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(a) Original (https://xkcd.com/2122/)

(b) Reconstructed using our method (c) Well-matched result using our method

Fig. 1: Venn diagrams are often used to highlight complex interactions of sets. This example from xkcd . com shows which adjectives
can be used in combination (a). Using our method, we can recreate this manually created Venn diagram (b). Here, the diagram
contains empty intersection. In these cases, Euler diagrams (c) provide a more faithful representation of the data.

Abstract—Creating comprehensible visualizations of highly overlapping set-typed data is a challenging task due to its complexity. To
facilitate insights into set connectivity and to leverage semantic relations between intersections, we propose a fast two-step layout
technique for Euler diagrams that are both well-matched and well-formed. Our method conforms to established form guidelines for
Euler diagrams regarding semantics, aesthetics, and readability. First, we establish an initial ordering of the data, which we then use
to incrementally create a planar, connected, and monotone dual graph representation. In the next step, the graph is transformed
into a circular layout that maintains the semantics and yields simple Euler diagrams with smooth curves. When the data cannot be
represented by simple diagrams, our algorithm always falls back to a solution that is not well-formed but still well-matched, whereas
previous methods often fail to produce expected results. We show the usefulness of our method for visualizing set-typed data using
examples from text analysis and infographics. Furthermore, we discuss the characteristics of our approach and evaluate our method

against state-of-the-art methods.

Index Terms—Euler diagrams, Venn diagrams, set visualization, layout algorithm

1 INTRODUCTION

Set-typed data is ubiquitous across many different research areas, such
as multi-label classification [47] in machine learning, RNA and DNA
sequencing [[13}{1933]] in computational biology, and topic modeling [6]
in natural language processing. There are two prominent methods to
visualize set relations. Venn diagrams [45]] show all possible relations
between sets. In contrast, Euler diagrams [|15] only depict non-empty
relations. When visualizing this kind of data, typical set-related tasks
are the number of datapoints per set or overlap between sets. To
facilitate these tasks, many special-purpose visualizations have been
developed [_2]. Still, traditional Venn and Euler diagrams remain an
essential tool for showing set intersections because they are easy to

read, familiar to most users, and can incorporate data points directly.

As such, they are often part of larger systems, such as UpSet [23)]].
Due to their combinatorial nature, the construction of Venn diagrams
is straightforward. However, automatically creating Euler diagrams
of high quality remains a challenging task, in particular for highly
intersecting datasets. An Euler diagram should only include relations

that are present in the data and avoid introducing superfluous areas.

Further, the diagram should be monotone [5]. We call Euler diagrams
that adhere to these properties semantics-preserving. In[Section 2} we
provide a formal description of these characteristics. These do not
confuse users with empty intersections, and it increases readability as
similar intersections are placed close to each other. An example result
of our method and the impact of the above-mentioned properties is
shown in[Fig. 1c| The Euler diagram on the right has lost the symmetry

of the Venn diagram but represents the data faithfully.

First, we introduce and formalize the properties of Euler diagrams.
Next, we propose a two-step algorithm for constructing such diagrams
efficiently. The first step computes the Euler dual, a graph represen-
tation of the diagram. The second step creates the Euler diagram ,
whose curves follow guidelines [5] for creating intuitive Euler dia-
grams. We show the usefulness and characteristics of our algorithm
on three examples from different domains and compare our method to
previous work. In summary, the main contributions of this paper are:

* SPEULER, a novel method for constructing semantics-preserving
Euler diagrams that yield fast and reliable results.

» Extensive analysis of existing construction methods and how
they relate to properties of the Euler diagrams.

* Three examples from different domains that show the character-
istics and potential of our approach.

* An extensive evaluation based on established guidelines of Euler
diagrams and direct comparison to state-of-the-art methods.

2 CHARACTERISTICS OF EULER DIAGRAMS

Before we go into the previous work that is related to our method, we
want to introduce important properties and concepts of Euler diagrams
that will help to understand the subsequent sections. Formally, an Euler
diagram is a set of smooth, closed Jordan curves that represent the
different sets [11]]. Together, these curves comprise various areas in the



drawing that represent the intersections of the sets. All set relations that
exist in the data can be described by #fstract description-a list of

the existing intersections. Euler diagrams can exhibit several different
properties that directly in uence their appearance and effectiveness
in visualizing information. The two most important properties are
well-formedness and well-matchedness, as de ned by Chow [11].

Properties An Euler diagram isvell-formed, if it is simple(i.e. at
most, two curves meet at any given point and there is no concurrency),
and exactly &ingle curveepresents each set. Imell-matchedEuler
diagram, all intersections are correctly represented, thereby retaining (a) well-matched (b) well-formed and well-matched
the semantics from the original data: each intersection is represented
only once, and the diagram does not contain areas of intersections that
are not part of the abstract description. Alsallakh et al. [2] discuss dif-
ferent properties of algorithms for Euler diagrams and their connection
to well-formedness. However, there is no such discussion for the well-
matchedness and the interplay between both properties, which plays a
big role in the effectiveness of the diagram [18]. The two properties are
visualized in Fig. 2, which shows a Venn diagram with 4 curves and
their 16 intersections. We use uppercase letters to refer to a curve or all (c) Euler dual of (a) (d) Euler dual of (b)
nodes that participate in a set, and lowercase letters to refer to speci ¢
intersections, which are faces (also calmmhe in the diagram. We Fig. 2: (a) A well-matched diagram and (b) an additionally well-formed
will revisit this simple example throughout the next sections to hefjagram. Well-matched diagrams may exhibit concurrent curves and
showcase our method. Fig. 2 shows the visual differences of adherfigjnts where more than two curves intersect, e.g., the intersection of
to only one or both of these two properties for the same data. Ea&iifvesABCD. On the other hand, well-formed diagrams do not have
zone is marked with its respective intersection. As can be observedhigse problems and only have pairwise intersections,A8y.(c) and
Fig. 2a, all four curves intersect on the lower-left corner, resulting fi§l) show the ranked-based duals for (a) and (b). The concurrency
concurrent lines. By creating a well-matched and well-formed diagraf¥rfaces as faceBCDin (c). The well-formed diagram instead only
this can be avoided (Fig. 2b). It is important to note that many abstr&gntains faces with 4 surrounding links. We will explain the impact of
descriptions exist, for which both properties cannot be satis ed at tHais in Section 5.
same time, requiring a trade-off. However, as analyzed by Chow [11],
itis currently not possible to infer for a given abstract description if it is
possible to maintain both properties. If a trade-off has to be made, W& General Set Visualization
adhere to the guidance of the work by Chapman et al. [9], which con- . . . .
cludes that users prefer well-matched diagrams over well-formed O,é‘gernatlve approaches to visualize set-typed data are matrix and

As aresult, in these cases, our algorithm always produces We”_matclﬁgregation-bas”ed technic}lues_, s(lj“]fh asi UpSet [23] cl)r RadialSeés [1]
diagrams while minimizing the violations of well-formedness. ese are usually very well suited for element and element attribute
tasks. However, they can be verbose to show all set relations at once

when the data is complex.

Euler Dual A key concept that frequently shows up in construction  For spatial data, such as maps, there are also techniques that focus
algorithms is modeling the Euler diagram as a graph. Instead of thinkigg highlighting the connections between sets, such as BubbleSets [12]
about the Euler diagram as a set of curves, it can be modeled diregifyKelpFusion [27]. Most methods are not able to directly encode
as an edge-labeled graph, called Ender graph In this representation, information of the original data points in a uni ed visualization. For this
each intersection of the curves is represented by a node, and e@gR, Vienn and Euler diagrams are especially well suited and therefore
curve segment is represented by a link, labeled with the respectiy@/e been combined with glyphs [28], and graphs [31, 39]. Finally,
curve of the underlying original Euler diagram. Instead of creating thycobsen et al. [21] propose using the metro map metaphor to visualize
Euler diagram directly from the data using curves, it is also possibigt relations in their MetroSets technique. The visualization can show
to indirectly create it by constructing tHeuler dual of the Euler individual data points for each set relation, and the layout can be ne-

graph. Each node in the Euler dual represents a face of the Euler graghed according to different optimization strategies.
and neighboring zones are represented by linked nodes in the Euler

dual. However, in theory, all nodes that differ by one set could g2 Constructing Venn and Euler Diagrams

linked in the dual—a graph that contains all possible links is therefO{/e di | h I ible set relati ith giff
called thesuper dual Therank of a node in the Euler dual equals the enn diagrams always snow all possibie set relations, with many ditter-

number of sets participating in that intersection. We can nd an order&Jlt Methods for their construction [3, 14, 34,37, 45]. Euler diagrams
£ more exible in this regard, but many construction algorithms are

representation of the Euler dual by grouping all nodes of the dual tHat: ; oo :
have the same rank. The resulting graph isrtiré-based Euler dual imited to speci ¢ abstract descriptions and might produce unexpected
ults [11, 16, 29, 35, 41].

Fig. 2c and Fig. 2d show the respective rank-based duals of Fig. 2a af nductive methods construct diagrams by adding one curve at a time.

Fig. 2b—the non-pairwise intersection of Fig. 2a is equal to the fa . X ; .
ABCDin Fig. 2c. In comparison, all the faces of Fig. 2d are quads— nn himself proposed an inductive method to create Q|agrams_for any
will explain what this means for the diagram in Section 5. amount of curves. Edwards Iate_r proposed an alte_rnatlve inductive con-
struction method that creates diagrams by projecting the curves onto a
sphere [14]. This method always creates diagrams that are well-formed
3 RELATED WORK and well-matched. However, for a larger number of sets, the result
becomes hard to understand as the area of new zones becomes smaller
Many set visualization approaches have been proposed in the pasd. smaller. Other methods focus on the creation of simple, convex
Good starting points are the survey of Venn diagrams by Ruskey aviehn diagrams, e.g., Mamakani et al. [25], which are aesthetically more
Weston [38], or Rodgers [34], who focuses on Euler diagrams. Alspleasing. Ruskey et al. [37] use a general Venn construction method to
lakh et al. [2] offer a comprehensive survey of set visualizations aadhalyze methods that create symmetric Venn diagrams. nVenn [32], a
group the techniques based on their best-suited tasks: Element tagkently developed area-preserving Euler-like visualization technique,
set relation tasks, and element attributes tasks. allows users to get a compact overview, even for larger set counts. They
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Table 1: Details of different construction methods for any amount of curves and their properties.

Method Construction Any well- Well- Monotonicity ~ simple Duplicate  Non-pairwise
relation matched  formed curves intersections
SCD [37]/ nVenn [32] Euler dual yes no no yes no no yes
Stapleton [43]/ Rodgers [36] direct yes no no yes yes yes no
Venn [45] direct yes no yes yes yes no no
Edwards [14] direct yes no yes yes yes no no
vennEuler [48] direct no no yes yes yes no no
eulerr [22] direct no no yes yes yes no no
Chow-Ruskey [10] Euler dual yes yes no yes no no yes
Simonetto [42] Intersection graph yes yes no yes yes yes no
MetroSets [21] hypergraph yes yes no no - - yes
Flower [16,17] Euler dual no yes yes yes yes yes no
Our method Euler dual no yes yes yes yes yes no

*Note: The authors only provide a rough sketch of their method.

use a conventional Venn construction algorithm [37] as its initial layoutreation of Euler diagrams of any amount of curves that are both well-

and adapts it using a force-directed optimization. It heavily relies anatched and well-formed. Flower et al. [16] propose an initial sketch

the initial positioning and parameters of the force-directed strategy.of a solution but do not propose a general implementation. They resort
If the given dataset does not cover all possible set relations, Velfhheuristics to create solutions for less than 5 curves. There are two

diagrams produce additional (unwanted) zones, and the diagraningin differences between our algorithm and the approach by Flower et

not well-matched. For diagrams that are not well-matched, theredik [16]: They do not use the rank-based dual as an intermediate, and

a discrepancy between the semantically correct representation oftift@y cannot fall back to a sub-optimal solution when no well-formed

abstract description and the visualization. Oftentimes, this problemaigd well-matched result exists.

solved using shading to mark such additional faces [43,45]. In any case,

this encodes unnecessary information that the reader has to proces8.3A Evaluation of Euler Diagrams

solution to this mismatch is well-matched Euler diagrams. . . . .

. . mentioned previously, the properties of Euler diagrams can be

By design, f.“e‘hOdS that create El.”er diagrams are usually Wagigerally divided into well-matched and well-formed diagrams. How-

matched. Their drawback, however, is that they often cannot m

t bout th theti f the di . thei r, there are many more properties that in uence the semantics (e.qg.,
any guarantee about the aesinetics of the diagrams, 1.€., their W otonicity) and the aesthetics (e.g., shape, color, and symmetry). A
formedness. Results might contain crossings, concurrent curves,

non-smooth shapes. To alleviate this problem, Stapleton et al. | eral overview is given by Blake et al. [5], which introduces different

d an inducti thod t t ; 15 d Eul idelines that good Euler diagrams should adhere to. They directly
proposed an inductive method to create (semi) well-formed Euler fiy, e real-word examples with adapted diagrams, which follow
agrams using circles. Such diagrams weaken the constraints of

; ; r proposed guidelines. Comparing both, such diagrams improve
well-formedness and allow curve labels to be used multiple imes. {30 comprehension. However, it is still unknown which of the guides
current hindrance in the application of Euler dlagrams is that mast ht have a larger impact, and how they might in uence each other.
methods only produce expected results for certain datasets. Users y

: . re are several studies that analyze the readability of well-matched
not know beforehand which method will produce well-formed or welizq "o tormed diagrams [9,46]. Chapman et al. [9] compare various
matched diagrams or if it will produce a valid result at all. Existin !

imol tati tten fail silently without produci It pes of set diagrams and found that linear diagrams outperform all
Implementations often fall siently without producing any résufts Ofiher methods, followed by unshaded Euler diagrams. They explain

create unwanted zones without communicating this to the user.  ,qi vogyits by the well-matchedness of those approaches, combined
Itis challenging to create a well-formed and well-matched diagraiith well-formedness as a secondary in uence. Rodgers et al. [36]
for any abstract desquptlon because of the intricate |_nterplay betwegfuate methods that combine the Euler diagram with a graph of the
the different properties. Therefore, many construction methods thgftapoints. As their results are not consistent with previous studies of
only optimize for one property often cannot make guarantees for tfs same methods, they suggest that this might be due to them using
others. This can be seen in Table 1. Usually, an Euler diagram is eitly@kapoint speci c tasks, whereas the previous studies used intersection
directly constructed via curves amdirectly through an intermediate rejated tasks. They conclude that for graph speci ¢ tasks, the properties
representation, which is then transformed into the Euler diagram. Epxat we summarize as “semantics preserving” may explain why some
amples are constructions using the Euler dual, Euler graph, connectiyi{thods perform better than others. Wallinger et al. [46] compare Euler
graph, closeness graph, or intersection graph. Based on the surveygif¥rams with MetroSets and LineSets for set-related tasks.
Ruskey [38], Rodgers et al. [34], and Alsallakh et al. [2], we created 1 concjude: it is still an open problem to design and implement
Table 1, in which we compare different properties of Euler and Veng}, gigorithm that produces well-matched and well-formed Euler di-
construction methods. . . ~agrams for any amount of curves if the abstract description allows
It should be noted that the properties of the nal Euler diagram highligr it. Generating Euler diagrams with speci ¢ properties was also
depend on the used construction steps as well as the properties ofidiaditi ed as an open problem by Alsallakh et al. [2]. Depending on
intermedi{;{te representations. As we can observe fror_n the table, dllﬁ@ existing relations in the datal some properties are impossibie to
construction methods usually produce well-formed diagrams, as thfiarantee. We therefore propose a semantics-preserving construction
directly model the curves. This means the produced curves are usug¥thod that generates Euler diagrams for any amount of curves. It
constrained heavily, for example, by only using circles. As a trade-offieates well-matched and well-formed diagrams if allowed for by the
they only produce Venn diagrams or introduce unwanted zones f}ta. If not, we retain the well-matchedness and relax as few individual

higher set counts. Alternatively, indirect methods only create the exaftbperties as possible that infringe the well-formedness.
intersections needed and then transform the graph to the diagram but

fail to create well-formed diagrams from them. Some methods tgiy o
. . h VERVIEW
to transform non-well-formed diagrams into more aesthetic ones, but
doing this in hindsight is often not possible. Examples can be fou@ur method constructs Euler diagrams for a given list of sets and their
in [35,42-44]. There is only a single approach that allows for thentersections—the abstract description. For example, the three sets

3



(a) Abstract description (b) Rank-based Euler dual (c) Circular layout (d) Final diagram

Fig. 3: Overview of our method: After nding all set intersections that exist in the dataset (a), the rank-based Euler dual is created from the
abstract description (b). The graph is then transformed to be circular, and nodes are arranged in a well-distributed manner across several rings (c).
In (d) we create the nal curve for each set using splines.

fA;B;Cg can have relationt0; a; b; c; ab;bc; ac;abag, where we ab- ~ Algorithm 1: Dual construction algorithm
breviate the zoné&\ B\ C with abc However, in real-world data
usually not all intersections are realized, for example, the intersection
ac could be missing. For some abstract descriptions, it is possible fo
nd well-matched and well-formed diagrams. However, there are alsd
many con gurations where this is not possible—in these cases our aldo-
rithm yields well-matched diagrams, while minimizing the violations
of the well-formedness property. We provide further discussion on the
in uence of the abstract description on these properties in Section g

Our algorithm consists of four main steps, see also Section 4. Staft-
ing from theabstract description (Fig. 3a), we rst nd the appropri-

function createDual( nodeg])

G groupnodesby extended set and rank
G sortG by rank(G;,) andlen(G;)

forall Sin Gdo

R groupSby rank

forall r of Rdo

cos Calculate COs for

r  sortr by len(co9 anddist_twin
forall n ofrdo

ate order in which we place each set. Our algorithm then iterative]ll(})/ :‘Iosrtall (E]o of cos do

grows the graph based on this order while ensuring that new nodes can- forall possible position p of cdo
form to the well-formed property. After nding the connected, planarl f len(co): #mona#cros
rank-based Euler dual (Fig. 3b), our algorithm arranges the nodes in IFi)sF; ush ' 9
acircular layout (Fig. 3c), which we then use to draw the curves tha -push(pp)

correspond to each set. Because of the properties of the dual, it is p8s+ end

sible to generate a plan&uler diagram (Fig. 3d) from this circular 16 end ) .

layout. We use smooth curves to create compact and simple shapes’In sortlist to maximize monotone faces
contrast to other techniques, we guarantee a semantic match betwden insertnode(ist[0])

the data and the nal diagram. In addition, by creating mostly simpf removecrossings()

set curves and diagrams, we support the readability of the diagrén, end

avoiding unnecessary crossings and concurrency of curves. 21 end

To demonstrate the usefulness and evaluate the characteristics okaur end
algorithm, we implemented a prototype in JavaScript and. Obis
implementation also allows stepping through the individual steps of
our algorithm. The prototype shows exemplary abstract descriptions
that can be found in the paper, as well as different interactions thatan area that is enclosed by links and nodé®notone facesire
support set-related tasks such as visual identi cation of subsets amtlosed by exactly four links that have two alternating colors. Itis also
hovering. The implementation of our prototype, together with thignportant to note that by this de nition, monotone faces always span
example datasets, can be found orfine exactly three ranks in the Euler dual. Monotone faces are essential for
well-formedness, as they limit how many curves can intersect at a given
face—this directly corresponds to how simple the nal Euler diagram
will be. Fig. 2 shows an example of a monotone and a non-monotone
We already introduced the rank of an intersection in Section 2, Whl%be Our goal is therefore temovepossible links andeorder the
is the number of its involved or participating sets. In the context of theodes across all ranks until we are left witb@annectedcrossing-free
Euler dual, we will call these intersectionsdes For example, the andmonotoneversion of the dual. Computing the rank-based dual can
nodea has rankl, while nodeab has rank2. In the rank-based Euler pe structured into three parts: First, we group the nodes and decide in
dual, there can only be alink from a node with rartio a node with \hich order these groups should be placed (lines 2—-3). Second, we
rankr + 1. This means that with each link, an additional set gets addgsbk at each of the groups and sort the nodes by rank, and improve the
to the intersection. In the example above, this is thdsethich we  sorting usingconsecutive ones sequen¢8sction 5.2) and distance
call thecolor of a link. By de nition, a link always has a single distinct to the previous set group (lines 5-8). Finally, we place each node so
color. Accordingly, we color the links in the gures containing Eulefhat it maximizes the number of monotone faces while linking them to
duals throughout this paper. the already existing nodes in the graph, removing unwanted crossings

Our goal is to draw Euler diagrams with minimal violations of thglines 13-19).
well-formedness property. As we create our diagram using the dual,
we need to nd the equivalent property in the dual that guaranteesa  Grouping by Participating Sets

well-formed result—the faces of the dual. A face in the Euler dual . } . .
As described in the previous section, each node has one or more par-

1D3: https://www.d3js.org ticipating sets. To create the dual, we start by separating these nodes
2We will provide a cleaned-up FOSS version of the code upon acceptandato groups (line 13). We rst sort the sets by the lowest rank of each

5 RANK-BASED EULER DUAL
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Fig. 4: Creating the Euler dual: (a) shows the initial order of nodes and their respective groups. (b) simply inserting the nodes with this initial
order results in a dual that is non-planar. (c) we rst remove crossings by changing the insertion order. (d) we nalize the graph by choosing the
consecutive ones sequence which does not destroy monotone faces. The nal result is a planar graph.

set, and the number of nodes they participate in (line 18). In practioede@®, the node€® and@® will not produce crossings anymore.

this means that sets that contain nodes with lower ranks suzhras However, as shown in Fig. 4c, some crossings still remain. To adhere
considered rst. We then iterate over the individual sets and group the CO property, all possible CO sequences of a node have to be
nodes that extend the nodes of the previous set with the current set (sdticed to a single CO sequence. For example @deas two possible
extension) in the previously computed order. An example of this can parents nodes in the rank above—no@and@. The latter two are

seen in Fig. 4a: Nodes are arranged vertically by rank and the differemtt adjacent, as they generate two CO sequences. So, tof@sart

colors represent the resulting groups from each extension step. Hage to choose one of the two.

numbers for each node describe the order in which nodes are added tBor each CO sequence and for each possible position in the current
the groups. Grouping the nodes using the extension of each set gingrsk, we calculate a set of attributes that helps to make the decision
us a general order in which nodes are inserted into the dual graph. Wwhiere to place it. These attributes consider the length of the CO
each group, nodes are inserted in a rank-based order. Meaning nagggience, and the changéfimonotone Faces) arficrossings)(line 8).

that have a lower rank are placed rst. However, this on its own is n¥e collect these attributes across the CO sequences and the possible
enough. If we were to insert the nodes in the order determined omlysitions of the node in a list. As an example, a new node might destroy
by their rank and grouping order, the resulting dual will not be planam existing face, if we place it inside the face. Because the newly
This can be seen in Fig. 4b. Here, we are currently inserting the nodeserted node has to be connected to the next rank, a crossing will
from the red set with rank 2. If we naively insert and connect nodegpear, and the #monotone faces decreases. After we have sorted the
each node of the rank is connected to all nodes in the rank above udisgaccordingly, we insert the node at the current best position (line 18),
all possible links. Therefore, we need to establish the correct order fesolve crossings (line 19), and move on to the next node.

the nodes within a group, and the correct subset of links, which we will Returning to our previous example, which can be observed in Fig. 4d,

discuss next. the CO sequenagis chosen, because this way no previously created
face is destroyed. This is because the n@lbas already been inserted
5.2 Consecutive Ones Sequences in the rank above, and has created an open space between thé®odes

égde. We therefore insert the nod® into this open space, keeping
existing monotone faces intact.
é)nce all nodes of the current rank have been placed, we continue
to the next rank. If we have placed all nodes of the current group,
move on to the next set, get all its nodes, sort the nodes on each
rg\nk, and insert the nodes, rank by rank. Using this method, it is
ossible to create Euler duals that aomnectedplanar and contain

y monotone facedVe will discuss problematic cases, where this is
q possible, in Section 8.

To determine the order of nodes within a group we need to introdu
the concept otonsecutive ong€0). Imagine the following scenario:
Given an adjacency matrix of a graph, this graph has the consecutiv
ones property, if we can reorder the rows of the adjacency matrix 28
that all1s in the columns are consecutive. This property was de n
by Booth, and is true for graphs that have a planar embedding [7].
consecutive ones sequeris¢hen a group of consecutive nodes. As wé
want to create planar duals, we can use this property in our construct
algorithm. Remember our goal is to insert nodes into the Euler duald
that as many monotone faces as possible are created. We do not ne
realize all possible links between nodes. The only thing that we need to
ensure is that revisedthe resulting grapplarandconnectedinthe  Based on the rank-based Euler dual, we can create the curves of the
rank-based dual, it suf ces to ensure the CO property for neighboringal Euler diagram. We do this by rst removing the empty set and
ranks. As there are more links in the abstract description than we néBgn arranging the nodes in a circular layout (Fig. 3c). At the center
for the Euler dual, there are also multiple potential CO sequences, fr@hthis layout is the intersection with the largest rank, which is usually
which we choose the CO sequence timgiximizes the number of the full-set. The other nodes are placed on rings around the center,
monotone faces depending on their rank. Using this layout, we then devise a strategy to
If we think back to the overall goal, which is to maximize monoton&raw smooth curves that result in the nal diagram (Fig. 3d).
faces, we can see that the longer the consecutive ones sequence_is, _.
the more monotone faces are closed and created, when inserting Circular Layout
corresponding node. Therefore, we change the order of the nodeSorguarantee a good distribution of nodes on each ring, we need to
each rank, so that nodes with longer CO sequences are placed bebtaee the nodes at well-de ned distances to each other. The rank with
nodes with shorter consecutive ones sequences. If the length of COtheslargest number of nodes—usually the middle rank—is placed rst
equal, we further sort the nodes by their respedtiiasin the previous to guarantee an overlap-free and well-distributed result. Rings are then
group, without the current set, and sort them by their distance to thkaced outwards and inwards of this rank. The radii are chosen so that
closest CO sequence of length 1 of the current group in the rank abdivere is still enough space in the inner rings for all nodes, while the outer
(disttwin in line 8) In the example of Fig. 4c, we can see that byings are not too distant from each other. Distributing nodes evenly on
reordering the nodes so that we rst place né®eand@, and then each ring can result in clutter in the ranks above and below. Therefore,

t(E:IRCULAR LAYOUT OF THE EULER DIAGRAM
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we place nodes so that enough space is reserved for their children and
parents. Accounting for this, nodes with many children require more
space compared to nodes with only a few children. This approach is
similar to the layout ofadial trees but with the tree growing in both
directions. The circular layout is then used to create the nal Venn
diagram. Fig. 5a shows the circular distribution of the Euler dual from
Fig. 2c. On each ring, the nodes are well distributed.

6.2 Drawing Curves

To create an Euler diagram from the dual, the simplest approach would
be to use the convex hull of the nodes for each set to create a closed
shape. However, such a curve would not consider the nodes outsid‘]n:I f

. : 5: To de ne the shape of the Euler diagram, we order the links for
the current set. This results in closed curves that create many unwarited, " along the circles and shape them with gate nodes—shown here

zones and a very uneven distribution of areas across the faces. This] . : :
clearly not well-matched and decreases readability. isn%rtehye(ijrostﬁa—ptéztween the intersection nodes. This enables us to ne

Therefore, we developed an approach to directly control the curve
of each set by introducing additional virtual nodes that act as control
points its shape. We call these nodgge nodesThey lie on the same
circular path as the intersection nodes but are distributed so that tfaf be applied to the lines of the graph, such as line intersections,
always lie at the midpoint between two nodes on the ring (Fig. 5b, dagrRncurrency and overall compactness. Some of these approaches also
gray circles). When we move between ranks, we cross different circult@ve an additional weight parameter for each intersection that is used
paths in the circular layout, depending on the ranks of the current difdcreate area-proportionate diagrams. Because such factors skew the
following link. As we want to control the shape, we de ne where thigomparison, we used an equal weight for all set intersections in these
crossing is allowed to happen: only at a gate node position. Duergthods to unbias the individual areas. MetroSets allow to directly
the properties of the circular graph, which is still a dual of the Eulghow data points—examples can be seen in Fig. 7b and Fig. 6f. This
diagram, we can then create a set curve by nding the order of tkenot supported by other methods, including ours. To overcome this,
links of each set and connecting the midpoints of the links with the géfee datapoints in Fig. 7 and Fig. 1 were added manually. As datasets,
nodes. This generates a path that moves between the rings, “cuttitig’chose three examples from different domains: topic modeling and
the dual graph into two disconnected components. info-graphics. These datasets show a wide variety in their structure,

Using the gate nodes in combination with the midpoints of thas well as the kind of datapoints that can be overlayed on top of the
links in their respective link order, we create a mostly compact, closééagram. We will discuss the results according to well-matchedness,
curve for each set. Additionally, we can control the shape of the curwgll-formedness, as well as additional properties that we are going to
by using different interpolation strategies and adapting the link-migitroduce in the next section.
point. We achieved the best curve results using Catmull-Rom splines. o ]
Fig. 5b shows a circular graph with the shape of a set de ned Byl Guidelines for Euler diagrams
intersection link midpoints and gate nodes. Even though we use splings base our evaluation on the guidelines proposed by Blake et al. [5].
in our approach to maximize the smoothness, it would be possibleftRey de ne 10 different measures which can be used to judge the
constrain the curve further to generate curves that can only use diagogglity of Euler diagrams, ranked by their importance. There are three

@ (b)

rectangular, or octagonal lines. properties that we will not discuss in detail: Diverging lines, orientation,
63 C and color. Diverging lines are not applicable, and orientation is not
: oncurrency considered by any method presented. It can also easily be changed by

Euler duals that only consist of monotone faces will only have pairwisetating the visualization. In order to strengthen the comparability of
crossings in the diagram. However, if we have a non-monotone fattes methods we changed the color and style of all evaluated works to
this is not the case. Instead, we will create non-pairwise crossingetch ours. As Blake et al. [5] found that only outlines are preferred,
Curves that use the same gate nodes to cross a ring will producsearefrain from lling the curves. Some of the measures, such as
concurrent curve segment. To retain a well-matched diagram, well-matchednesgP1) andwell-formedness(P2), have already been
control the curves, which avoids creating unwanted zones. This mealesned in Section 2. The others will be described brie y. They all
that for concurrent segments, each curve is offset according to tletate to the form of the diagram but are not captured in the notion of
order in which they enter the concurrent segment. As the Catmull-Ranell-formedness.

interpolation cannot handle straight line segments easily, we instea%
split the curve into different segments and add additional points t%
create segments that are concurrent. This can be observed in the bo%
left part of Fig. 5b. If the concurrency is not a straight line but instea

happens on the outside of the diagram, we create the curve normé&l h L th lude th
but offset the curves as previously explained. These are then combiff@gVeX VS non-convex shapes [4,20,40]. In general, they conclude that

with normal curve segments to create the nal closed smooth shape f1Vexity allows users to nish set-related tasks faster, albeit it might
each set. make individual curves harder to distingui$mooth curves(P4) are

preferred by users and result in diagrams that are easier to read.

urve Guidelines The Compactness(P3) de nes how close a

ape is to a perfect circle. Blake et al. [5] call this propsttgipe as

ey only consider circles. This is closely connected to the convexity of
ape, and there are further studies on the general understanding of

7 EVALUATION Diagram Guidelines Symmetry (P5) can also be bene cial if

We directly compare our method to several other state-of-the-art #pe curves are as symmetric as possible while retaining the features
proaches across three different datasets. Many older set visualizattat distinguish individual faces. This property measures the similarity
techniques are not made publicly available [42,46], so it is not possildeross all shapes in a uniform way. Circular approaches will always
to compare ourselves directly to them, or they only work on a vergtain perfect symmetry, while more relaxed shapes might produce sym-
limited amount of set curves [30]. We evaluate our method against vemetric, pseudo-symmetric, or non-symmetric results. If the diagram is
nEuler [48], EulerR [22], SetNet [36], nVenn [32], and MetroSets [21$ymmetric, nding a given intersection face can be challenging because
vennEuler, EulerR, and SetNet only allow circles as curves, whergaany faces will have a similar shape. Therefehape discrimina-
nVenn allows for arbitrarily shaped curves. MetroSets are conceptudign (P6) is another important property, which de nes the uniqueness
different from the other techniques as they only produce the Euler graphindividual faces, and allows for effective search tasksne area

as an output. Therefore, we only compared them based on criteria tbqtiality (P7) measures the area of each face in relation to the other
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(b) EulerR (c) VennEuler (d) SetNet

(a) UpSet plot
(e) nVenn (f) MetroSets (g) Our method

Fig. 6: Comparing relevant previous works for Euler diagrams of a topic modeling dataset. Problems in the results are marked: these can either b
not well-formed P2), not well-matchedR1), or create zones that only have very little arB@)( Our method produces a result that does not
destroy the well-formed and well-matched properties. The areas of the zones are distributed evenly and the shape is compact.

faces. In general, for Euler diagrams that are not area-preserving, tingtiple faces, that they appear in different parts of the visualization.
area of each zone should be as similar as possible. Area-presenRegarding well-formednes®®), we can observe that all circular vi-
Euler diagrams, in contrast, try to adapt the size of faces to be equastalizations (b-d) are simple. However, this comes at a cost: SetNet
a property, for example, to the number of contained data points (cereates duplicate curves f&r, while the other two approaches are not
dinality). Infringing this property means that users might misinterpretell-matched. nVenn and MetrosSets are not simple, as they contain
the difference in size as a difference in the cardinality of the face. non-pairwise crossings and concurrency. vennEuler, SetNet, and Eu-
lerR use circles and are therefore perfectly comp8}). (But nVenn
7.2 Topic Modeling also produces relatively compact shapes. MetroSets, on the other hand,

Using latent Dirichlet allocation[6], a common topic modeling al- Produce a very spread out intersection graph that does not tinto a
gorithm, we extracted 5 topics from a political debate. The result GPMPact shape. All results that produce Euler diagrams create smooth
such a topic modeling algorithm is usually a list of keywords that d4rves P4). Symmetry is not considered in any of the related work
scribe each topic, together with their probability of belonging to sa 5). Circular methods create zones that are easily distinguishable,

topic. We lter keywords to retain words for many combinations ofvhereas the zones produced by nVenn are very similar to each other.

topics while still creating an interesting abstract description that had'g MetroSets only create intersection nodes, no real shape is created

well-matched and well-formed diagram. that can be considered hefg). All of VennEuler, SetNet, and EulerR
One common problem of topic modeling results is that it is very haf/€at€ very small areas that are dif cult to recogni@a)(

to visually compare them just using their descriptive keywords. Often OUr méthod produces a both well-matched)(and well-formed

words are attributed to multiple topics, but just representing them a&'z) result. The resulting shapes are mostly compRg).(As we

list, one cannot easily discern this. These words, however, might beUi€ curve interpolation, the produced curves are sméuth (n our

special interest to the user. They might describe all the topics very wdléthod, some curves retain their symmetry at least pd?8y. How-

in which case the topics might be very similar to each other, or thgyer. because of this, the zones are also more similar, affecting how easy

might be general "common” words that should not be considered Y are to distinguistRg). The area of the zones remains relatively

the topic model algorithm, as they reduce the descriptiveness. In:F al across all rank®7). In summary, our method retains the guide-

section, we only show the resulting curves; the full diagram includi \ges better than all other related works, except for zone discrimination,

the words can be found in the supplemental material. here we lie between nVenn and vennEuler/EulerR. Most important,

Fig. 6 shows the results for the above dataset across all methods. E§esult is a well-matched and well-formed diagram.
easier comparison, we have highlighted problematic zones in the respec- .
tive diagrams, which result from infringements of the well-matchedneds3 ~ Size Venn Diagram
(P1), well-formednessR2), and area-equalityR(7) properties. Onlya As a second example, we show a Venn diagram published on
subset of the infringements is shown, as the diagrams might otherwg@d.com?3 in Fig. 1a, that describes possible combinations of words
become unreadable. Some approaches are very similar (vennEulerigngbmbination with ve different adjectivedittle, large, small great,
EulerR), while others diverge substantially. andbig. The original visualization uses a 5-Venn diagram to show

Most methods preserve the abstract description faithfélly.(How-  which words can occur together with these adjectives. However, there
ever, both EulerR and nVenn create intersections that do not appear

in the abstract description. nVenn even realizes some relations with®By RANDALL MUNROE at https://xkcd.com/2122
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(a) Original (b) MetroSets (c) SetNet (d) Our method

Fig. 7: Here, we show a dataset of infographics concerning different supranational Caribbean bodies and their contained countries (a). While
MetroSets is well-matched, the visualization requires a lot of space to show all the data points (b). Therefore, we introduced a discontinuity
between Costa Ricaeand Colombia SetNet introduces unwanted zones, as a does not contain any data points (c). Our diagram has only a
single concurrency and is well-matched (d).

are some combinations for which no words were speci ed, such as
little, large andgreat

We can recreate the symmetric 5-Venn diagram used by the author
using our algorithm, as can be seen in Fig. 1b. The words for each
relation are added manually on top of the generated layout. This gives
us the direct equivalent to the hand-made Euler diagram by the author.
Then, we can remove the empty intersections and instead create awell- (5 hon-monotone faces (b) no common sink
matched P1) Euler diagram. In this case, the result is not well-formed

(P2), so we retain minimal concurrency as well as one non-pairwiggy. 8: Examples with problematic abstract descriptions: (a) non-
intersection. The resulting curves are mostly comp@g} @nd smooth monotone faces will result in complex Euler diagrams. (b) If there is
(P4). As only a few relations are empty, the diagram retains its higip shared intersection on the highest rank, a non-pairwise intersection

symmetry P5), but in turn, many zones are similarly shap®@) The il appear in the center of the diagram.
area is evenly distributed across the zori®§.(A comparison across

the related works can be found in the supplemental material.

8 DISCUSSION AND FUTURE WORK

7.4 Supranational Caribbean Bodies First, we will discuss runtime, problematic abstract descriptions, and
alternative construction methods. Then we will further analyze the

We recreate another info-graphic visualization published on Wikipedia uence of design decisions on the aesthetics of the visualization.

common$, where countries are grouped by organizations. In this case,

we look at all Caribbean countries that are contained in SupranatioBal Runtime

Caribbean Bodies. There are three different bodiesAs®ciation of e performed experiments to compare the runtime of our approach to
Caribbean Statgghe Caribbean Communifyand theOrganization of g other state-of-the-art methods. Because of its optimization strategy,
Eastern Caribbean Stateslowever, not all intersections between the\ietroSets does not scale well with the number of nodes and increases in
three exist, as there are no countries for some relations. The origigghdratic time [21]. SetNet extends fi@rcles [43] algorithm and runs
visualization uses a 3-Venn diagram to visualize the relations. EX'St'ﬂgponnomiaI time. For lower node counts, our algorithm has similar
relations are lled with ags that represent each country. This makggntime 1= 64, 0:07) to SetNetif= 64, 0:14s), whereas MetroSets
the visualization quite large, as a lot of space is needed to visualize [, pit slower = 64, 2s)P. For larger number of intersection nodes,
empty intersections, even though no data is shown. we can still achieve fast results € 1024 27:48s). Our approach is

As an additional comparison, we show how SetNet and MetroSetgreedy algorithm that uses grouping and reordering to reduce the
visualize this data set. In Fig. 7c, we can observe that SetNet does sedirch space of possible positions for a new node. This allows us to
always preserve well-matchedneBd), as an empty zone is createdavoid complex optimization strategies, making the output deterministic.
SetNet handles this by placing red dots inside faces that are part of Brem our experiments, we expect our algorithm to run in polynomial
abstract description. Since we already show the ags of the countriggme with the grouping of nodes (Section 5.1) as the limiting factor.
that belong to each intersection directly, we chose to omit this in oliowever, we hope to prove stronger bounds for this in future work.
recreation. MetroSets (Fig. 7b) shows all the data points, in this case
countries, directly in the visualization. However, the visualization nee@s2 Problematic Abstract Descriptions

a lot of space, as lines extend outwards, resulting in a non-compagtve have discussed before in Section 2, the layout of an Euler
shape B3). diagram strongly depends on the abstract description, and in particular,
Using our technique, we can visualize the relations as a well-matchéthere exists a well-formed solution for it. Our method handles this by
(P1) Euler diagram. The diagram has concurrency, as some bodiesrdiaxing the well-formedness properties if otherwise no such diagram
not contain countries that are only in this body, and is therefore nodn be found while guaranteeing the well-matchedness property. In
well-formed P2). Curves are compacP@) and smoothR4). The contrast, other related works, such as eulerR, vennEuler, nVenn, or
symmetry is limited P5), but still the zones are similaPg). The area sometimes even SetNet, fail silently for these abstract descriptions or,
is evenly distributed across the zon€g);, Our visualization allows arguably worse, create diagrams that are not well-matched. As we
the reader to immediately see that there are four relations in total. Tia¢e well-matchedness above all other attributes, this usually means
central intersection is shared for all three bodies, while there is a sinfi problematic abstract descriptions that we create non-monotone
relation that has outer concurrency. faces. An example of this is shown in Fig. 8. If there is no common

intersection for all sets, all sets will intersect in the center of the diagram

4By WDCF at https://w.wiki/39HJ 5All experiments were run on a desktop PC with an Intel i5-8400 CPU.
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