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Is There a Robust Technique for
Selecting Aspect Ratios in Line Charts?

Yunhai Wang, Zeyu Wang, Lifeng Zhu, Jian Zhang, Chi-Wing Fu,
Zhanglin Cheng, Changhe Tu, and Baoquan Chen

Abstract—The aspect ratio of a line chart heavily influences the perception of the underlying data. Different methods explore different
criteria in choosing aspect ratios, but so far, it was still unclear how to select aspect ratios appropriately for any given data. This paper
provides a guideline for the user to choose aspect ratios for any input 1D curves by conducting an in-depth analysis of aspect ratio
selection methods both theoretically and experimentally. By formulating several existing methods as line integrals, we explain their
parameterization invariance. Moreover, we derive a new and improved aspect ratio selection method, namely the L1-LOR (local
orientation resolution), with a certain degree of parameterization invariance. Furthermore, we connect different methods, including AL
(arc length based method), the banking to 45◦ principle, RV (resultant vector) and AS (average absolute slope), as well as L1-LOR and
AO (average absolute orientation). We verify these connections by a comparative evaluation involving various data sets, and show that
the selections by RV and L1-LOR are complementary to each other for most data. Accordingly, we propose the dual-scale banking
technique that combines the strengths of RV and L1-LOR, and demonstrate its practicability using multiple real-world data sets.

Index Terms—Aspect ratio, parameterization invariance, line integral, banking to 45◦, orientation resolution.
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1 INTRODUCTION

Line charts are commonly used for visualizing time series such as
stock market values, population statistics, and scientific data. By
plotting values over time, trends in the data can be revealed by the
slopes of the line segments. However, the aspect ratio of the plot,
i.e., height to width ratio, would influence the orientations of the
line segments, thus affecting the visual perception of the trends [1].
Choosing an appropriate aspect ratio is therefore highly essential
for a fair presentation of the data trend. Fig. 1 shows an example
using different aspect ratios to plot the same data, where a small
aspect ratio (Fig. 1(a)) highlights the steeper increase around 1983
and then a gradual decrease until 1990, while a large aspect ratio
(Fig. 1(b)) emphasizes more on the fast oscillations over time.

Cleveland et al. [3] pioneered the principle of banking to 45◦,
which laid the perceptual foundation for selecting the aspect ratio.
Based on the observation that the discriminability of adjacent
line segments can be maximized when the average orientation
of all the line segments is 45◦, Cleveland et al. [4], [5], [6]
proposed three methods for aspect ratio selection: median slope
(MS), average absolute orientation (AO), and arc length weighted
average absolute orientation (AWO), where AWO yields rea-
sonable aspect ratios in general. To further improve the visual
perception, Heer and Agrawala [7] directly maximize the range of
the orientations spanned by the line segments (which is usually
denoted as the orientation resolution) using two alternative meth-
ods: global orientation resolution (GOR) and local orientation
resolution (LOR), where the orientation resolution is defined as
the range of orientation spanned by the segments.

Taking other directions to approach the problem, Guha and
Cleveland [8] and Talbot et al. [9] independently developed the
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Fig. 1 Illustrating how the aspect ratio affects the graphical
perception of trends using the dole dataset [2], which shows the
numbers of persons receiving unemployment benefits in Australia
from Jan. 1956 to Jul. 1992.

resultant vector (RV) and arc length based (AL) methods, which
are derived from the plot’s “resultant vector” and the curve’s arc
length, respectively. Talbot et al. [9] showed several advantages of
AL and RV over previous methods, among which the property
of parameterization invariance is especially important, since it
guarantees that the method would generate the same aspect ratio
for the same given curve regardless of how we parameterize the
curve into line segments. Namely, AL and RV are both invariant
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TABLE 1 Full names, abbreviations, references, definitions, and
the properties of parameterization invariance of important aspect
ratio selection methods, which are classified into four categories
indicated by separator lines in terms of the banking heuristics:
average absolute slope/orientation, orientation resolution, resultant
vector, and arc length, respectively.

Name of Method Abbr. Ref. Def. Para. Invar.

Median Absolute Slope MS [3] Eq. 3 ×

Average Absolute Slope AS [7] Eq. 4 ×

Average Absolute Orientation AO [3] Eq. 5 ×

Arc Length Weighted
Average Absolute Orientation AWO [4] Eq. 6

Global Orientation Resolution GOR [7] Eq. 8 ×

Local Orientation Resolution LOR [7] Eq. 9 ×

L1L1L1-norm based
Local Orientation Resolution L1-LOR Ours Eq. 17

Resultant Vector RV [8] Eq. 10

Arc Length AL [9] Eq. 11

under changes to the sampling of the data over time in a regular
or irregular way. However, it is still not yet clear why they have
such a property, and whether there is any connection between AL,
RV and the principle of banking to 45◦ [3].

In our previous work [10], we introduced the line integral
to study the parameterization invariance of AL and RV, and
connect them with the principle of banking to 45◦. Nonetheless,
we only explored the mathematical foundation of AL method and
quantitatively evaluated a subset of existing aspect ratio selection
methods. In this work, we present an in-depth study of several
different aspect ratio selection methods both theoretically and
experimentally. By then, we provide guidelines for the user to
choose aspect ratio selection method for any input data. This is
achieved with four new contributions.

• First, we derived a new aspect ratio selection method, namely
L1-LOR (local orientation resolution), which is parameteriza-
tion invariant for monotonic data.

• Second, we established the connection between banking to
45◦ and maximization of orientation resolution by finding an
appropriate condition that L1-LOR performs similarly to AO.

• Third, we conducted a comprehensive evaluation extensively
on various aspect ratio selection methods, see Table 1. Results
show that both RV and L1-LOR are robust to noise and
outlier, and their selected aspect ratios are complementary,
i.e., revealing different patterns of interest for most data.

• Lastly, we proposed the dual-scale banking technique that
combines the strength of RV and L1-LOR, and presented case
studies to demonstrate its practicability with multiple data.

The remainder of the paper is divided into six sections. After
reviewing previous works in Section 2, we describe how to
formulate various existing methods as line integrals in Section 3
and derive the theoretical connections between different methods
in Section 4. Then, we study the comparative evaluation results
of various methods in Section 5, and propose the dual-scale
banking technique in Section 6. Finally, we conclude the paper
by discussing the need for perceptual criteria in Section 7.

2 RELATED WORK

Cleveland et al. [3], [4], [5] systematically studied how the aspect
ratio affects the judgement of slope ratios, and developed several
methods for choosing proper aspect ratios. Later, more method-
s [7], [8], [9], [11] were developed for simple and robust aspect
ratio selection. Before reviewing various methods in Section 2.3,
we briefly summarize their perceptual foundation below.

2.1 Empirical Studies
Cleveland et al. [3] hypothesized that the accuracy of slope ratio
judgements increases with orientation resolution, and conducted
various human-subject experiments for verifying it. By fitting an
empirical model to the experimental results, they showed that the
judgement error is minimized when line segments are centered
around 45◦. This is the banking to 45◦ principle. This experiment,
however, only tested limited variations of slope ratios, so Talbot et
al. [12] further expanded the experimental design and developed
an empirical model that provides strong evidence that slope ratio
estimation errors are not minimized around 45◦. As far as we
know, there are only two such studies in the field of perception
for slope ratio judgement, although many researchers studied the
influence of aspect ratios on the perception of 2D elements such
as graph shapes [13], areas [14], [15], and correlations [16], [17].

2.2 Perceptual Arguments
Cleveland et al. [3] showed that the accuracy of slope judgement
is best when the orientation resolution is maximized, and such
a condition is equivalent to centering the absolute value of the
midangle (average orientation) at 45◦. These two arguments are
the foundation of most aspect ratio selection methods.

Suppose s1 and s2 are the slopes of two line segments in the
data space, s.t. s1 > s2 > 0. For a given aspect ratio α of the
display, their corresponding slopes in the plot are αs1 and αs2,
and the orientation resolution γ(α) is |arctan(αs1)−arctan(αs2)|,
while the midangle m(α) is

(
arctan(αs1)+ arctan(αs2)

)
/2. Let

f=s2/s1 and λ=α
√

s1s2, we can rewrite αs1 and αs2 as λ/
√

f
and λ

√
f , respectively, and rewrite γ(α) and m(α) as

γ(α) = |arctan(λ/
√

f )− arctan(λ
√

f )| , and (1)

m(α) =
1
2
(

arctan(λ/
√

f )+ arctan(λ
√

f )
)
, resp. (2)

For λ = 1, the orientation resolution γ(α) reaches its maximum
of 90◦− 2arctan(

√
f ) when the midangle m(α) is 45◦. This also

holds for line segments with negative slopes with m(α) = −45◦.
However, there are many line segments in a line chart, and the
slopes of some line segment pairs may have different signs. It is
unclear whether the equivalence still holds for such cases.

2.3 Aspect Ratio Selection Methods
Based on the above criteria, Cleveland et al. and other researchers
developed various methods for aspect ratio selection. As listed in
Table 1, these methods can be classified into four categories: the
first two categories are based on a generalization of midangle and
orientation resolution, while the other two do not directly follow
the perceptual hypotheses presented in Section 2.1.

To compare between methods, we consider a data set with n
connecting line segments. First, we follow [7] to normalize the
data, so that the data bounding rectangle becomes a square. Then,
we denote ∆xi and ∆yi as the displacements of the i-th line segment
in x and y directions, respectively, and si = ∆yi/∆xi as its slope.
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Fig. 2 Illustrating the concept of orientation resolution, which is
defined as the smallest acute angle between a pair of line segments.

MS, AS, AO, and AWO belong to the same category of methods
that aims to bank the line segments to 45◦. MS and AS work on
slopes, while AO and AWO work on orientations (line segment
angles). In detail, MS uses the reciprocal of the median absolute
slope as the key factor for selecting the aspect ratio (α), i.e.,

α = 1/median( |s1|, |s2|, ..., |sn| ) , (3)

while AS uses the mean absolute slope of the line segments, i.e.,

α = 1/mean( |s1|, |s2|, ..., |sn| ) . (4)

Comparing with MS and AS, AO chooses the aspect ratio that
banks the average absolute orientations to 45◦ by using an iterative
procedure to solve the following optimization:

min
α∈(0,∞)

| ∑i |θi(α)|
n

−45◦ | , (5)

where θi(α) is the orientation of the i-th line segment when
plotted with the selected aspect ratio (α). However, all three
methods generate different results for the same curve represented,
or parameterized, with different collections of line segments;
see Fig. 3(a) for an example. To address this parameterization
invariance issue, AWO weights θi by the line segment lengths (li):

min
α∈(0,∞)

| ∑i |θi(α)|li(α)

∑i li(α)
−45◦ | . (6)

The authors found that AWO works well for most data, and
assumed that it is parameterization invariant without providing
further explanation on the property.

GOR and LOR. Rather than indirectly maximizing the ori-
entation resolution by banking line segments to 45◦, Heer and
Agrawala [7] proposed the global orientation resolution (GOR)
method that directly maximizes the orientation resolution. First,
they define function γ to measure the orientation difference be-
tween line segments (see Fig. 2 for illustrations):

γi, j = min( |θi−θ j| , 180◦−|θi−θ j| ) . (7)

Since θi ∈ [−90◦,90◦], γi, j ∈ [0◦,90◦]; GOR finds the aspect ratio
that maximizes the sum of γ2

i, j over all pairs of line segments:

max
a∈(0,∞)

∑
i

∑
j

γ
2
i, j . (8)

In practice, GOR usually produces results similar to AO but
is more expensive. Hence, local orientation resolution (LOR)
simplifies Eq. 8 and considers only successive line segment pairs:

max
a∈(0,∞)

n−1

∑
i=1

γ
2
i,i+1 . (9)

Both methods, however, cannot handle horizontal and vertical line
segments, and they are not parameterization invariant. Apparently,
their effects are equivalent to centering the orientations of a pair of
adjacent line segments at 45◦; however, it is not yet clear whether
the equivalence still holds for general line charts with multiple

line segments. We will show that LOR can be extended to have
certain parameterization invariance in Section 3.3 and provide the
condition for the equivalence for general line charts in Section 4.3.

RV. Rather than maximizing the orientation resolution, Guha
and Cleveland [8] proposed the resultant vector (RV) method that
banks the line segments using a simple tractable algebraic form:

α =
∑i |∆xi|
∑i |∆yi|

. (10)

Geometrically, RV transforms all line segments into the first quad-
rant (due to the absolute values), and then selects the aspect ratio,
such that the slope of the resultant vector equals one. Although
RV produces nice results, its perceptual foundation is not clear.
In our previous work [10], we proved that RV is a generalization
of AS to a continuous representation, and found that it performs
similarly to AL but is faster and more stable. In this work, we
further show that RV is capable of handling data with redundancy
(see Section 5.2), where all the previous methods fail.

AL. Like RV, the arc length based aspect ratio selection method
(AL) [9] is also not derived based on the banking to 45◦ principle.
Rather, AL chooses the aspect ratio that minimizes the total arc
length of line segments in the plot while preserving the area of the
data bounding box in the plot (see [9] for details):

min
α∈(0,∞)

n

∑
i=1
|| ∆xi√

α
,
√

α∆yi||. (11)

Here, dividing ∆xi by
√

α and multiplying ∆yi with
√

α keep the
data bounding box area and || · || is the Euclidean norm.

AL shows many empirical advantages over previous methods.
Among them, Talbot et al. [9] found that AL and AWO are
parameterization invariant, but not other existing methods. By
taking line segments in 2D contour plots as inputs, they compared
a subset of previous methods in selecting aspect ratios for 2D
contour plots and showed that AL also works well because of its
parameterization invariance. However, they did not explain why
AL has such a property, and whether there is any connection be-
tween this property and the banking to 45◦ principle. Our previous
work [10] explained why AL is parameterization invariant and
connected AL with the banking to 45◦ principle. In this work, we
further provide the empirical result in Section 5.1 to strengthen
the connection. On the other hand, Talbot et al. [9] suggested to
use AL as the default method to select the aspect ratio, however,
they did not conduct a comprehensive comparison for all aspect
ratio selection methods. In this work, we provide both theoretical
analysis and comparison experiments as well as guidelines for
users to choose aspect ratio selection methods. Specifically, we
found that RV and L1-LOR both select reasonable aspect ratios for
most data but reveal patterns of interest that are complementary.

3 FORMULATION USING LINE INTEGRALS
In this section, we describe how to formulate various aspect ratio
selection methods as line integrals for explaining their parameter-
ization invariance [10], and then extend LOR to achieve certain
parameterization invariance.

3.1 Parameterization Invariant Methods
Given a scalar function f : C ⊂ Rn → R, where C is a curve, the
line integral [18] along C is defined as:∫

C
f ds =

∫ b

a
f (r(t))|r′(t)|dt , (12)
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Fig. 3 Comparing various aspect ratio selection methods (including ours (j)) on how they select aspect ratios (b-j) for the same curve
“y = lnx” parameterized into line segments in three different ways (a). Results in (b-j) show that the three plots generated by methods
AWO, RV, AL and L1-LOR are almost the same, thus revealing their parameterization invariance. The standard deviations of the aspect
ratios selected by various methods are shown in (k): AL, AWO, RV and L1-LOR have small standard deviations, but not others.

where f is the integrand, ds is the arc length element, and C is
parameterized by function r(t) for a≤ t ≤ b with derivative r′(t).
Note that r : [a,b]→ C is a bijective parameterization, such that
r(a) and r(b) are the endpoints of C, and the value of the integral
is independent of the parameterization r. A typical application
example of line integrals is computing the mass of a wire described
by a curve C with a density function f . No matter what r we used
to parameterize C, the total mass is always the same.

Fig. 3(a) shows a curve parameterized in three different ways.
If a method is parameterization invariant, the selected aspect ratio
should be the same regardless of the parameterization. Below, we
represent AL, AWO and RV in line integral forms, and show that
they are parameterization invariant; note that the parameterization
invariance of RV has not been shown so far.

AL. Since the arc length is inherently a variable of the line
integral, Eq. (11) can be represented as follows:

min
α∈(0,∞)

n

∑
i=1

1√
α
||∆xi,α∆yi|| = min

α∈(0,∞)

∫
C

1√
α

ds , (13)

where the integrand is a constant. Since the arc length ds depends
on α , a larger α may not result in a smaller objective. On the
other hand, the integral representation provides an alternative to
interpret AL. That is, finding the largest squared root of the aspect
ratio that produces the shortest arc length. This indicates that AL
does not need an explicit area-preserving constraint, and we do
not need to simultaneously scale x and y dimensions as done in
Eq. (11).

AWO. We can represent AWO using the following line integral:

min
α∈(0,∞)

∣∣∑i |θi(α)|li(α)

∑i li(α)
−45◦

∣∣ = min
α∈(0,∞)

∣∣∫C |θ(α,s)|ds∫
C ds

−45◦
∣∣ ,

(14)

where the line orientation θ(α,s) is a function of the aspect ratio
α varying along the arc length s. We can see that integrands
(see Eq. (12)) in the numerator and denominator of Eq. (14) are
|θ(α,s)| and one, respectively.

RV. The above line integral representations show that AL and
AWO are invariant to parameterization changes. Here, we show
that RV also has this property by putting it in a line integral form:

α =
∑i |∆xi|
∑i |∆yi|

=

∫
C |cos(θ(α0,s))|ds∫
C |sin(θ(α0,s))|ds

, (15)

where α0 is 1 as generated by the data normalization; see [8] for
details, and the integrands in the numerator and denominator are

|cos(θ(α0,s))| and |sin(θ(α0,s))|, respectively. Since RV has a
closed form, it can be computed faster than AWO and AL.

In summary, AL, AWO and RV can be represented in line
integral forms, so they can select almost the same aspect ratio for
the same curve in different parameterizations. See also Fig. 3(k),
which shows that the aspect ratios selected by AL, AWO and RV
for different parameterizations have very tiny standard deviations.
Lastly, note also that the parameterization function r can be an
arbitrary bijective function that need not be an analytic function.

3.2 Parameterization Variant Methods

The line integral representation is a sufficient condition for pa-
rameterization invariance [18]. Through extensive experiments,
Talbot et al. [9] observed that MS, AS, AO, GOR and LOR are
not parameterization invariant. See again the examples shown in
Fig. 3, the standard deviations of the aspect ratios selected by these
methods are significantly far from zeros. Below, we discuss which
factors put down the property of parameterization invariance.

MS, AS and AO select the aspect ratio based on the median
absolute slope, average absolute slope, and average absolute
orientation. Since the computation of median and average values
ignore the lengths of the line segments, these methods are sensitive
to the parameterization. In contrast, AWO weights the absolute
orientations with the lengths of the line segment, so it becomes
parameterization invariant. Later in Section 4.2, we will derive
and show that RV is a parameterization invariant form of AS.

GOR and LOR select the aspect ratio based on an L2 norm of
γi, j. Since θi ∈ [−90◦,90◦], we can rewrite Eq. (7) as

γi, j =

{
|θi−θ j| if |θi−θ j|< 90◦ ,
180◦−|θi−θ j| otherwise. (16)

The sub-function for computing γi, j is determined by the differ-
ence between |θi− θ j| and 90◦. Since the parameterization does
not take this difference into account, the selected aspect ratio may
fluctuate for different parameterizations.
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Fig. 4 L1-LOR is parameterization invariant for monotonous
functions (a,b,c), and it exhibits certain variance for curves that
have orientation changes (d,e,f).

3.3 L1-LOR with Certain Parameterization Invariance
We propose a new aspect ratio selection method called L1-LOR,
which has certain parameterization invariance. To create L1-LOR,
we replace the L2 norm in Eq. (9) with an L1 norm:

max
a∈(0,∞)

n−1

∑
i=1

γi,i+1 = max
a∈(0,∞)

n−1

∑
i=1

min(|θi+1−θi|,180◦−|θi+1−θi|)

= max
a∈(0,∞)

∫
C

min(|θi+1−θi|,180◦−|θi+1−θi|)
ds

ds.

(17)

When θ(α,s) is a monotonically increasing function, θi and θi+1
are both positive, and therefore γi,i+1 is always θi+1−θi. Hence,
Eq. (17) can be expressed using the total change in orientations:

max
a∈(0,∞)

n−1

∑
i=1

γi,i+1 = max
a∈(0,∞)

∫
C

θi+1−θi

ds
ds, (18)

where the sum is θn−θ1. Likewise, the sum is θ1−θn if θ(α,s)
is monotonic decreasing. The total orientation resolution in these
cases only depends on the starting and ending slope of the curve,
so L1-LOR is parameterization invariant in these cases.

The example shown in Fig. 3 is a monotonically increasing
function, so the aspect ratios selected by Eq. (18) over the
three different parameterizations have little variance. In contrast,
LOR does not have the parameterization invariance property (see
Fig. 3(h)), due to the L2 norm. Fig. 4 shows more examples.
As long as the plotted curve is monotonic, L1-LOR is param-
eterization invariant; see Figs. 4(a,b,c). When the curve is not
monotonic, θi and θi+1 could have different signs, so γi,i+1 is
computed by 180◦−|θi+1−θi| (see Eq. (16)), which has different
cases depending on the sign of θi+1−θi. Hence, Eq. (17) is no
longer parameterization invariant; see Figs 4(d,e,f).

While parameterization invariance is a desirable property, all
methods discussed in Sections 3.2 and 3.3 do not possess this
property, but still, they have their own advantages; see Section
5. It is therefore important to obtain guidelines as to which
parameterizations will yield reliable results.

4 CONNECTION BETWEEN METHODS

The line integral representation enables us to explore the parame-
terization invariance of various methods and to group them into

parameterization invariance (AWO, AL, RV and L1-LOR) and
parameterization variance (MS, AS, AO, LOR and GOR) methods.
Besides parameterization invariance, we may consider perceptual
arguments: AWO, AO, AS and MS belong to the group based
on the banking to 45◦ principle, while LOR, GOR and L1-LOR
belong to the group that maximizes the orientation resolution. In
contrast, both AL and RV lack perceptual arguments as in other
methods, although they are parameterization invariant.

In this section, we explore and derive the connections between
various methods, including AL and the banking to 45◦ principle,
RV and AS, as well as L1-LOR and AO. These are new findings
that have not been studied and derived in any previous work.

4.1 Connecting AL and Banking to 45◦

Considering only a single line segment, Eq. (11) becomes

min
α∈(0,∞)

√
(∆xi/

√
α)2 +(

√
α∆yi)2 ,

which attains its minima
√

2∆xi∆yi when
α = ∆xi/∆yi, or the line orientation = 45◦.
This indicates that AL also banks a line
segment to 45◦ by enforcing the triangle
associated with the line segment to be an
isosceles right triangle; see the inset figure.

For a curve with multiple line segments, we consider the case
that the data points are equally spaced along the X dimension.
Hence, we can rewrite Eq. (11) as

min
α∈(0,∞)

∑
n
i=1

√
1+α2|si|2√

α
∆xi , (19)

where si is the slope of the i-th line segment. Since a larger |si|
means a larger arc length, the optimization would then bank the
line segments with larger |si| to 45◦ more aggressively. However,
it is not clear whether the aspect ratio produced by Eq. (13) for
a curve with multiple line segments really converges to a value
of one. Hence, we propose to compute the bounds of the average
absolute slopes generated by AL, and use these bounds to show
that AL tends to satisfy the banking to 45◦ principle.

Bounds of the Average Absolute Slope. Differentiating Eq. (19)
with respect to α and setting the derivative to zero, we have

n

∑
i=1

α2s2
i −1√

α2s2
i +1

= 0 , (20)

which can be rewritten as
n

∑
i=1

(α|si|−1)(α|si|+1)√
(α|si|)2 +1

= 0 . (21)

Since α|si| is always non-negative, we can define ωi as:

ωi =
α|si|+1√
(α|si|)2 +1

, (22)

and compute its bounds:

1≤ωi =
α|si|+1√
(α|si|)2 +1

=

√
1+

2α|si|
α2s2

i +1
≤

√
1+

2α|si|
2α|si|

=
√

2 .

where ωi reaches its minima of 1 when α|si|=0, and its maxima
of
√

2 when α|si|=1. Putting ωi into Eq. (21), we get
n

∑
i=1

(α|si|−1)ωi = 0 , (23)
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Fig. 5 We add increasing amount of white noise (left to right) to
input curve y = 1/x; SNR means Signal-to-Noise Ratio. Top and
bottom rows are plots produced by AO and L1-LOR, respectively.
When the noise level is high (rightmost plots), AO and L1-LOR
converge and produce plots with a similar aspect ratio.

where α is undefined if si = 0 ∀i; otherwise, we can re-arrange the
terms in Eq. (23) and obtain

α =
∑i ωi

∑i ωi|si|
. (24)

Multiplying both sides of Eq. (24) with ∑i |si|/n we get

α ∑i |si|
n

=
∑i ωi ∑i |si|
n∑i ωi|si|

, (25)

where the left side is the average absolute slope. Since ωi ∈
[1,
√

2], Eq. (25) attains its minimum when setting all ωi in its
numerator to be 1 and all ωi in its denominator to

√
2. Likewise,

Eq. (25) attains its maximum by setting ωi in the other way around.
Thus, the range of the average absolute slope is [

√
2/2,
√

2].
Moreover, when the right side of Eq. (25) attains its maxima of√

2, the left side is 1, and when it attains its minima of
√

2/2, the
left side is 0. Thus, the actual range should be smaller.

Since it is hard to analytically derive a tight bound from
Eq. (25), we take a simulation approach to estimate a tighter one
by generating a large number of random samples. Specifically, we
first rewrite Eq. (22) and express |si| as a function of ωi:

|si|=
1±ωi

√
2−ω2

i

α(ω2
i −1)

=
ρi

α
, (26)

where ρi is
(
1±ωi

√
2−ω2

i

)
/
(
ω2

i −1
)

and the valid range of ωi

is (1,
√

2]. When ωi is 1, si is undefined; AL cannot handle such a
case; see Section 5.2. Accordingly, Eq. (25) can be written as

α ∑i |si|
n

=
∑i ωi ∑i |si|
n∑i ωi|si|

=
∑i ωi ∑i ρi

n∑i ωiρi
, (27)

which is a function of {ω1, · · · ,ωn}. Since ωi ranges (1,
√

2], we
randomly generate 10 millions test cases, where n ∈ [10,106], and
obtain the range of Eq. (27) as [0.81,1.07]. When the expression
in Eq. (27) attains around 1.07, the input curves look like y = lnx
with many small absolute slopes and several large ones. In Section
5.1, we show an experiment with a large collection of data, where
the resulting average absolute slopes are mostly in [0.93, 1.0].

Lastly, note also that although we derive these bounds based
on uniformly-sampled data points, the derivation is also applicable
to non-uniformly sampled data, because we can include extra
samples in a data set by interpolation to make it uniform.

Fig. 6 Venn diagram to show the grouping relationship among
various methods: banking to 45◦, parameterization invariance, and
orientation resolution. Moreover, we draw three kinds of arrows
to show the connection relationships between individual methods:
i) AS, AO and LOR are the parameterization variant forms of RV,
AWO and L1-LOR, respectively; ii) AS and AO are convertible
between each other by angle and slope; and iii) AO has the
potential to be similar to L1-LOR.

4.2 Connecting RV and AS

Talbot et al. [9] showed that RV can be obtained by replacing the
Euclidean distance with Manhattan distance to measure the arc
length in AL. In this subsection, we provide another interpretation
of RV, and show that it is a parameterization invariant form of AS.
Such a result facilitates us to establish a connection between RV
and the banking to 45◦ principle.

Again, we start with data points that are evenly spaced in x
with a step size of ∆x. Then, we can rewrite Eq. (4) as

α = 1/mean|si|=
n∆x

∑i |si|∆x
=

xn+1− x1

∑i |si|∆x
=

∑i |∆xi|
∑i |∆yi|

, (28)

where ∆x = (xn+1−x1)/n is a positive value. Hence, AS becomes
equivalent to RV when the data points are evenly spaced in x.
As shown in Fig. 3 (top row), AS produces the same plot (aspect
ratio) as RV for the parameterization with x = t.

Compared with Eq. (10), we can see that Eq. (28) has the same
formulation as RV, but is derived from a different background:
extending AS using the line integral representation. Since AS is
based on the banking to 45◦ principle, we say that RV also at-
tempts to center the line segments around 45◦. This relationship is
also indicated by the boxplots shown in Fig. 9 , which summarize
the average absolute slopes of different methods for all tested data
sets shown in Fig. 7(a). We can see that RV produces the same
average absolute slopes as AS.

4.3 Connecting L1-LOR and AO

As reviewed in Section 2.3, the perceptual arguments of maxi-
mizing the orientation resolution and banking to 45◦ have been
extensively used for choosing good aspect ratios. The equivalence
between them was, however, discussed [7] only on simple cases
with two line segments that have the same sign of slopes. Below,
we provide new ways of exploring their equivalence, and show that
methods built upon L1-LOR and AO produce almost equivalent
results for plots with multiple line segments.
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If the orientations of every pair of successive line segments
(i.e., θi and θi+1) have different signs, |θi+1− θi| = |θi|+ |θi+1|,
so we can rewrite Eq. (17) as

max
α∈(0,∞)

n−1

∑
i=1

min(|θi|+ |θi+1|,180◦− (|θi|+ |θi+1|))

= min
α∈(0,∞)

n−1

∑
i=1

max(−|θi|− |θi+1|, |θi|+ |θi+1|−180◦)+90◦

(change outer min to max, and add 90◦)

= min
α∈(0,∞)

n−1

∑
i=1

max[ 45◦− (|θi|+ |θi+1|)/2 , (|θi|+ |θi+1|)/2−45◦ ] ,

(29)

where (|θi|+ |θi+1|)/2 is the midangle of two successive line
segments. Eq. (29) shows that L1-LOR aims to bank the midangle
of all pairs of successive line segments to 45◦. Its goal is more
rigorous than AO, which considers only the average orientation.
Hence, L1-LOR and AO produce similar aspect ratios for plots
with alternating orientation signs; see Figs. 5 (d,h) for examples.

From the signal processing point of view, successive line
segments with alternating orientations are usually high frequency
signals, unless the plot is fairly flat. Since data often contains high
and low frequency fluctuations, L1-LOR cannot be simplified to
Eq. (29), but can perform more similar to AO for high frequency
components. Fig. 5 illustrates this point by gradually adding white
noise to the curve y = 1/x. Both L1-LOR and AO select the same
aspect ratio when the signal-to-noise ratio drops to 10.

4.4 Summary
Fig. 6 summarizes our findings with a Venn diagram to show
various methods in groups, and arrows to reveal connection rela-
tionships between individual methods. By computing the bounds
of the average absolute slope of AL, we show that AL tends to
satisfy the banking to 45◦ principle (Section 4.1). In addition, we
show that RV is the parameterization invariant form of AS, so
RV inherently satisfies the banking to 45◦ principle (Section 4.2).
Hence, in Fig. 6, we put AL and RV into the group of methods that
banks to 45◦, and draw the arrow from AS to RV. Furthermore, we
build the connection between the two perceptual arguments (banks
to 45◦ and maximizing the orientation resolution) by finding the
condition that L1-LOR performs similarly to AO. Hence, we draw
the arrow with a dashed line from AO to L1-LOR. Note also that
L1-LOR is partially inside the parameterization invariance group,
since it has limited parameterization invariance.

5 COMPARATIVE EVALUATION

We implemented all the aspect ratio selection methods listed in
Table 1 in C++ and tested them on a PC with an Intel Core i5-
4590 3.3GHz CPU and 8GB memory. We solve the optimization
problems in AL, AO, AWO, L1-LOR and LOR by the method-
of-moving-asymptotes (MMA) [19], which is provided by the
NLopt library [20]. Like Talbot et al. [9], we parameterize the
optimization search with log(α), so it converges faster than a
direct search for α . To verify the conclusions derived in previous
sections, we compare the aspect ratios selected by all existing
methods on various data sets.

Data sets. Besides the data sets in Heer and Agrawala [7] and
Talbot et al. [9], we downloaded more data from the UCI data
set library [21], making it a total of 47 data sets of 1D curves;

all of them have evenly spaced data points in x. Moreover, we
followed Talbot et al. [9] and took 26 2D contour plots as inputs
to try various methods in the same way as 1D curves. Note that
2D contours are generally non-uniformly sampled, so they are
good candidates for investigating the parameterization invariance
property. Nonetheless, if a 2D contours plot has strong physical
meaning, e.g., a map, we do not modify its aspect ratio. All code
and data sets are available for download on GitHub 1.

Measures. Since there are no metrics that quantify the effec-
tiveness of an aspect ratio selection, we conduct comparisons by
following Talbot et al. [9] to compute the log relative aspect ratio
(in short, we call log-ratio). This ratio is defined as the logarithm
of the relative ratio between the two α selected by the method
being studied and a reference method, which is AL in [9]. Hence, a
negative value means that the α selected by the method is smaller
than the α selected by the reference; otherwise, the log-ratio is
non-negative. Unlike Talbot et al. [9], we used RV as the reference
because RV is parameterization invariant and easier to compute.

Results. Figs. 7 (a,b) present scatter plots of log-ratios generated
by applying various methods to the 47 1D curves and 26 2D
contours we collected, respectively. Due to space limitations, we
show log-ratios only for some of the 1D curves; complete results
can be found in the supplemental material. From the two figures,
we can see that the ranges of the selected aspect ratios in the
two scatter plots are very different. Most log-ratios in Fig. 7(a)
are positive, while a few of them are much larger than zeros in
Fig. 7(b). If a log-ratio value is out of the plot range, we treat it
as an outlier and draw a dark transparent shadow in the plot to
indicate their amount, where the plotted curve of 9-13 produced
by AO shown in Fig. 8(e) provides one example. To facilitate the
comparison among different methods, we summarize the resulting
log-ratios associated with each method for each group of data sets
(1D curves and 2D contours) in the two boxplots shown in Figs. 7
(c,d). We order the boxplots from left to right as follows: AL, the
four methods based on average absolute slope/orientation (MS,
AS, AWO and AO), and then the methods based on orientation
resolution (L1-LOR, LOR and GOR). For easy comparison, we
put AL as the first column and RV as the last which is also
the reference, and put L1-LOR in-between AO and LOR, since
it performs similarly to AO and relates to LOR.

Furthermore, it is worth to note that for LOR, AO and AS, a
number of selected α are out of the (vertical) boxplot range; they
are treated as the outliers. In the plots, we indicate these outliers
using shadows whose size indicates the outlier amount. Moreover,
for the case of AS, there are too many outliers, so part of the
boxplot rectangle that represents the second and third quartiles
is also out of the plot range. Lastly, for visual comparison, we
show some 1D curves and 2D contours plotted with the aspect
ratios selected by various methods in Fig. 8, where we follow the
boxplot ordering, but put RV (reference) back. Complete results
for plots over all different methods for all the data sets can be
found in the supplemental material. By carefully inspecting them,
we come up with the following four interesting observations:

• AL and AWO behave very similarly to RV for both 1D curves
and 2D contours; their values of log(relative aspect ratios) are
usually around zeros; see again Fig. 7(a);

• L1-LOR behaves differently from RV but similarly to AO or
LOR for some of the 1D curves; and

1. https://github.com/ArranWangzy/AspectRatioSelection
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Fig. 7 Comparing the aspect ratios (presented as log relative aspect ratios, or log-ratios) produced by various methods on 1D curves
(a) and 2D contours (b), relative to RV as the reference for computing the log-ratios. To reveal the distribution of log-ratios for each
method, we summarize the log-ratios results shown (a) and (b) as boxplots in (c) and (d), respectively; in case a result is out of the plot
range (see AS particularly), we draw a dark transparent shadow to indicate the outliers.

• for 2D contours, AS often selects much smaller aspect ratios,
while AO and MS both behave similarly to RV.

Since some of these observations are inconsistent with the
findings reported by Talbot et al. [9], this motivates us to further
explore the underlying reasons behind the observations, to provide
insights on which methods to be used for data with redundant
samples, outliers, noise and non-uniform parameterization, and
to discuss a common limitation of the existing methods. Before

exploring the observations, we first verify if the average absolute
slope generated by AL is around one.

5.1 AL and Banking to 45◦

As discussed in Section 4.1, AS attempts to find an aspect ratio
that yields an average absolute slope of one, whereas the bounds of
the average absolute slopes for AL (i.e., [0.93,1]) slightly deviate
from one. To explore whether the average absolute slopes for AL
is around one, we computed the average absolute slopes for all the
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Fig. 8 We present the actual plots produced by using various methods on eight data sets: four (top) from Fig. 7(a) and four (bottom)
from Fig. 7(b). Comparing these plots, we can see that RV, AL and AWO consistently produce almost the same plots for all the eight
data sets, while L1-LOR also produces reasonable plots but it behaves more differently from RV.

results behind Fig. 7, and summarized the average absolute slopes
of all the methods for the 1D curve data sets in Fig. 9. For the case
of AL, the average absolute slopes are roughly within [0.91,1.0],
so AL selects aspect ratios similar to AS and tends to satisfy the
banking to 45◦ principle. Note that our derivation in Section 4.1
assumes the data points to be equally spaced along x, so we do not
compute the average absolute slopes for 2D contours, whose data
are mostly non-uniformly sampled.

5.2 AWO vs. RV vs. AL
To verify whether AWO, RV and AL behave similarly, we ex-
tended the examples used by Talbot et al. [9]. Specifically, we
synthesized a set of 1D gamma distributions (by setting the shape
parameter as 2 and varying the scale parameter from 0.1 to 256)
and 2D ellipses (by varying the major/minor axis ratio of an ellipse
from 0.5 to 2). Then, we can explore how the parameters influence
the aspect ratios selected by various methods.

Fig. 10 presents the relationships between the aspect ratios
selected by the three methods and the associated varying param-
eters. It can be seen that AWO, RV and AL behave roughly
the same for both data sets. All aspect ratios selected for the
gamma distributions are close to 0.5 (Fig. 10(a)), while the aspect
ratios selected for the ellipses consistently equal the associated
major/minor axis ratios (Fig. 10(b)). This implies that AWO, RV
and AL select almost the same aspect ratios for all the data sets.
After discussing this result with the authors of AL [9], we think

Fig. 9 These boxplots summarize the average absolute slopes (not
log-ratios) for each method over all the 1D curve data set.

that their erroneous observation about the relation between AWO
and AL is possibly due to an incorrect AWO implementation.

Data with redundant samples. Compared to AWO and AL, RV
is faster and more stable due to its closed form. Looking at the
aspect ratios shown in Fig. 10(a), RV can consistently produce an
aspect ratio of 0.5, while results from AWO and AL have more
fluctuations, due to the involved optimization processes.

For AWO and AL, gradient-based optimization is often used
to solve for the aspect ratios. However, if the data has redundant
samples, i.e., degenerated line segments with ∆xi=0 and ∆yi=0,
the
√

∆x2
i +(α∆yi)2 term in the derivatives of Eqs. (11) and (6)

(see Appendix) will lead to zero denominators, and invalidate the
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Fig. 10 Exploring how (a) changes in the scale parameter of the
Gamma distribution and (b) major/minor axis ratio in ellipses
influence the aspect ratios selected by AWO, AL and RV.

optimization. Hence, we have to filter out redundant data samples
before applying gradient-based optimization, or use a derivative
free optimization method [22]. In contrast, RV can address such an
issue, so we suggest using RV as the default aspect ratio selection
method. Moreover, note that AWO, AL and RV all degenerate
when the input curve is a pure horizontal/vertical line, for which
any nonzero aspect ratio is a reasonable result in practice.

Fig. 11 Comparing the robustness of LOR, L1-LOR, AO and RV
on a Gaussian curve with (bottom) and without (top) outliers.

5.3 LOR vs. L1-LOR vs. GOR vs. AO
Fig. 7 shows that LOR tends to select extremely large or small
aspect ratios, whereas L1-LOR and AO produce more reasonable
ratios, especially for 2D contours. For 1D curves, LOR behaves
similarly to L1-LOR in most cases. We believe the reason is that
the slopes are not too large (see data set 9-13 in Fig. 8 (3rd
row)), so that the optimizations based on L2 and L1 norms produce
similar results. For some data sets, e.g., fancy in Fig. 8, AO, L1-
LOR and LOR have similar behavior due to strong high frequency
components in the curve. As discussed in previous works [7], [9],
methods based on maximizing orientation resolution, including
LOR, L1-LOR and GOR, are not applicable to degenerated cases,
where the resulting aspect ratio could be a random value. Com-
pared to other methods, GOR involves a prohibitively expensive
iterative optimization; thus, it is often not recommended [7].

Outlier. Although it is hard to find the global optimum for L1-
LOR, the L1 norm in L1-LOR makes it less sensitive, or more
robust, to outliers in data [23], e.g., data points with extreme
values compared to the neighbors. The reason is that L1-LOR puts
equal weights to all orientation resolutions, while LOR puts larger
weight to large orientation resolutions by squaring the orientation

Fig. 12 Comparing the aspect ratios generated by MS, AO, AWO,
RV and AL on 2D circular contours with (a) uniform and (b) non-
uniform edge sampling, where the absolute slopes are sorted (from
bottom to top in each plot) in the ascending order are shown on
the left, whereas the selected aspect ratios are shown on the right.

resolution term. Hence, L1-LOR can select similar aspect ratios
for the same data with and without outliers; see Fig. 11, where
LOR selects extreme aspect ratios.

Like L1-LOR, both AO and RV compute aspect ratios by
using L1 norm, so their selected aspect ratios do not exhibit large
variations as LOR; see again Fig. 11. However, AO may select
extreme aspect ratios for some 1D curves as shown in Fig. 5(a),
where the nearly horizontal line segments are squeezed in order to
average the absolute orientation to 45◦. Thus we do not suggest to
use AO and LOR for practical usage.

In summary, we recommend L1-LOR for inputs without de-
generated line segments; otherwise, we should filter the data first.

5.4 AS, AO and MS
Fig. 7 shows that AS usually selects smaller aspect ratios than RV
for contour plots, and behaves similarly to RV for 1D curves. This
is because RV is the parameterization invariant form of AS.

Non-uniform Parameterization. AO and MS behave similarly
to RV for most contour plots (see Fig. 7(b)), which is consistent
with the observation of Talbot et al. [9]. However, it should be
noted that AO and MS may not always select similar aspect ratios,
e.g., see data set census in Fig. 7. To validate this observation,
we synthesized a contour plot with 10 circles and then sampled
the contours with 30 edges, both uniformly and non-uniformly.
Results in Figs. 12 (a,b) show that AO and MS only behave
similarly to RV for equally-sampled contours, while AWO, AL
and RV always select exactly the same aspect ratio. The reason is
that both AO and MS are not parameterization invariant.

Due to its simplicity, MS has been widely used in practice [5],
[7]. Since the computation procedure of RV is even simpler than
searching for the median and RV is parameterization invariant
(thus more stable), we recommend to use RV instead of MS as the
default aspect ratio selection method.

5.5 RV and L1-LOR
Fig. 7 show that the aspect ratios selected by RV and L1-LOR are
similar for most 2D contours, and more different for all the 1D
curves. However, L1-LOR does not select extreme aspect ratios
for most data, and the aspect ratios selected by the two methods
could complement each other for all the 1D curves.

Noise. Since both RV and L1-LOR use L1 norm to compute the
aspect ratio, they are robust to outliers as discussed in Section 5.3.
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Fig. 13 Exploring the sensitivities of RV and L1-LOR by adding
white noise with varying SNR to the sin function. (a) The scatter
plot and fitted curves show the relationship between the aspect
ratios selected by L1-LOR (pink) and RV (red) against SNR; (b,c)
The input curves (top row, α=1) and curves plotted with the aspect
ratios selected by RV (middle row) and L1-LOR (bottom row).

We further study their sensitivities to noise by adding white
noise with varying SNR to the sin function. Fig. 13(a) shows
the relationship between the aspect ratios selected by RV and L1-
LOR against SNR. To compare the difference between the two
methods, we fit two regression curves (pink and red) in Fig. 13(a),
with which we can see that the aspect ratios selected by the
two methods have large differences when the noise level is low
(SNR>40). To explore the variations over different noise levels,
we prepare two additional curves with SNR=20 and SNR=60
in Figs. 13 (b,c), respectively. We can see that both methods
select too small aspect ratios when the noise level is large (see
Fig. 13(b)), so that the trends in the data cannot be clearly
presented. To address this issue, we suggest finding a suitable
aspect ratio by using only the low frequency component in the
data (see Section 6).

5.6 Summary
To support the goal of recommending methods for selecting aspect
ratios in line charts, we summarize the behaviors of methods for
1D curves below:

• Although AL and AWO always perform similarly to RV, RV
is faster and is the only method that can handle data with
redundant samples;

• Compared to LOR and GOR, L1-LOR is more robust and
achieves certain parameterization invariance; and

• L1-LOR and RV produce different aspect ratios for most data
but performs similarly for the data with strong noise.

The first two findings above correspond to methods in the
banking to 45◦ and orientation resolution groups, respectively; see
the Venn diagram we constructed in Fig. 6. Taking the third finding
into account, we suggest selecting aspect ratios by considering
both RV and L1-LOR; see Section 6 for more details.

A common limitation. It should be noted that neither RV nor
L1-LOR can choose reasonable aspect ratios for data with strong
spike noise, i.e., data with very fast fluctuation in small scales; see
the blue curve in Fig. 14(a). For such data, the average absolute
orientation and the averaged orientation resolution are close to
90◦ and 0◦, respectively; see Fig. 14(d). Note that for a data with
n line segments, the average absolute orientation is defined as
∑i |θi|/n (see Eq. (5) for the meaning of θi) and the averaged

Fig. 14 Exploring the influence of spike noise on aspect ratios
selected by RV and L1-LOR. (a) The blue curve is the input spike
noise and the pink one is plotted with the aspect ratio (0.04)
selected by both methods; (b) adding varying amounts of spike
noise (λ ) to function Γ(2,8) (top row) and the curves (middle &
bottom rows) plotted with the aspect ratios selected by RV and L1-
LOR; and (c,d) the relationships between the aspect ratios selected
by L1-LOR and RV (c), the average absolute orientation (the blue
curve in (d)), and the averaged absolute orientation resolution (the
green curve in (e)) against λ (horizontal axis). These plots (c,d)
show that when the amount of spike noise (λ ) increases, the aspect
ratios selected by both L1-LOR and RV drop quickly, and the
average absolute orientation quickly increases.

orientation resolution is defined as ∑
n−1
i=1 γi,i+1/n−1 (see Eq. (7)

for the meaning of γ). To bank data with strong spike noise to 45◦,
both RV and L1-LOR have to choose an extremely small aspect
ratio. For example, 0.04 is chosen as the aspect ratio for the blue
curve in Fig. 14(a) to produce the pink curve.

We further study the influence of spike noise by adding varying
amounts of spike noise (λ ) to function Γ(2,8); see Fig. 14(b).
Fig. 14(c) shows the relationship between the aspect ratios selected
by RV and L1-LOR against λ . We can see that the aspect ratios
quickly drop to around 0.03 when λ increases just to 0.2. Using
extremely small aspect ratios, the resulting data plots would be
flattened (see Fig. 14(b)), so the major data patterns are obscured.
Hence, we suggest to apply a median filter to first smooth out the
spike noise in the data before selecting the aspect ratio.

6 DUAL-SCALE BANKING

Essentially, RV and L1-LOR reveal data trends in different scales,
so we recommend to simultaneously use both of them to select
aspect ratios, and refer the technique as the dual-scale banking.

6.1 Method
Given an input data set, dual-scale banking first considers if the
data contains a large amount of spike noise; if this is the case, it
will first apply a median filter [24] to smooth out the spike noise
(see Section 5.6) before applying RV and L1-LOR to compute two
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Fig. 15 Flowchart of dual-scale banking, where ω is the average
absolute orientation of the input data, and αmax and αmin are the
maximal and minimal aspect ratios selected by RV and L1-LOR.

Fig. 16 Demonstrating the application of our dual-scale banking
technique to the Sunspot data. (a,b) Plots produced by directly
applying RV and L1-LOR to the original data. The resulting aspect
ratios are too small to reveal any meaningful patterns. (c,d) results
of dual-scale banking, where we apply RV and L1-LOR to a
median-filtered curve (in red), and produce two plots (one by RV
(c) and one by L1-LOR (d)) to show complementary patterns.

aspect ratios on the data. Then, we check if the two ratios are close
to each other. As suggested by Heer and Agrawala [7], if the ratio
between the larger aspect ratio and the other one is less than 1.25,
the two selected aspect ratios will reveal similar scales of interest;
hence, we only use the larger aspect ratio to generate a single
plot. Otherwise, we produce two plots with the two aspect ratios.
Fig. 15 shows the flowchart of our dual-scaling banking method.

Dual-scale banking enables us to effectively reveal patterns
of interest in different scales. As shown in Fig. 16, the filtered
curve produced with RV can better show the oscillating period
(see Fig. 16(c)) while the curve produced with L1-LOR can better
present the local maxima and their oscillations over the cycles
(see Fig. 16(d)). However, dual-scale banking introduces a new
task for the user to decide if the given data contains strong spike
noise. As shown in Fig. 14(d), the average absolute orientation of

the data quickly increases as λ increases to 0.1. Thus, we judge
if the data requires median filter smoothing by checking whether
the average absolute orientation of the data is larger than a given
threshold. Through an experimental analysis, we set the threshold
as 75◦; see the supplemental material for details. Here, we do not
use the averaged absolute orientation resolution because it is a
second-order variable and is not as stable as the average absolute
orientation; see Fig. 14(d).

6.2 Results
To demonstrate the applicability of our dual-scale banking tech-
nique, we apply it to a number of real-world data. Typically, we
show results using the presentation style shown in Figs. 16 (c,d),
where we overlay the computed trend curve (red) over the data
(blue) plotted with the selected aspect ratio.

Dole. The first data set is dole [2], which is a classic example used
by Talbot et al. [9] to illustrate the difference between AL and
the other methods. This data set contains the number of persons
receiving unemployment benefits in Australia from Jan. 1956 to
Jul. 1992; note that the data is uniformly spaced over time. The
aspect ratios and the resulting curves are presented in Fig. 1, where
the aspect ratio selected by L1-LOR is roughly three times larger
than that of RV. We can see that Fig. 1(a) can better highlight
the lower frequency trend in the data, while Fig. 1(b) can help to
emphasize the higher frequency cycles of interest.

Sunspot Cycles. This time series [2] records the number and
size of sunspots observed over a given period of time; note that
sunspots are dark regions observed on the Sun. Here, we use
the sunspot data set measured monthly from 1749 to 2008. From
Figs. 16 (a,b), we can see that direct applications of RV and L1-
LOR to the raw input data would lead to too small aspect ratios,
where interesting patterns are all annihilated. In such situation,
dual-scale banking would apply RV and L1-LOR to the curve after
the median filter smoothing; see the red plots in Figs. 16 (c,d),
and produce two new aspect ratios. As a result, we can present
different patterns of interest and explore the same data in different
perspective. For instance, Fig. 16(c) can better reveal the sunspot
period, where each interval has a faster increase and more gradual
decrease, while Fig. 16(d) can better reveal the local maxima and
their fluctuations.

China Population. To demonstrate the advantage of being
parameterization invariant for dual-scale banking, we apply it to
the China population statistics data set [25] that ranges from BC
221 to 2010. Note that it was not possible to have uniform data
over such a long period for various historical reasons, so the data
is non-uniformly sampled. Fig. 17 shows the results, where the
(unevenly distributed) marker points correspond to the existing
numbers. Fig. 17(a) strongly emphasizes a significant increase in
population that occurred since 1620 during the Qing Dynasty. In
contrast, Fig. 17(b) reveals some oscillations before such increase,
especially the one around 1063 during the Song dynasty.

In this example, most parameterization variant methods select
larger or smaller aspect ratios, except AO. AO performs similarly
to L1-LOR (0.973 vs. 0.972), which is consistent with our analysis
in Section 4.3. This result demonstrates that dual-scale banking
can efficiently deal with non-uniformly sampled data.

7 DISCUSSION AND FUTURE WORK

In this paper, we present a comprehensive study on various kinds
of aspect ratio selection methods by exploring their parameter-
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Fig. 17 Exploring the China population statistics using dual-scale
banking. Two plots are produced with the aspect ratios selected
by (a) RV and by (b) L1-LOR, where (a) highlights the significant
increase in population during the Qing dynasty (1636-1911), while
(b) highlights other oscillations before the significant increase.

ization invariance, deriving their relationships, and conducting
quantitative comparisons among them. The results lead to the
following three guidelines for choosing aspect ratio selection
methods: i), AL, AWO and RV always perform very similarly,
but RV is faster and is the only method that can handle data
with redundant samples; ii), L1-LOR is more robust than LOR
and GOR and has certain parameterization invariance; and iii) L1-
LOR produces reasonable but different aspect ratios compared to
RV for most data. Based on these findings, we develop the dual-
scale banking technique, aiming to take advantages of both RV and
L1-LOR when selecting aspect ratios and revealing data patterns.
Lastly, we also demonstrate the effectiveness and parameterization
invariance advantage of dual-scale banking on various real-world
data sets.

Although we unveiled the parameterization invariance of most
methods and mathematically derived the connections for several
of them, there are still open questions about the mathematical
foundation of various methods. First, we did not provide a formal
proof to show that AL banks the line segments to 45◦. Second, the
differences among the aspect ratios selected by AL, AWO and RV
were not explained. For most data, their aspect ratio values occur

in the order AWO>RV>AL, while we observe AL>RV>AWO
for a few algebraic curves such as ln(x). Lastly, we did not
extensively investigate the condition for L1-LOR and LOR to
produce similar aspect ratios, although we know that their major
difference is on the L1 and L2 norm in their formulations.

On the other hand, our quantitative comparison demonstrates
that AWO, RL and RV perform similarly, while L1-LOR produces
results that are reasonable but different from RV’s. The perceptual
foundations of these methods are different. Both AWO and L1-
LOR are derived from the perceptual argument of maximizing
the orientation resolution. Thus, we would like to investigate the
equivalence between maximizing the orientation resolution and
banking the line segments to 45◦ by studying how people judge the
ratio of the slopes of multiple adjacent line segments. Regarding
AL and RV, they lack adequate perceptual criteria, although the
authors suggested some hypothesis [8], [9]. Investigating the visu-
al cues to understand the perceptual justification of RV and AL is
part of our ongoing work. Well-designed human subject evaluation
will likely be necessary to learn whether the perceptual reasons
behind all three methods are equivalent. In addition, extending RV
and L1-LOR to select suitable aspect ratios for line graphs with
multiple time series [26] and 2D scatterplots [11] may provide
more insights into their perceptual foundations.

APPENDIX

The derivative of Eq. (6) for AWO with respect to α is
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while the derivative for Eq. (11) of AL is
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