
Pyramid-based Scatterplots Sampling for
Progressive and Streaming Data Visualization

Xin Chen, Jian Zhang, Chi-Wing Fu, Jean-Daniel Fekete, Yunhai Wang

(a) Original Scatterplot

(b) Density Map (c) Reservoir Sampling

9th frame

10th frame
(d) KD-tree based Sampling (e) Progressive Pyramid-based Sampling

9th frame

10th frame

9th frame

10th frame

LGA

JFK

West bank of the
Hudson River

Staten Island

Expressway
interstate 678

LGA

JFK

LGA

JFK

LGA

JFK

LGA

JFK

LGA

JFK

LGA

JFK

Fig. 1. Different sampling methods for presenting the “New York City TLC Trip Record” data with 2 million data points, which are
partitioned into chunks, each of 100k data points. (a) The opaque scatterplot is overlaid on the New York map and rendered as (b) a
transparent density map, where some major features are highlighted. (c,d,e) The top and bottom rows show the results of different
sampling methods in the 9th and 10th frames, respectively, where each result has around 1K points sampled from the original data
chunk. Comparing (c) reservoir sampling [28], (d) KD-tree-based sampling [10], and (e) our progressive pyramid-based sampling, we
can find our method more consistent in preserving high-density areas (see the LGA and JFK airports circled in green) and low-density
areas (see the Expressway interstate 678 labeled by a red rectangle), while maintaining the density difference between different regions
(see the Staten Island and the west bank of the Hudson River labeled by the purple and yellow dashed boxes).

Abstract—We present a pyramid-based scatterplot sampling technique to avoid overplotting and enable progressive and streaming
visualization of large data. Our technique is based on a multiresolution pyramid-based decomposition of the underlying density map
and makes use of the density values in the pyramid to guide the sampling at each scale for preserving the relative data densities
and outliers. We show that our technique is competitive in quality with state-of-the-art methods and runs faster by about an order of
magnitude. Also, we have adapted it to deliver progressive and streaming data visualization by processing the data in chunks and
updating the scatterplot areas with visible changes in the density map. A quantitative evaluation shows that our approach generates
stable and faithful progressive samples that are comparable to the state-of-the-art method in preserving relative densities and superior
to it in keeping outliers and stability when switching frames. We present two case studies that demonstrate the effectiveness of our
approach for exploring large data.

Index Terms—Scatterplots, sampling, pyramid, progressive visualization, streaming visualization, scalability, big data

• X. Chen, Y. Wang are with Shandong University. E-mail:
{chenxin199634,cloudseawang}@gmail.com .

• J. Zhang is with CNIC, CAS, China. E-mail: zhangjian@sccas.cn.
• C.-W. Fu is with Dept. of Computer Science and Engineering, The Chinese

University of Hong Kong, Hong Kong, China. E-mail:
cwfu@cse.cuhk.edu.hk

• J.-D. Fekete is with University Paris-Saclay, CNRS, Inria, LISN, France.
E-mail: Jean-Daniel.Fekete@inria.fr

• Y. Wang is the corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

1 INTRODUCTION

Visualization systems should have low latency to maintain the user’s
attention, and therefore to support effective data exploration. As data
continues to grow in size, progressive visualization has emerged as a
promising paradigm to control latency. By partitioning data into chunks,
we can transfer data chunks and render a visualization step-by-step over
a limited bandwidth channel, allowing analysts to explore intermediate
results with a controlled latency. By doing so, computational scalability
is ensured for big data visualization. This paradigm is similar to stream-
ing data visualization [13], where the data is continuously generated
and the visualization is incrementally updated.

Point-based visualizations are commonly used for showing various
forms of data such as bivariate data, multidimensional projections, and
points over a map; we refer to them as scatterplots for convenience.
However, such scatterplots might not work effectively because, for

{chenxin199634, cloudseawang}@gmail.com
zhangjian@sccas.cn
cwfu@cse.cuhk.edu.hk
Jean-Daniel.Fekete@inria.fr

large data, they suffer from the overplotting issue, i.e., as the data
density increases, the number of visual marks overlapping increases as
well, thus decreasing the readability of the visualization. Even small
data with non-uniform distributions suffer from this issue, limiting the
perceptual scalability of scatterplots. In contrast, continuous density
fields bypass this issue and can effectively reveal patterns in high-
density regions. However, patterns in low-density regions (e.g., outliers)
can become less visible [9, 10]. For example, the region labeled by the
purple dashed box is void in Fig. 1(b), but it has a few points in the
original scatterplot (see Fig. 1(a)).

Several approaches have been proposed to reduce overplotting in
scatterplots, among which sampling is widely used. By carefully choos-
ing a subset of the data for display, well-designed sampling methods [5]
can faithfully maintain the visual perception of relative data densities
and outliers. Some recent methods [9, 10] further attempt to preserve
the relative class densities in multi-class scatterplots. All these meth-
ods, however, assume that the whole data is preloaded into memory,
and thus they may not work well for progressive visualization, where
the scatterplots are incrementally updated with new data coming. For
example, the sampling results of successive frames generated by a
KD-tree-based method [10] might not be temporally coherent; see the
yellow lasso regions in the two frames shown in Fig. 1(d). Though
the classic reservoir sampling [30] can select a fixed size of random
samples from a data stream while preserving temporal coherence, it
inherits the drawback of uniform random sampling that it misses the
outliers in low-density regions; see the red box in Fig. 1(c).

In this article, we present a new sampling approach for visualizing
scatterplots based on a density map pyramid. Our method is faster than
the previous methods and is also enhanced to work in a progressive
and streaming manner to remain interactive even when applied to very
large datasets. In line with the design guidelines of visual sampling [6],
progressive visualization [41], and streaming visualization [22], our ap-
proach is formulated based on the following three design requirements:

(i) DR1: maintaining the relative data densities and outliers on par
with the state-of-the-art approaches [9, 10];

(ii) DR2: being sufficiently efficient to generate successive visualiza-
tion frames under human latency limits [29]; and

(iii) DR3: preserving temporal coherence between successive visual-
ization frames while capturing the data characteristics.

We first describe a static version of our approach and then a pro-
gressive and streaming version. Our approach is based on a pyramid
representation [39] of the density map obtained from an input scat-
terplot, where each scale is sub-sampled to half the width and height
of the previous scale. With this representation, the sampling at each
level is first performed individually on each local region and then re-
fined between adjacent regions of different parents in the pyramid to
further meet DR1. Compared to the state-of-the-art KD-tree-based
sampling [10], our pyramid-based sampling not only better preserves
local characteristics in low-density regions (the red box in Figs. 1(d,e))
but also runs faster by about an order of magnitude.

For progressive and streaming visualization, in which the data is
processed incrementally in chunks, we gradually update the sampled
results with each updated density map while preserving the temporal
coherence. Like the static pyramid-based sampling, the incremental
update has two steps: it works first on each local region, then on
adjacent regions to fix them. Both steps are performed level by level in
the pyramid. In doing so, the temporal coherence between successive
visualizations can be better preserved; see an example in Fig. 1(e).

We evaluate our static approach using 40 large datasets and quan-
titatively compare the quality and computation time with the existing
methods. The results show that our method is comparable to the state-
of-the-art sampling methods in preserving relative data density and
outliers while running about an order of magnitude faster than them.
Further, we evaluate our progressive/streaming sampling by comparing
its results to the ones of the reservoir and our static sampling. Our code
is available on GitHub 1. The main contributions of this work are:

• We develop a pyramid-based scatterplot sampling approach that

1https://github.com/ChenXin360104/ProgressiveWaveletSampling

preserves the relative data densities and outliers; it runs an order
of magnitude faster and has good quality, as the state-of-the-arts.

• Beyond the existing methods, we can adapt our method for pro-
gressiveness and streaming, making it even faster while maintain-
ing the temporal coherence between successive frames; and

• We quantitatively evaluate our sampling results and present two
case studies that highlight the usefulness of our approach.

2 RELATED WORK

Our method relates to scatterplot sampling, as well as streaming and
progressive visualizations. Below, we discuss these areas.

2.1 Scatterplot Sampling
Various approaches [19] have been proposed to address overplot in
scatterplots, among which sampling is widely used. Sampling aims to
faithfully represent the original data by carefully selecting a subset of
the data for display. The simplest scheme is random sampling [15, 18],
which treats all data points equally. However, it loses important data
patterns (e.g., outliers) in low-density regions. To address this issue,
a few perception-driven methods have been proposed for preserving
various data characteristics such as density [24, 32], and outliers [5,
9, 10]. Recently, Yuan et al. [47] conducted an empirical evaluation
of seven representative methods and provided guidance for selecting
methods to use in different applications.

Among the existing perception-driven sampling methods, recursive-
subdivision-based sampling [10] is the most relevant to our work. It
proposes a customized KD-tree method for guiding multi-class scatter-
plot sampling, which explicitly characterizes the relative data densities,
relative class densities, and major outliers. This method is as efficient
as the above single-class sampling methods but performs best in bal-
ancing between the relative data densities and outliers. However, its
customized KD-tree structure has to be built from the root to determine
the split axes; doing so is not only very costly but also likely unstable to
changes in the data. Thus, this method may not be applicable to stream-
ing or progressive scenarios. In contrast, our proposed pyramid-based
sampling method is much faster and allows local updates to preserve
temporal coherence between successive frames.

So far, almost all existing sampling methods in visualization [47]
assume that the whole data can fit into the memory, which might not
be true for the analysis of massive amounts of data. In a similar vein,
Provost et al. [35] propose progressive sampling for training a model
that uses progressively larger samples until the model accuracy no
longer improves. Because of its efficiency, progressive sampling has
been used lately for association rules discovery [33], deduplication
indexing [17], and mining of frequent items [36].

2.2 Streaming and Progressive Visualization
Streaming data is a continuous flow of data generated from various
sources [1]. Visualizing it usually consists of collecting values in a
sliding window of the data (e.g., the last second or minute), visualizing
it, and iteratively collecting the data in the next time window and visu-
alizing it again, frame by frame as an animation (the sliding windows
of two adjacent frames can overlap). So a streaming scatterplot shows
all the points in the last time window and forgets all the old ones.

Progressive data is generated when e.g., loading a file progressively
through a slow network [45]. The points arrive chunk by chunk depend-
ing on the loading speed until the whole file has arrived. Each time
a new chunk is loaded, the visualization can be updated to reflect the
portion of the whole data that has been loaded. Contrary to streaming
data, the past is not forgotten and the future is not infinite. Still, the
visualization appears and improves frame by frame.

Streaming data visualization has recently gained a lot of attention.
Gansner et al. [23] proposed combining the node-link diagram with a
map metaphor for incrementally visualizing text streams in real-time.
Tanahashi et al. [42] presented an efficient storyline generation algo-
rithm from streaming data that uses the layouts of previous steps to
position the incoming data points for preserving temporal coherence.
Crnovrsanin et al. [12] developed an incremental layout algorithm for
visualizing online dynamic graphs. Fujiwara et al. [22] extended an

https://github.com/ChenXin360104/ProgressiveWaveletSampling

incremental PCA [38] for visualizing streaming multidimensional data.
All these techniques share the characteristic [13] that the streaming visu-
alization needs to be updated with the incoming data while maintaining
the temporal coherence.

Like streaming visualization, progressive visualizations also need
to deliver intermediate results with low latency to allow analysts to
better control the exploration process [20]. Although the intermediate
results might not be accurate, several user studies [4, 21, 48] demon-
strated that progressive visualizations show comparable performance
to instantaneous ones in insight generation and perform better than
the blocking ones. Stolper et al. [41] further show that they can be
efficiently combined with visual analytics and propose progressive
visual analytics (PVA). To provide design guidelines for developers,
Schulz et al. [40] introduce an incremental visualization model with
partitioned data and visualization operators for facilitating intermediate
visualization updates. Angelini et al. [2] systematically characterize the
requirements, benefits, and challenges of PVA systems, and Micallef
et al. [31] further characterize PVA users in terms of their roles, tasks,
and focus of analysis.

Several progressive systems and algorithms have been designed
recently using high-dimensional projections visualized with density
maps [20, 25, 27, 34, 44]. However, to the best of our knowledge, there
are no progressive sampling approaches designed for scatterplots that
satisfy the requirements of progressive and streaming visualization, and
our approach fills this gap.

3 PRELIMINARY

The goal of scatterplot sampling is to simulate the density distribution
of the input data in a display with a limited number of visual pixels.
In this section, we define the basic elements used in the design of our
approach to achieving this goal. These include three maps (density
map, visibility map, and assignment map) and three ratios (density
ratio, visibility ratio, and assignment ratio). Before describing them,
we denote data samples as the input samples from the original data in
the scatterplot and display samples as the ones assigned to different
regions for showing in the final scatterplot.

Maps. For a scatterplot to be shown on a given display, we define:

Density map D: R2→ R, where D(x) is the number of data samples
located at pixel x.

Visibility map V : R2→{0,1}, where V (x) is 0 if D(x) is zero, and 1
otherwise. It records whether a density map pixel is empty.

Assignment map A: R2→ N. It records the number of samples that
have been assigned to each region to eventually generate the
display samples of our scatterplot sampling.

Our method first constructs D and V from the input data and then
determines the assignment counts in A based on the algorithm in Sect. 4
to produce the final sampled scatterplot.

Ratios. Given two regions ΩA and ΩB of the same area on the display,
the data density ratio between them is defined as:

δ (ΩA,ΩB) =
∑x∈ΩA

D(x)
∑x∈ΩB

D(x)
.

Also, we can define the visibility ratio ν with visibility map V and the
assignment ratio α with assignment map A using a similar formulation
(δ stands for density, ν for visibility, and α for assignment). So, to
preserve relative densities, α(ΩA,ΩB) of the assignment map should be
close to δ (ΩA,ΩB) of the density map. However, simply enforcing this
constraint would make most outliers disappear in the final scatterplot
because, for outliers located in low-density regions, the assignment
ratios of low- to high-density regions would become nearly zero ac-
cording to the constraint. Since there is no clear definition of an outlier
in scatterplots, we preserve outliers by requiring the assignment ratio
α(ΩA,ΩB) in low-density regions to maintain a good balance between
the density ratio δ (ΩA,ΩB) and the visibility ratio ν(ΩA,ΩB) in the

final scatterplot. The reason is that the visibility map emphasizes the
outliers by treating all the visible pixels equally.

Map Pyramid. We use a pyramid representation for maps D, V , and
A. For a 2D map M, its pyramid representation is a sequence of maps
{Mi}n−1

i=0 , where Mi−1 is a lower-resolution version of Mi [37]. So,
the finest level of the assignment map is similar to a visibility map, in
which each pixel value is either zero or one. Yet, the assignment map
is for display samples, whereas the visibility map is for data samples.
There are multiple types of pyramids. We choose to use a simple one
based on non-overlapping 2×2 blocks of pixels [39].

Given a 2n by 2n density map M, the pyramid G is built by re-
cursively subdividing the map into four quadrants, similar to a com-
plete quad-tree construction where each non-leaf node is the sum of
its four children nodes. Doing so, we can construct a set of maps
GM = {M0, . . . ,Mn−1}, where Mn−1 corresponds to input map M and
M0 is the sum of all values in Mn−1.

4 PROGRESSIVE SCATTERPLOT SAMPLING

After loading a data chunk from the source (e.g., files in a local hard disk
or server), our progressive sampling first builds two pyramids from the
input density and visibility maps, followed by a static pyramid-based
sampling to produce an assignment map that records if a pixel becomes
a display sample. For the first data chunk, we directly select the display
samples using the assignment map. For subsequent data chunks, we
need to first detect the changed regions by comparing the pyramid
coefficients of the latest density map with the previous one. For regions
with enough changes, we need to update and re-select their display
samples. Once the display samples are chosen, the sample selection of
the current chunk is complete; we can perform the rendering (of the
changed regions only) and then proceed to process the next data chunk.

From an input density map D, we first build the pyramids GD and
GV based on D and its visibility map V , respectively. In the following,
we will describe the detail of the two major stages of our approach,
i.e., pyramid-based sampling and incremental update, and discuss the
parameters and their influence.

4.1 Pyramid-based Sampling

Fig. 2 shows the pipeline of our pyramid-based sampling. Once pyra-
mids GD and GV are built, a pyramid-based sampling is performed
in a hierarchical way to generate an assignment map Ai at each level.
To fulfill DR1, we need to identify outliers in the input data, yet the
definition of an outlier can be ambiguous. Since low-density regions
are often regarded as outliers [8], we sidestep this issue by classifying
regions into high- and low-density and placing samples into regions of
different densities using different strategies.

We initialize A0 as the total number of pixels in V ; this number is
essentially the sample budget, the upper bound on the number of display
samples filled in the assignment map. Hence, the goal of the top-down
sampling process is to distribute this number over the four subregions
recursively, while preserving the relative data densities and outliers.
Starting from the top-level, i.e., A0, we classify the four subregions of
A1 into high- and low-density regions, assign samples to each of these
regions with different objectives, and then refine the assignment map
to further maintain the density ratios between each pair of adjacent
regions. This top-down process iteratively refines the assignment maps,
such that the number of assigned display samples gradually decreases
for preserving the relative densities. The user can specify a certain level
(called stopLevel) to stop this procedure and directly assign the present
sample budget to subregions until the last level based on the visibility
ratios. As outlined in Algorithm 1, the sampling at each level involves
four major components: region classification, bilateral assignment,
direct assignment, and sampling refinement. With the final assignment
map, we obtain the final sampling result by randomly choosing one
data sample for each grid cell.

Region Classification. For each region at level i in pyramid GD, we
compute the density ratios among its four subregion nodes as follows.
Suppose the density values in these subregions are {d1,d2,d3,d4}, the

(a) (b)

20 46

28
5 1
2 6 2

1

4
1

3
1 2
1

2 14
2119

3

118
110

7

35 23 357
72 107 61 36 1054

29 44
15

42 27 4
2

60
4026

(c) (e)

1
1

1

1
1 1 11 1

11 11
1

1

0
0
0 00 0

0

0

0
0

1 0

0 0
0

0 0 0

00
00
0
0

0 0

0 0 0 00

0 0 00

0 0 00

0
0

0
0
0
0
0 0
1

0

(d) Assignment map A

1
2 3 01

1 01
2

4

0

0

0 0
0

3

2 3
316

47
Pyramid GD

Pyramid GV

1 1

1
1 1
1 1
1 1

1 1

1

1

1 1
1

1
1

11
1
1
11 1

1 1 11
1 1 11 11

11 1 1 1
1

1
11 111

Density map D

Visibility map V

4
4 4 14

4 24
4

4

3

1

0 3
1

4
8 13

101647

72
114170 142

21 314
27

260

7

2

0 6
8

192

939
736117

35 51

...

...

Fig. 2. Overall pipeline of our static pyramid-based sampling: (a) the input map D and its corresponding visibility map V ; (b) pyramids GD and GV
constructed from D and V , respectively; (c) the pyramid-based sampling process that fuses GD (upper) and GV (lower) level by level to assign the
sample budget to the next level assignment map [A0, ...,An−1] (middle), where the last level of GD and GV equal D and V , respectively; (d) the final
assignment map A = An−1; and (e) the visualization with randomly selected samples based on A.

Algorithm 1 Pyramid-based sampling
Input: density map D, visibility map V , and map size 2l ×2l

Output: assignment map A

function PYRAMID-BASED SAMPLING(D, V , l)
[GD,GV] = construct one pyramid for D and another for V
A0 = V 0

i = 0
while i <l−1 do

for each node j in V i do
if i <stopLevel then

[Rhigh , Rlow] = ClassifyRegions(GD, j)
AssignToHighDensityRegions(Ai, GD, GV , Rhigh)
if Rlow exists then

AssignToLowDensityRegions(Ai, GD, GV , Rhigh, Rlow)
end if

else
AssignDirectly(Ai, GD, GV)

end if
end for
if i >0 then

RefineBoundary(Ai+1, GD, GV)
end if
i++

end while
return Al−1

end function

density ratio δk for the kth subregion is defined as
δk = dk/max

j
d j ∈ [0,1]. (1)

If φk is smaller than a threshold (say λ), the corresponding region is
regarded as a low-density region; otherwise, it is a high-density region.
In our experiment, we set λ to 0.1, indicating that the density value of
dense regions is 10 times larger than that of sparse regions.

Bilateral Assignment. To address the discrepancy between the number
of data samples and the number of visible pixels, we need to choose
a proper number of display samples for each region to preserve the
relative densities and outliers. Based on the region classification, we
fulfill DR1 by assigning the sample budget to high- and low-density
regions using two different strategies. For a high-density region Ωh, we
aim to preserve its data density ratio with the adjacent regions as much

1647 16 3

(a) (b)

16 3

5

47 16 10

8 13

736 117

35 51

939

(c)

16 3

2 3

Fig. 3. Illustrating the bilateral assignment process for high- and low-
density regions. (a) The density map (left) and visibility map (right) at
the root whose four subregions in the density map are classified as high
density (in orange) and low density (in blue); (b) two steps to assign
the sample budget to high-density subregions: first the subregion with
the largest density, then the other high-density subregion(s) based on
the density ratio; (c) two steps to assign sample budget to low-density
subregions: count the number of display samples in the whole region,
then allocate it to each low-density subregion based on the visibility ratio.

as possible (i.e., the assignment ratio should be close to the associated
data density ratio), while for low-density regions Ωl , we aim to preserve
the outliers in the final scatterplot (i.e., the associated assignment counts
should not be always zero to keep some of the outliers).

Suppose we work with the jth region at the ith level, we assign the
sample budget first to its high-density children nodes in four steps:

1. Find the kth subregion with the maximal density among its four
children subregions (nodes);

2. Compute the number of display samples ak for the kth subregion;
3. Compute the sampling ratio η = ak/dk; and
4. Compute the number of display samples for the other high-density

regions by multiplying their data densities dh(h 6= k) by η .
In step 2, ak is obtained by allocating Ai

j in terms of visible pixels:

ak = ceil(Ai
j ∗V i+1

k /V i
j). (2)

where V i
j is the number of visible pixels in the corresponding region

of the jth subregion at level i. Namely, the proportion of assignment
for the largest density is based on the visibility map and the rest is
proportionally sized by the density map. In doing so, the relative data
density is preserved while respecting the sample budget as much as
possible. Fig. 3(b) shows a running example.

After the sample assignment is done for the high-density regions
Ωh, we count the number of display samples assigned to Ωh, say Ai+1

h ,
and then deal with low-density regions Ωl . To balance the density ratio
and outliers in low-density regions, we first compute the density ratio
δ (Ωl ,Ωh) between Ωl and Ωh. Likewise, we compute the visibility
ratio ν(Ωl ,Ωh). Then, we find a proper number of samples to assign to

(a)

(b)

(c)

87

4

106

3

10401218

44224953

42

4

46

1

6464

6464

9

1

11

1

55

2021

2

1

3

1

1213

2324

Density
Map

Visibility
Map

Without
Refinement

With
Refinement

1482

680

1072

518

24031714

36542633

64

64

64

64

6464

6464

15

15

15

15

6464

6464

30

15

30

15

4949

6464

Density
Map

Visibility
Map

Without
Refinement

With
Refinement

Fig. 4. Illustrating the sampling refinement process that repairs the assignment map to alleviate the blocking artifacts. (a) The input scatterplot (top)
made up of two Gaussians and its transparent visualization (bottom); (b,c) Results generated with different stopLevel : 5 for Case (i) shown in (b)
and 9 for Case (ii) shown in (c). From left to right: the sampled scatterplots generated without refinement (left), the maps related to the highlighted
regions (middle), and the scatterplots after the refinement (right), in which the blocking artifacts are almost removed. The red bold lines indicate the
boundary between subregions of different parents, whereas the orange backgrounds indicate the subregions involved in the refinement.

Ωl , say Ai+1
l , by minimizing the following objective:

argmin
Ai+1

l

[
(1−ω)

(
α−δ (Ωl ,Ωh)

)2
+ω

(
α−ν(Ωl ,Ωh)

)2]
, (3)

where α = Ai+1
l /Ai+1

h and ω is the weight between these two terms.
Setting the derivative of Equation 3 with respect to Ai+1

l to zero
yields the following solution:

Ai+1
l = Ai+1

h ×
(
(1−ω)δ (Ωl ,Ωh)+ων(Ωl ,Ωh)

)
, (4)

where ω controls how much we want to preserve the data density ratio.
Putting ω to 0 solely keeps the high-density regions, so all outliers will
disappear. Setting it to 1 keeps all the outliers but will heavily destroy
the relative density, and overplotting will persist since too many data
samples will be kept. In our experiment, ω is empirically set to 0.2 by
default to put more emphasis on preserving the data density ratio. We
then allocate the samples into each region in proportion to the number
of non-empty pixels in V i+1, like 8 and 13 in Fig. 3(a).

Direct Assignment. If the current level is higher than the given stop-
Level, we perform a direct assignment for each subregion in this level,
where the sample budget is kept during the assignment. Thus, we can
adjust the details of high levels and control the number of points in the
final result. For the jth subregion at level i, we conduct the assignment
in two steps. We first sort its four subregions at level i+1 in descending
order of the data density ratio δ

i+1
k . Based on the ordering, we assign

the number of display samples to the kth subregion as
Ai+1

k = min(ceil(Ai
j ∗V i+1

k /V i
j),r) (5)

where r is the number of unassigned display samples. At last, r is zero
and the total sum of display samples assigned to the four subregions
equals Ai

j, ensuring no loss in display samples after the assignment.

Sampling Refinement. Applying different sample assignment strate-
gies to different kinds of regions might destroy the relative densities
among the boundary regions and introduces blocking artifacts in the
final sampling results; see Figs. 4(b,c). After carefully examining the
results, we found that these artifacts are caused by the discontinuity
between adjacent regions with different parents in the pyramid. To
alleviate this issue while avoiding large computational overhead, we
propose to refine the assignment map Ai by requiring every pair of
adjacent regions of different parents at each level in the tree to preserve
the relative data densities as much as possible.

Suppose two adjacent subregions of different parents at level i are
l and h, where the density value Di

l of l is smaller than the density
value Di

h of h. There are two possible cases that violate the data density

ratios: (i) Di
l

Di
h
>

Ai
l

Ai
h

and (ii) (Di
h−Di

l)(A
i
h−Ai

l)< 0. Case (i) is caused
by the direct assignment, which respects the visibility ratio of each
local region, whereas case (ii) is caused by the bilateral assignment

for the two different kinds of regions. In both cases, Ai
l and Ai

h need
to be fixed. Figs. 4(b,c) show an example for each case, where the
scatterplot is generated with different stopLevel values. The maps of the
highlighted regions in Fig. 4(b) indicate that the density ratios between
two adjacent regions become larger in the assignment map, for example,
the ratio 1072/1714≈ 0.625 is changed to 15/64≈ 0.234. In contrast,
the relative density is changed in the opposite manner as in Fig. 4(c),
for example, the ratio 106/1218≈ 0.087 is changed to 11/5 = 2.2.

For case (i), we re-allocate the total samples ns = Ai
h +Ai

l in these
two regions in proportion to the data densities:

Ai
h = Di

h
ns

Di
h +Di

l
. (6)

In doing so, the number of assigned display samples in the other (low-
density) regions is ns−Ai

h.
For case (ii), we re-allocate the total samples in these two regions

by balancing density ratio δ (Ωl ,Ωh) and visibility ratio ν(Ωl ,Ωh). By
formulating this goal with Equation 3 and differentiating it, we obtain
the number of samples nh assigned to the high-density region Ai

h:

nh =
ns

(1−ω)
Di

l+Di
h

Di
h

+ω
V i

l +V i
h

V i
h

. (7)

where ns is the total number of samples Ai
h +Ai

l . Once nh is obtained,
we set Ai

l to ns−nh.
As shown on the left of Fig. 4(c), the assignment map generated after

the refinement better preserves the density ratios. Since the refinement
in the coarse level will diffuse to subsequent levels in the pyramid-
based sampling process, the artifact can almost be removed in the final
sampling result (see the right of Fig. 4(c)).

Time Complexity. As shown in Algorithm 1, the time complexity of
our method depends only on the size of the density map n = 2l × 2l .
The level of the pyramid is therefore l and we need to classify each
node (subregion), and then assign and refine the sample budget for each
node at each level. Overall, the time complexity of our method is O(n)
ignoring the construction time of the density map.

4.2 Incremental Update
When the first data chunk is loaded, we produce the first assignment
map A with the static pyramid-based sampling presented in Sect. 4.1.
Since A is an approximation of the density map, we need to incremen-
tally update it for each newly arriving data chunk. Given D̄ as the latest
density map associated with all the data chunks that have arrived so far,
we generate a new assignment map Ā by performing a static pyramid-
based sampling on D̄. Then, we detect the regions from pyramid GA
whose relative densities are changed in GD̄ level by level and update
these regions in A with the values in Ā. Finally, we further refine the
updated A to ensure the relative data densities between the updated

1
1 1

10 0

010

11
10 01

0

1
1 1

10 0

000

11
11 11

1

2 3
33

11

20 46

28

3557
72 107 6154

29 79
15

4290
4061

184200
260192

836

(a)

1
1 1

10 0

010

11
10 11

0

Density map D
_

Assignment map A
_

Assignment map A

1
1 1

10 0

010

11
10 11

1

1
1 1

10 0

010

11
10 11

1

2 3
33

11

Assignment map A

(b)
Updated A Updated A

(c)

Fig. 5. Illustrating the incremental update process using the top-left
4× 4 region in Fig. 2 (d). Our method updates the assignment map
for a new data chunk in three steps: (a) update density map D̄, where
the values of three purple cells are changed from 44, 60, and 26 to 79,
90, and 61, and then compute a new assignment map Ā; (b) perform a
local region update by identifying the changed subregions against the
previous assignment map A highlighted in red and updating these regions
with the corresponding values in Ā; and (c) perform an adjacent region
refinement , where the cell with the dashed black border in assignment
map A is changed and its value is further updated with the one in Ā.
regions and their adjacent ones are preserved, during which the regions
to be changed are also detected level by level. Fig. 5 illustrates these
three steps with the 4×4 region on the top left of Fig. 2(d), where the
regions to be updated in A are highlighted in red. In the following, we
describe the last two steps in detail.

Local Region Update. Given A and D̄, we compute two pyramids for
them and detect the regions with the changed relative densities from
coarse level to fine level. For every region at the ith level, we check if
the density ratio in Ai has a large difference from the one in D̄i. Suppose
the node index is j at the (i−1)-th level, and Ai−1

j and D̄i−1
j are both

nonzero, the density ratio difference is defined as

µ
i−1
j =

1
4

4

∑
k=1

∣∣Ai
4 j+k

Ai−1
j
−

D̄i
4 j+k

D̄i−1
j

∣∣. (8)

If µ
i−1
j is larger than a given threshold ε , we regard node j at the

(i−1)-th level as “changed” and stop checking its descendant regions
in finer levels. For the node, if Ai−1

j or D̄i−1
j becomes zero, we also

label its region as “changed.” Once the finest level is done, we update
all these changed regions in A with the values in Ā.

Adjacent Region Refinement. The first step individually refines each
local region, so it might not preserve the relative densities between
adjacent regions, resulting in visible artifacts. Like the sampling re-
finement step in the static sampling, we also further check whether the
updated regions and their adjacent regions respect the corresponding
data density ratio in D̄. With the updated A, we re-compute the pyramid
again and then find the adjacent regions that need to be further updated
from the coarse to fine levels.

Suppose the changed region j and its adjacent region k are at level i,
we compute the density ratio difference µ in Ai and D̄i as

µ =
∣∣Ai

j

Ai
k
−

D̄i
j

D̄i
k

∣∣. (9)

We mark the adjacent region as “changed” if µ is larger than threshold

ε , and stop checking its descendant regions in finer levels. Like local
region update, we refine all changed regions in A with the values in Ā.

As shown in Fig. 5(a), the arriving data chunk produces three
changed regions in the latest density map D̄ highlighted in purple.
Then, the bottom left region in the second level of the assignment map
is labeled as “changed” and then all its subregions in the finer level
are updated in Fig. 5(b). Last, the subregion with the black border in
Fig. 5(c) is further updated by the adjacent region refinement.

4.3 Parameter Analysis

All the parameters we describe below affect the quality and stability
of the sampling, but they can be changed at any time in an interactive
environment so the user can tune them according to the data at hand
for producing the desired results. More discussions about the influence
of parameter choices can be found in the supplemental material.

Density threshold λ & Outlier weight ω . These two parameters
jointly affect the number of outliers to be preserved. Parameter λ

determines which regions are classified as low density and weight ω

determines how many data points in low-density regions we want to
keep. As shown in Fig. 6, a large λ leads to more sparse regions (see
the orange boxes in Fig. 6(a,b,c)) and a large ω preserves more data
points in low- and medium-density regions (see the orange and red
boxes in Fig. 6(d,b,e)). When λ and ω are both large, more outliers are
preserved, whereas the relative densities may not be correct in some
regions. In our experiments, we set them to 0.1 and 0.2, respectively.

StopLevel. Parameter stopLevel determines the level of details to
preserve, thus affecting the number of samples to keep. As shown in
Fig. 6(b,g,h), a small stopLevel leads to more details in low-density
regions and more samples, while a large stopLevel reduces the number
of samples to preserve the relative densities in fine level. We suggest
setting it to the last level by default and automatically search one level
as stopLevel where the corresponding total sum of display samples is
close to the number of samples specified by users.

Ratio threshold ε . Parameter ε influences the temporal coherence
between successive visualizations; see Fig. 7. A large ε tends to keep
more samples selected from the previous frames and helps to maintain
stability, but might not reflect the relative data densities in the latest
frame. In contrast, a low ε better preserves the relative data density but
may introduce large changes on the display samples. We empirically
set it to 0.25, which works well for most tested data.

5 EVALUATION

We implemented our method in C++ and tested it on a PC with an Intel
Core i5-4590 3.3GHz CPU and 24GB memory. To confirm that our
method can meet our three design requirements (DR1, DR2, and DR3),
we performed two quantitative comparisons with the state-of-the-art
methods in two settings of static sampling and progressive sampling.
Also, we conducted two case studies to demonstrate the effectiveness
of our method on real datasets. The full evaluation results, including
the screenshots and the corresponding scores of different metrics for
each dataset, can be found in the supplemental material.

5.1 Comparative Evaluation of Static Sampling

We compare the sampling results produced from various methods in
terms of sampling quality and runtime performance, in which all the
scatterplots are displayed in 1600×900 pixels.

Methods. We compare our method with seven sampling methods: ran-
dom sampling (RS), blue noise sampling (BNS) [11], density-based
sampling (DBS) [32], non-uniform sampling (NUS) [5], outlier biased
density-based sampling (OBDBS) [46], multi-view z-order sampling
(MVZS) [24], and KD-tree-based sampling (KBS) [10]. Though KBS
and MVZS are designed for multi-class sampling, we use them on
single-class data without multi-class constraints. For all methods, we
use the Python implementations provided by Yuan et al. [47] for com-
paring the sampling quality. We set the parameters of our method to be
λ = 0.1, ω = 0.2, and stopLevel to the last level, and then adjust the

(b) λ = 0.1, ω = 0.2, stopLevel = 9 (c) λ = 0.2, ω = 0.2, stopLevel = 9 (g) λ = 0.1, ω = 0.2, stopLevel = 6

(f) λ = 0.4, ω = 0.4, stopLevel = 9 (h) λ = 0.1, ω = 0.2, stopLevel = 3(e) λ = 0.1, ω = 0.4, stopLevel = 9(d) λ = 0.1, ω = 0, stopLevel = 9

(a) λ = 0, ω = 0.2, stopLevel = 9
PDDr: 0.915 ESRr: 0.376 PDDr: 0.918 ESRr: 0.292 PDDr: 0.916 ESRr: 0.253 PDDr: 0.938 ESRr: 0.285

PDDr: 0.902 ESRr: 0.099PDDr: 0.915 ESRr: 0.351 PDDr: 0.914 ESRr: 0.247 PDDr: 0.888 ESRr: 0.094

Fig. 6. Parameter analysis on the Person Activity dataset [16] with the associated PDDr and ESRr scores (see Section 5). The orange dashed
boxes and red dashed circles represent typical low- and medium-density regions, respectively. (a,b,c) A large λ results in more regions classified as
low-density regions; (d,b,e) a large ω results in more display samples in low-density regions; (f) when λ and ω are both large, almost all low-density
regions in the original scatterplot are kept but the data density ratios cannot be maintained; (b,g,h) decreasing stopLevel introduces more display
samples; outliers in low-density regions can be shown more clearly but overplotting will have resulted.

(a) ε = 0

(b) ε = 0.25

Fig. 7. The scatterplots of the 7th and 8th frames under different ε. The
red circles show that larger ε can help prevent unnecessary changes of
display samples in low-density regions.

parameters of other methods to generate similar numbers of samples.
The details can be found in the supplemental material.

Datasets. For a comprehensive evaluation, we collected 40 datasets
with substantial variations in data distributions and data size ranged
from 4K to 2M. Among them, 12 synthetic datasets were generated
by mixing Gaussian distributions and a uniform distribution, and 28
real datasets were collected from the UCI data repository [16] and
Kaggle [26]. The details can be found in the supplemental material.

Metrics. We employ two numerical measures proposed by Bertini and
Santucci [5]: Perceived Data Densities ratio (PDDr) and Erased Sample
Regions ratio (ESRr), both based on the division of the pixel display
into a set of non-overlapping, equal-sized regions. PDDr measures how
much the density ratio is preserved for each pair of regions:

PDDr =
∑i ∑ j<i χi jσ(sgn(D(Ωi)−D(Ω j)),sgn(A(Ωi)−A(Ω j)))

∑i ∑ j<i χi j
, (10)

where χi j = D(Ωi)+D(Ω j) (number of data samples in regions Ωi and
Ω j), sgn(v) is a sign function, and σ(v1,v2) returns one if v1 equals v2,
otherwise zero. The range of PDDr is [0,1] and a large value indicates
better preservation of relative data densities.

ESRr measures the proportion of lost outliers in low-density areas
by computing the ratio of void regions caused by the sampling:

ESRr =
∑i σ(A(Ωi),0)

N
, (11)

where N is the number of non-empty regions in the original scatter-
plot. ESRr also ranges [0,1] but a small value indicates better outlier
preservation. We set the size of the region Ω to 40×40 pixels.

(a) Perceived Data Densities ratio

(b) Erased Sample Regions ratio
0.0

0.6

0.4

0.8

1.0

0.2

0.6

0.4

10-3

10-2

10-1

(c) Execution Time (sec)
10,000 1,000,000100,000

1

10-3

10-2

10-1

(d) Number of Points v.s. Execution Time

log log

1

BNSNUS KBSOurs RS OBDBS MVZSDBS

Fig. 8. Results of quantitative comparison. (a,b) These violin plots
summarize the values of PDDr (a) and ESRr (b) over all the tested
datasets, where a larger PDDr score is better and a smaller ESRr score
is better; (c) the violin plot shows the log-scale computational times
of three most efficient methods with C++ implementations tested over
all the datasets; and (d) the curves show the relationship between the
execution time (running the sampling procedure) and the data size of
different methods by using synthetic datasets.

Results. Screenshots of the original scatterplots and sampled results
generated by all methods on various datasets with complete scores can
be found in the supplemental material. The violin plots in Figs. 8(a,b)
summarize the PDDr and ESRr scores of each method on all datasets.

Fig. 8(a) shows that PDDr of our method is very close to those of
RS, KBS, DBS, BNS, and MVZS. OBDBS is slightly worse than our
method, while NUS is the worst. In contrast, NUS performs better than
the other methods in ESRr, while our method is ranked as the second,
as shown in Fig. 8(b). Though NUS has the lowest ESRr, our method
outperforms it in PDDr clearly. This result confirms that our method

balances well the preservation of relative data densities and outliers.

Runtime. We only implemented KBS and NUS in C++ for a fair
runtime comparison, since the other methods involve expensive com-
putation and are slower as shown in previous work [10]. Fig. 8(c)
summarizes the execution time of all tested datasets for KBS, NUS,
and our method. We can see from the violin plot that our method is
faster than NUS and even more than ten times faster than KBS on
average. Fewer outliers and lower variance indicate that the runtime of
our method is rather stable, regardless of the data set size.

To further examine the time performance of our method, we gen-
erated a set of synthetic data with a gradually increasing number of
data samples. Fig. 8(d) plots the execution time for running different
sampling methods on these datasets. We can see that our method is
twice faster than NUS and around ten times faster than KBS for the
data with more than 100k points. The reason for the almost constant
running time of our method is that its time complexity depends only
on the resolution of the density map. Note that we did not take into
account the pre-processing time such as computing the density map.

5.2 Comparative Evaluation of Progressive Sampling
Competitive analysis [7] is a widely-used approach for evaluating online
algorithms, by comparing the performance with an equivalent offline
algorithm. In our progressive setting, users will rely on intermediate
results to make early decisions and thus we measure the performance
of each frame, following the practice in Jo et al. [25].

Method. We conducted a competitive analysis of the progressive
version (ε = 0.25) and the static version (without incremental update)
of our method, and the reservoir sampling method [28]. Our method
uses the same parameter settings as the one in the first experiment.

Data. To learn how our method works in practice, we use two datasets
activity and census, which have different characteristics as shown in
Table 1. For activity and census, their partitioned chunk sizes are 10,000
and 100,000, respectively.

Dataset # points # samples chunk size variance

activity 164,860 ∼ 5,500 10,000 high
census 2,000,000 ∼ 2,100 100,000 low

Table 1. Datasets employed in the competitive analysis.

Measures. We hypothesized that the progressive version is more stable
than others since there should be fewer changed samples. Thus, we
further compute the number of changed points (NCP) between every
pair of consecutive frames, besides PDDr and ESRr. For each frame,
the PDDr and ESRr scores are based on the comparison between the
assignment map and the density map of the whole data.

Results. Figs. 9(a,b) show the NCP values for each frame of these two
datasets. In the first frame, all points are newly added and thus its NCP
is the highest. Later, all methods quickly converge to stable values but
the NCP values of our progressive are smaller than the others. Because
of the large density variation, all the methods show more fluctuations
on the activity dataset, whereas our progressive method is the most
stable. We conclude that our progressive version is more stable than
the static version and the reservoir sampling.

Figs. 9(c,d) show the PDDr scores of each frame of these two
datasets, which have different performances. The PDDr scores of
the three methods in the activity dataset gradually increase to a value
of 0.96. Although the scores of our progressive methods are less than
reservoir sampling at the beginning, they quickly converge to simi-
lar values. In contrast, the scores of the three methods on the census
dataset are quite stable in all frames. After examining the data and each
sampling result, we found that each data chunk contains similar spatial
distribution. Since all scores of our progressive method are around 0.9,
it is still good enough to preserve relative data densities.

Figs. 9(e,f) show the ESRr scores of each frame of these two datasets.
We can see that our progressive method performs the best, followed by
our static method, while reservoir sampling is the worst. The reason
for our progressive method performing better than the static method is

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1200

2400

3600

4800

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

activity census
static progressive reservoir

(b)(a)

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0.33

0.36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.12

0.15

0.18

0.21

0.24

0.27

0.3

0.33

0.36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(d)(c)

(f)(e)

NCP

PDDr

ESRr

Fig. 9. These line charts show how the number of changed points (a,b),
PDDr (c,d), and ESRr (e,f) evolve over iterations for loading the two tested
datasets (activity and census) for sampling by the three methods being
compared: static and progressive versions of our method vs. reservoir
sampling. Our progressive method is the most stable and makes a good
balance between preserving relative data densities and outliers.

that its incremental update step pays more attention to the regions with
significant data density changes, thereby encouraging the retention of
outliers in low-density regions. Conversely, the static method updates
the whole density map and might lose some outliers for better balancing
the preservation of relative density and outliers. In this configuration, by
chance, retaining the outliers produced a slightly better result transiently.
Moreover, the difference in ESRr between our progressive method and
reservoir sampling gradually increases to 0.12 for the activity dataset,
while the difference almost stays the same (0.11) for the census dataset.
Thus, we conclude that our progressive method also maintains a good
balance between preserving relative data densities and outliers.

Runtime. Regarding the time performance, our progressive method is
similar to our static method but a bit slower than the reservoir sampling.
The average runtime of our method and reservoir sampling for the two
datasets are 0.024s vs. 0.013s and 0.15s vs. 0.13s; yet, our method is
sufficiently fast for supporting interactive analysis.

Based on the results of the three measures and time performance,
we can conclude that our method well satisfies the three design require-
ments (DR1-DR3) for progressive visualization of large scatterplots.

5.3 Case studies
We conducted case studies with two real-world datasets about astro-
physics and stock prices, corresponding to the two settings of progres-
sive and streaming visualizations, respectively. Note that the density
map is accumulative in progressive visualization, and it is based on the
data within the current time window in streaming visualization.

Hertzsprung Russell diagram. Astronomers often study stellar evo-
lution by exploring the relationship between the star temperature and
observed luminosity using scatterplots; such plots are commonly re-
ferred to as the Hertzsprung-Russell diagram [14]. Here, we used a
subset of the Gaia Data Release 2 [43] collected by the European Sci-
ence Agency. The subset contains 1,322,033 stars within 200 parsecs
from The Sun; two typical attributes of the stars are luminosity and
temperature. Fig. 10(a) shows the input scatterplot (top) and the associ-
ated density map (bottom); each pair of the overlaid red and green lines
corresponds to an unresolved binary system of two identical stars [3].

By partitioning the data into chunks, each of 100,000 stars,
Figs. 10(b,c) show four frames in progressive visualization generated
by reservoir sampling and by our method with stopLevel = 6 (10 for
the total), respectively. From the 8th frame, the patterns highlighted in

1st 8th 9th 14th
(b) Reservoir sampling

1st

Visibility map

8th 9th 14th
(c) Our approach(a) Input

Density map

Fig. 10. Progressive sampling on the Gaia Data Release 2. (a) the scatterplot of the input data (top) and the density map (bottom); (b,c) the results
of the intermediate frames generated by reservoir sampling (b) and our method (c).

(a) (b)
-30%

0 1,000,000500,000 750,000250,000

-20%

-10%

30%

0%

10%

20%

-30%
0 1,000,000500,000 750,000250,000

-20%

-10%

30%

0%

10%

20%

(c) (d)
-30%

0 1,000,000500,000 750,000250,000

-20%

-10%

30%

0%

10%

20%

-30%
0 1,000,000500,000 750,000250,000

-20%

-10%

30%

0%

10%

20%

Fig. 11. Scatterplots that show the relationship between stock volume
(horizontal) and stock percentage change (vertical) for two different time
ranges: before the Sep. 11 attacks (left column) and the whole Sep.
2001 (right column). (a,b) the overplotted scatterplots of the original
data; and (c,d) streaming visualization results of our method from (a,b),
showing that our method can produce faithful visualizations.

Fig. 10(c) gradually become clear. Among them, the patterns in the pur-
ple and yellow boxes have similar structures as the ones at the bottom
of Fig. 10(a), while the outliers in the red circle are better preserved.
In contrast, all these structures cannot be clearly revealed in Fig. 10(b).
Compared to the 8th and 9th frames, the number of changed points in
both methods is small. Overall, our method can preserve relative data
densities and outliers well, while maintaining the temporal coherence.

Since reservoir sampling is not designed for progressive visualiza-
tion, we admit that the comparison is not entirely fair, given that our
method supports progressive visualization. Yet, we would like to high-
light that no progressive visualization methods have been designed for
scatterplots sampling.

Stock Prices. We used the historical stock market datasets from Kag-
gle [26] from Jan. 1, 1996 to Aug. 7, 2020, and explored the rela-
tionship between the stock volume and stock percentage change. To
simulate the setting of streaming data visualization, we set the time
step as one day and the time window as 30 days. In doing so, our
method loads the data chunk containing records of the next day for the
incremental update while discarding the records of the day one month
earlier. To reveal the major patterns, we remove the data items with
a stock volume larger than 1 million or with stock percentage change
larger than 30%.

To see how the Sep. 11 attacks affected the stock market, we com-

pared two scatterplots (see Figs. 11(a,b)) generated from the dataset
for two different time-ranges: (i) from Aug. 11, 2001, to Sep. 10, 2001
(see Fig. 11(a)) and (ii) the whole Sep. 2001 (see Fig. 11(b)). We
can see that the stock percentage change has much larger variations in
Fig. 11(b) than the ones shown in Fig. 11(a) and more points with neg-
ative stock changes can be observed than those with positive changes.
Based on these observations, we see that the Sep. 11 attacks resulted in
a negative effect and many stocks show large fluctuations. However, the
streaming sampling results in Figs. 11(c,d) shows that the major trend
is almost preserved in both ranges. Further comparing the samples in
the red boxes reveals more samples with negative stock change and
large volumes in Sep. 2001. After checking the density maps shown in
the supplemental material, we conclude that our streaming sampling
method produces faithful visualizations.

6 CONCLUSION

In this article, we proposed a scatterplot sampling method based on a
pyramid-based decomposition of the density map for progressive and
streaming data visualizations. In the static setting, it can perform simi-
larly to state-of-the-art methods in maintaining relative densities and
preserving outliers but it is faster. Based on a pyramid representation of
the density map, our progressive sampling is achieved by first perform-
ing a local region-based sampling, then a refinement between adjacent
regions and an incremental update for progressive and streaming visu-
alization. The quantitative evaluation and case studies demonstrate the
effectiveness of our method for exploring large and streaming data.

Our approach still has some limitations. First, our bilateral assign-
ment may still produce blocking artifacts; we will develop a smooth
nonlinear function to alleviate this issue. Second, it is hard to find
proper parameters (λ , ω , and stopLevel) showing meaningful patterns,
while improper ones might lead to bad visualizations. For example,
the PDDr scores in Figs. 6(f,g) are 0.888 and 0.938, while the ESRr
scores in Figs. 6(a,f) are 0.376 and 0.094. In the future, we will explore
automatic methods for setting such parameters for better balancing the
preservation of relative data densities and outliers. Last, we plan to
conduct a user study as Yuan et al. [47] for investigating how our results
align with human perception in both static and progressive settings. In
the future, we will extend our approach to deal with multi-class datasets.

ACKNOWLEDGMENTS
This work is supported by the grants of the NSFC (61772315,
61861136012), the Open Project Program of State Key Labora-
tory of Virtual Reality Technology and Systems, Beihang University
(No.VRLAB2020C08), and the CAS grant (GJHZ1862).

REFERENCES

[1] T. Akidau, S. Chernyak, and R. Lax. Streaming Systems: The What, Where,
When, and How of Large-Scale Data Processing. O’Reilly Media, Inc.,
2018.

[2] M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz. A Review and
Characterization of Progressive Visual Analytics. Informatics, 5(3):31,
2018. doi: 10.3390/informatics5030031

[3] C. Babusiaux, F. van Leeuwen, M. Barstow, C. Jordi, A. Vallenari,
D. Bossini, A. Bressan, T. Cantat-Gaudin, M. Van Leeuwen, A. Brown,
et al. Gaia Data Release 2 - Observational Hertzsprung-Russell dia-
grams. Astronomy & Astrophysics, 616:A10, 2018. doi: 10.1051/0004
-6361/201832843

[4] S. K. Badam, N. Elmqvist, and J.-D. Fekete. Steering the Craft: UI
Elements and Visualizations for Supporting Progressive Visual Analytics.
In Computer Graphics Forum, vol. 36, pp. 491–502. Wiley Online Library,
2017. doi: 10.1111/cgf.13205

[5] E. Bertini and G. Santucci. By Chance is Not Enough: Preserving Relative
Density through Nonuniform Sampling. In Proceedings of the Interna-
tional Conference on Information Visualisation, pp. 622–629, 2004. doi:
10.1109/IV.2004.1320207

[6] E. Bertini and G. Santucci. Give Chance a Chance: Modeling Density to
Enhance Scatter Plot Quality through Random Data Sampling. Information
Visualization, 5(2):95–110, 2006. doi: 10.1057/palgrave.ivs.9500122

[7] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analy-
sis. Cambridge University Press, 2005.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying
Density-Based Local Outliers. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, vol. 29, p. 93104.
Association for Computing Machinery, New York, NY, USA, May 2000.
doi: 10.1145/335191.335388

[9] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-L.
Ma. Visual Abstraction and Exploration of Multi-class Scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014. doi: 10.1109/TVCG.2014.2346594

[10] X. Chen, T. Ge, J. Zhang, B. Chen, C.-W. Fu, O. Deussen, and Y. Wang.
A Recursive Subdivision Technique for Sampling Multi-class Scatterplots.
IEEE Transactions on Visualization and Computer Graphics, 26(1):729–
738, Jan 2020. doi: 10.1109/TVCG.2019.2934541

[11] R. L. Cook. Stochastic Sampling in Computer Graphics. ACM Transac-
tions on Graphics, 5(1):51–72, 1986. doi: 10.1145/7529.8927

[12] T. Crnovrsanin, J. Chu, and K.-L. Ma. An Incremental Layout Method for
Visualizing Online Dynamic Graphs. Journal of Graph Algorithms and
Applications, 21(1):55–80, 2017. doi: 10.1007/978-3-319-27261-0 2

[13] A. Dasgupta, D. L. Arendt, L. R. Franklin, P. C. Wong, and K. A. Cook.
Human Factors in Streaming Data Analysis: Challenges and Opportunities
for Information Visualization. In Computer Graphics Forum, vol. 37, pp.
254–272. Wiley Online Library, 2018. doi: 10.1111/cgf.13264

[14] C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht. Mass loss
rates in the Hertzsprung-Russell diagram. Astronomy and Astrophysics
Supplement Series, 72:259–289, 1988.

[15] A. Dix and G. Ellis. By Chance Enhancing Interaction with Large Data
Sets through Statistical Sampling. In Proceedings of the International
Conference on Information Visualisation, pp. 167–176. ACM, 2002. doi:
10.1145/1556262.1556289

[16] D. Dua and C. Graff. UCI Machine Learning Repository. https://
archive.ics.uci.edu/ml, 2017.

[17] P. Efstathopoulos, F. Guo, and D. Shah. Progressive sampling for dedupli-
cation indexing, Nov. 13 2012. US Patent 8,311,964.

[18] G. Ellis and A. Dix. Density Control Through Random Sampling: an Ar-
chitectural Perspective. In Proceedings of the International Conference on
Information Visualisation, pp. 82–90, 2002. doi: 10.1109/IV.2002.1028760

[19] G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for Information
Visualisation. IEEE Transactions on Visualization and Computer Graphics,
13(6):1216–1223, 2007. doi: 10.1109/TVCG.2007.70535

[20] J.-D. Fekete and R. Primet. Progressive Analytics: A Computation
Paradigm for Exploratory Data Analysis. arXiv preprint arXiv:1607.05162,
2016.

[21] D. Fisher, I. Popov, S. Drucker, and M. Schraefel. Trust Me, Im Partially
Right: Incremental Visualization Lets Analysts Explore Large Datasets
Faster. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1673–1682, 2012. doi: 10.1145/2207676.2208294

[22] T. Fujiwara, J.-K. Chou, S. Shilpika, P. Xu, L. Ren, and K.-L. Ma. An
Incremental Dimensionality Reduction Method for Visualizing Streaming
Multidimensional Data. IEEE Transactions on Visualization and Computer
Graphics, 26(1):418–428, 2019. doi: 10.1109/TVCG.2019.2934433

[23] E. R. Gansner, Y. Hu, and S. North. Interactive Visualization of Stream-
ing Text Data with Dynamic Maps. Journal of Graph Algorithms and
Applications, 17(4):515–540. doi: 10.7155/JGAA.00302

[24] R. Hu, T. Sha, O. van Kaick, O. Deussen, and H. Huang. Data Sampling in
Multi-view and Multi-class Scatterplots via Set Cover Optimization. IEEE
Transactions on Visualization and Computer Graphics, 26(1):739–748,
2019. doi: 10.1109/TVCG.2019.2934799

[25] J. Jo, J. Seo, and J.-D. Fekete. PANENE: A Progressive Algorithm for
Indexing and Querying Approximate k-Nearest Neighbors. IEEE Transac-
tions on Visualization and Computer Graphics, 26(2):1347–1360, 2020.
doi: 10.1109/TVCG.2018.2869149

[26] Kaggle Inc. Kaggle. https://www.kaggle.com/.
[27] J. K. Li and K.-L. Ma. P5: Portable Progressive Parallel Processing

Pipelines for Interactive Data Analysis and Visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 26(1):1151–1160, 2019.
doi: 10.1109/TVCG.2019.2934537

[28] K.-H. Li. Reservoir-Sampling Algorithms of Time Complexity O(n(1 +
log(N/n))). ACM Transactions on Mathematical Software, 20(4):481–493,
1994. doi: 10.1145/198429.198435

[29] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory
Visual Analysis. IEEE Transactions on Visualization and Computer Graph-
ics, 20(12):2122–2131, 2014. doi: 10.1109/TVCG.2014.2346452

[30] A. I. McLeod and D. R. Bellhouse. A Convenient Algorithm for Drawing
a Simple Random Sample. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 32(2):182–184, 1983. doi: 10.2307/2347297

[31] L. Micallef, H.-J. Schulz, M. Angelini, M. Aupetit, R. Chang, J. Kohlham-
mer, A. Perer, and G. Santucci. The Human User in Progressive Visual
Analytics. In EuroVis (Short Papers), pp. 19–23, 2019. doi: 10.2312/evs.
20191164

[32] C. R. Palmer and C. Faloutsos. Density Biased Sampling: An Improved
Method for Data Mining and Clustering. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 82–92,
2000. doi: 10.1145/335191.335384

[33] S. Parthasarathy. Efficient Progressive Sampling for Association Rules.
In Proceedings of IEEE International Conference on Data Mining, pp.
354–361. IEEE, 2002. doi: 10.1109/ICDM.2002.1183923

[34] N. Pezzotti, B. Lelieveldt, L. van Der Maaten, T. Höllt, E. Eisemann, and
A. Vilanova. Approximated and User Steerable tSNE for Progressive
Visual Analytics. IEEE Transactions on Visualization and Computer
Graphics, 23(7):1739–1752, 2016. doi: 10.1109/TVCG.2016.2570755

[35] F. Provost, D. Jensen, and T. Oates. Efficient Progressive Sampling.
In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 23–32, 1999. doi: 10.1145/
312129.312188

[36] M. Riondato and E. Upfal. Mining Frequent Itemsets through Progressive
Sampling with Rademacher Averages. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1005–1014, 2015. doi: 10.1145/2783258.2783265

[37] A. Rosenfeld. Multiresolution Image Processing and Analysis, vol. 12.
Springer Science & Business Media, 2013.

[38] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental Learning
for Robust Visual Tracking. International journal of computer vision,
77(1-3):125–141, 2008. doi: 10.1007/s11263-007-0075-7

[39] H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM
Computing Surveys, 16(2):187–260, 1984. doi: 10.1145/356924.356930

[40] H.-J. Schulz, M. Angelini, G. Santucci, and H. Schumann. An Enhanced
Visualization Process Model for Incremental Visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 22(7):1830–1842, 2015.
doi: 10.1109/TVCG.2015.2462356

[41] C. D. Stolper, A. Perer, and D. Gotz. Progressive Visual Analytics: User-
Driven Visual Exploration of In-Progress Analytics. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1653–1662, 2014. doi:
10.1109/TVCG.2014.2346574

[42] Y. Tanahashi, C.-H. Hsueh, and K.-L. Ma. An Efficient Framework for
Generating Storyline Visualizations from Streaming Data. IEEE Transac-
tions on Visualization and Computer Graphics, 21(6):730–742, 2015. doi:
10.1109/TVCG.2015.2392771

https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.3390/informatics5030031
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1051/0004-6361/201832843
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1109/IV.2004.1320207
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1057/palgrave.ivs.9500122
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2014.2346594
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1109/TVCG.2019.2934541
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1007/978-3-319-27261-0_2
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1111/cgf.13264
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://doi.org/10.1145/1556262.1556289
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/IV.2002.1028760
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1109/TVCG.2007.70535
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1145/2207676.2208294
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.7155/JGAA.00302
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2019.2934799
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://doi.org/10.1109/TVCG.2018.2869149
https://www.kaggle.com/
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2307/2347297
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.2312/evs.20191164
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1145/335191.335384
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/ICDM.2002.1183923
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/312129.312188
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1145/2783258.2783265
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1007/s11263-007-0075-7
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1145/356924.356930
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2015.2462356
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771
https://doi.org/10.1109/TVCG.2015.2392771

[43] G. Team. Gaia Data Release 2 - Summary of the Contents and Survey
Properties. Astronomy & Astrophysics, 616:id.A1, Aug. 2018. doi: 10.
1051/0004-6361/201833051

[44] C. Turkay, P. Filzmoser, and H. Hauser. Brushing Dimensions - A Dual
Visual Analysis Model for High-Dimensional Data. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2591–2599, 2011. doi:
10.1109/TVCG.2011.178

[45] C. Turkay, N. Pezzotti, C. Binnig, H. Strobelt, B. Hammer, D. A. Keim,
J.-D. Fekete, T. Palpanas, Y. Wang, and F. Rusu. Progressive Data Science:
Potential and Challenges. arXiv preprint arXiv:1812.08032, 2018.

[46] S. Xiang, X. Ye, J. Xia, J. Wu, Y. Chen, and S. Liu. Interactive Correction
of Mislabeled Training Data. In Proceedings of the IEEE Conference
on Visual Analytics Science and Technology, pp. 57–68, 2019. doi: 10.
1109/VAST47406.2019.8986943

[47] J. Yuan, S. Xiang, J. Xia, L. Yu, and S. Liu. Evaluation of Sampling Meth-
ods for Scatterplots. IEEE Transactions on Visualization and Computer
Graphics, 27(2):1720–1730, 2021. doi: 10.1109/TVCG.2020.3030432

[48] E. Zgraggen, A. Galakatos, A. Crotty, J.-D. Fekete, and T. Kraska. How
Progressive Visualizations Affect Exploratory Analysis. IEEE Transac-
tions on Visualization and Computer Graphics, 23(8):1977–1987, 2016.
doi: 10.1109/TVCG.2016.2607714

https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/TVCG.2011.178
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/VAST47406.2019.8986943
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2020.3030432
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2016.2607714

	Introduction
	Related Work
	Scatterplot Sampling
	Streaming and Progressive Visualization

	Preliminary
	Progressive Scatterplot Sampling
	Pyramid-based Sampling
	Incremental Update
	Parameter Analysis

	Evaluation
	Comparative Evaluation of Static Sampling
	Comparative Evaluation of Progressive Sampling
	Case studies

	Conclusion

