268.73 216.66 5.78
t=6 8,249.52 8,418.65 377.32 149.21 7,501.15 11,270.48 631.11 83.35 16,751.15 8,862.76 653.47 213.60
t=9 963.51 1,721.81 129.69 34.90 1,718.50 1,017.45 180.75 53.23 1,758.04 1,173.45 178.06 77.22

Table 11: Local Coherence Error for 10-Gaussian dataset cluster 3-5

cluster 3 cluster 4 cluster 5
t-SNE ET DT JT t-SNE ET DT JT t-SNE ET DT JT

t=3 8,895.99 8,717.15 116.07 7.59 10,695.90 7,968.67 154.24 8.74 6,574.76 7,031.94 74.72 4.75
t=6 14,775.11 17,997.41 455.99 68.23 9,995.13 7,979.74 436.99 110.76 15,253.66 9,794.78 288.54 156.81
t=9 1,081.16 1,609.94 138.15 43.10 953.66 1,610.65 147.98 52.64 1,184.60 1,626.42 140.47 28.30

Table 12: Local Coherence Error for 10-Gaussian dataset cluster 6-9

cluster 6 cluster 7 cluster 8 cluster9
t-SNE ET DT JT t-SNE ET DT JT t-SNE ET DT JT t-SNE ET DT JT

t=3 7,898.10 3,366.97 104.62 13.58 8,168.68 8,088.39 282.02 6.57 5,600.47 9,199.76 156.18 8.03 7,636.47 6,230.19 60.93 4.37
t=6 13,038.54 8,114.85 405.79 113.20 13,788.25 10,576.47 448.83 84.80 7,743.68 11,524.66 407.80 92.80 15,501.99 16,298.55 425.48 178.98
t=9 1,926.53 571.13 154.38 54.23 1,780.14 439.04 158.13 31.51 1,426.32 1,041.62 136.56 58.07 2,327.76 1,986.31 185.13 73.20

9

argmin
Y0

C =
1

N2 ∑
i

∑
j

(∥∥x0
i − x0

j

∥∥−∥∥y0
i − y0

j

∥∥)2
(1)

For X1, we introduce vector constraints to the objective function as follows:

argmin
Y1

C =
1

N2 ∑
i

∑
j

(∥∥x1
i − x1

j

∥∥−∥∥y1
i − y1

j

∥∥)2
(2)

+
γ

M ∑
i 6= j

Sei j · ‖(y0
i − y0

j)− (y1
i − y1

j)‖2 (3)

where Sei j is the similarities of common edges computed based on GFD, M is the number of those common edges,
γ is the weight for vector constraints set by users.

10

	Introduction
	Algorithm Details
	Parameter settings
	Performance
	Projecting 10-Gaussian dataset
	Projecting the Activation of VGG-16 Network
	Quantitative analysis
	Generation to other algorithm

