
程序设计思维与实践
汪云海

http://www.yunhaiwang.org/

http://www.yunhaiwang.org/

2

汪云海

• Joined SDU in Dec. 2015

• Research Interests
• Visualization
• Machine learning

• Office hours
• I am available a lot –in N3 403

Come to talk with me if you have any question

• More about me ….. http://www.yunhaiwang.org/

http://www.yunhaiwang.org/

3

助教：薛明亮

• 泰山学堂2013级，2017级硕士生

• 610033470@qq.com

课程目标

• 提高CCF CSP考试通过率

• 增强写程序的速度与能力

课程目标
• 促进ACM ICPC竞赛成绩

山东大学？

2016年ACM ICPC中国高校成绩

学习目标

• Given a problem, we want to
• solve it efficiently

• by using algorithms and data structures,

• convert our solution into a program,

• do it as quickly as possible (under pressure)

• and do it correctly (without bugs)

• This course will exercise this process

How

• Study common types of problems

• Show common applications of algorithms and data structures you
already know from

• Introduce other common algorithms and data structures

• Go over some commonly used theory

• Practice problem solving

• Practice programming

• More practice

• More practice

Course Book

Course Book

参考书

• Competitive Programming by Steven Halim

• First edition can be downloaded from the book homepage:

https://sites.google.com/site/stevenhalim/

• We will also loosely follow the first edition

• There’s also a 2nd and 3rd edition (both should be compatible with

• our course), but they need to be ordered online

https://sites.google.com/site/stevenhalim/

Course Schedule

• C/C++进阶（2次课）
• 结构化程序设计
• 数组和字符串
• 函数和递归
• C++与STL入门

• 数据结构和基本算法（3次课）
• 数据结构基础
• 复杂度分析
• 暴力求解算法

• 高级算法（10次课）
• 高效算法设计
• 动态规划
• 数学概念
• 图论模型与算法
• 难题选解

上机时间

编译器和调试器

• GCC: gcc test.c –o test

• Linux系统安装时选择gcc, g++

• Windows安装MinGW

• GDB命令

C/C++语言测试

Q1: Identify and correct the errors in each of the
following statements: (10)

(a) (5) char *str = f"happy"g; str[1] = "e"; str[2] = "l";

(b) (5) mul (double x, y){ double x, y; return x * y; }

Q2: Recursive (30分)

(a) Consider the following recursive function. Rewrite it using iterative
(nonrecursive) approach.
int sum(int n) {

if (n < 1) return 1;

return sum(n - 1) * (n - 1) + n;

}

(b) Consider the following function sum. Rewrite it as a recursive function.
int sum (int n) {

int i, sum = 1;

for (i = 1; i <= n; i++) sum *= i + 1;

return sum;

}

Q3: Write the result after executing the
following program. (10分)
int func (int a, int b)

{
b *= 2;

printf("a = %d, b = %d.\n", a, b);

return --a * (b - 8);

}

int sub (int *a, int *b) {
*a -= 6;

printf("a = %d, b = %d.\n", *a, *b);

return *a-- * ++*b;

}

int main() {

int x = 6, y = 8;

x = func(y, y);

printf("x = %d, y = %d.\n", x, y);

x = sub(&y, &y);

printf("x = %d, y = %d.\n", x, y);

return 0;

}

Q4:Write a function that passes a string and
reverse it (20)

Q5: Write the following function using the
following structure for a point. (30)
typedef struct {

double x, y;

} Point;

(a) (12) A function that passes two points and returns the distance of
them.

(b) (18) A function that passes three points and return the area formed
by these three points.

答案

Q1:

(a) Error: The extra braces are not required for string assignment. The
character of a character pointer cannot be changed.

The character should be enclosed in single quotation marks.

Correction: char str[6] = "happy"; str[1] = 'e'; str[2] = 'l';

(b) Error: The function should have a return data type. The parameters
should have data types. The parameters should

not redeclared in the function.

Correction: double mul (double x, double y) { return x * y; }

Q2:

(a) int sum (int n) {

int i, sum = 1;

for (i = 1; i <= n; i++) sum = sum * (i - 1) + i;

return sum;

}

(b) int sum(int n) {

if (n < 1) return 1;

return sum(n - 1) * (n + 1);

}

Q3

• Ans:

a = 8, b = 16.

x = 56, y = 8.

a = 2, b = 2.

x = 9, y = 3

Q4

#define SIZE 81

void reverse(char s[]) {

int len = strlen(s), i;

char r[SIZE];

for (i = 0; i < len; i++) r[i] = s[len - i - 1];

for (i = 0; i < len; i++) s[i] = r[i];

}

Q5

(a) double distance(Point p1, Point p2) {

return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));

}

(b) double area(Point p1, Point p2, Point p3) {

double a = distance(p1, p2), b = distance(p2, p3), c = distance(p3, p1);

double s = (a + b + c)/2;

return sqrt(s * (s - a) * (s - b) * (s - c));

}

测试

• 90分？ 5

• 高于80分？ 10

• 高于60分？20

Typical programming contest problems

• Usually consists of

1. Problem description

2. Input description

3. Output description

4. Example input/output

5. A time limit in seconds

6. A memory limit in bytes

• You are asked to write a program that solves the problem for all

valid inputs

• The program must not exceed time or memory limits

16

Problem description

Write a program that multiplies pairs of integers.

Input description

Input starts with one line containing an integer T, where 1 ≤ T ≤ 100,
denoting the number of test cases. Then T lines follow, each containing
a test case. Each test case consists of two integers A, B, where −220 ≤

A, B ≤ 220, separated by a single space.

Output description

For each test case, output one line containing the value of A × B.

17

The problems

Example problem

18

Sample input Sample output

4

3 4

13 0

1 8

100 100

12

0

8

10000

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

int A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

19

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

int A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

•
Is this solution correct?

19

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

int A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

•

•

Is this solution correct?

What if A = B = 220?

19

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

int A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

•

•

Is this solution correct?

What if A = B = 220? The output is 0...

19

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

int A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

•

•

Is this solution correct? No!

What if A = B = 220? The output is 0...

19

Example solution

• When A = B = 220, the answer should be 240

20

Example solution

• When A = B = 220, the answer should be 240

•
Too big to fit in a 32-bit integer, so it overflows

20

Example solution

• When A = B = 220, the answer should be 240

•

•

Too big to fit in a 32-bit integer, so it overflows

Using 64-bit integers should be enough

20

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

21

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

• Is this solution correct?

21

Example solution

#
include <iostream>

using namespace std;

int main() {

int T;

cin >> T;

for (int t = 0; t < T; t++) {

long long A, B;

cin >> A >> B;

cout << A * B << endl;

}

return 0;

}

• Is this solution correct? Yes!

21

Example solution

What is ACM ICPC

• ACM: Association for Computing Machinery
• http://www.acm.org/

• the world’s largest educational and scientific computing society

• ACM ICPC
• ACM International Collegiate Programming Contest

• http://en.wikipedia.org/wiki/ACM_International_Collegiate_Programmin
g_Contest

http://www.acm.org/
http://en.wikipedia.org/wiki/ACM_International_Collegiate_Programming_Contest

ACM ICPC

• ICPC is a competition among teams of students representing
institutions of higher education.

• Teams compete in Regional Contests, from which top scoring teams
advance to the ACM-ICPC World Finals.

• Each team has three students, sharing one computer, given a
number of programming problems

• Coordination and teamwork are essential

Programming Languages and Judge
• You can use:

• C, C++, Java and others such as: Python, C#

• Online Judge
• Feedback :

• Accepted (AC) – congratulations!
• Presentation Error (PE) – Your program outputs are correct, but are

not presented in the specified format. Check for spaces, left/right
justification, line feeds, etc.

• Wrong Answer (WA) – Your program returned an incorrect answer
to one or more of the judge’s secret test cases

• Compile Error (CE) – The judge’s compiler cannot compile your
source code

• Runtime Error (RE) – Your program failed during execution
due to a segmentation fault, floating point exception, or
others.

• Time Limit Exceeded (TL) – Your program took too much
time on at least one of the test cases. Try to improve the
efficiency of your solution!

• Memory Limit Exceeded (ML) – Your program tried to use
more memory than the judge’s settings.

Available Online Judges

• Famous online judges
• Valladolid OJ (http://acm.uva.es/p)

• Ural OJ (http://acm.timus.ru)

• Saratov OJ (http://acm.sgu.ru)

• ZJU OJ (http://acm.zju.edu.cn)

• ZJUT OJ (http://acm.zjut.edu.cn)

• Official ACM Live Archive (http://cii-judge.baylor.edu/)

• Peking University Online Judge (http://acm.pku.edu.cn/JudgeOnline/)

• Programming Challenges (http://www.programming-challenges.com)

To get ready some suggested Books

• Art of Programming Contest (free online)
• http://online-judge.uva.es/p/Art_of_Programming_Contest_SE_for_uva.pdf

• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, Introduction to Algorithms, 2nd Edition, The MIT Press, 2001.

• Robert Sedgewick, Bundle of Algorithms in Java, Third Edition (Parts 1-5),
3rd Edition, Addison-Wesley Professional, 2003. (There is also a C++
version).

• Donald E. Knuth,The Art of Computer Programming, Volume 1, 2, 3.

http://online-judge.uva.es/p/Art_of_Programming_Contest_SE_for_uva.pdf

Subjects

• You should be familiar with:
• Data Structure

• Strings and Sorting

• High precision arithmetic

• Combinatorics and number theory

• Divide and conquer & backtracking

• Dynamic programming

• Computational geometry

• Scientific computing

Standard in ACM contest

• Input/Output
• each program must read the test data from the standard input and print

the results to the standard output
• For C language, use scanf() and printf()

• For C++, use cin and cout

• scanf() and printf() are also supported

• For Java, refer to http://www.programming-challenges.com/pg.php?page=javainfo

• Programs are not allowed to open files or to execute certain system calls

http://www.programming-challenges.com/pg.php?page=javainfo

Not nice for debugging

#include <stdio.h>

int main ()

{

freopen(“FILE_NAME_FOR_INPUT”,”r”,stdin);

freopen(“FILE_NAME_FOR OUTPUT”,”w”,stdout);

Rest of the codes…

return 0;

}

While sending your code to online judges,

remember to remove the two lines with freopen.

Things to avoid

• Avoid the usage of the ++ or -- operators inside
expressions or function calls

• Avoid expressions of the form *p++

• Avoid pointer arithmetic. Instead of (p+5) use p[5].

• Never code like : return (x*y)+Func(t)/(1-s);
• but like :

• temp = func(t);

• RetVal = (x*y) + temp/(1-s);

• return RetVal;

Things to avoid

• Naming
• Don’t use small and similar names for your variables. Use descriptive names.

• Don’t use names like {i,j,k} for loop control variables. Use {I,K,M}.

• It is very easy to mistake a j for an i when you read code or “copy, paste &
change” code,

Nature of problems to solve
• Data structure problems

• Algorithms
• To solve real problems efficiently

• Categories:
• Sorting
• Searching
• Graph algorithms
• Scientific computing: matrix, number-theoretic, computational

geometry, etc.
-etc

• Mathematics
• Everything finally goes back to mathematics!
• Number theory
• Geometry
• Combinatorics
• Graph theory
• …

Good Team

• Knowing your strength and weaknesses

• Knowledge of standard algorithms and the ability to find
an appropriate algorithm for every problem in the set;

• Ability to code an algorithm into a working program;

• Having a strategy of cooperation with your teammates

Tips & tricks

• Brute force when you can, Brute force algorithm tends to
be the easiest to implement.

• KISS: Simple is smart! (Keep It Simple, Stupid !!! / Keep It
Short & Simple).

• Hint: focus on limits (specified in problem statement).
• Waste memory when it makes your life easier (trade

memory space for speed).
• Don't delete your extra debugging output, comment it out.
• Optimize progressively, and only as much as needed.
• Keep all working versions!

Tips & tricks

• Code to debug:
• a. white space is good,
• b. use meaningful variable names,
• c. don't reuse variables, (we are not doing software engineering here)
• d. stepwise refinement,
• e. Comment before code.

• Avoid pointers if you can.

• Avoid dynamic memory like the plague: statically allocate everything.

• Try not to use floating point; if you have to, put tolerances in
everywhere (never test equality)

Problem example
Source: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1001

• Time Limit:1 second Memory Limit:32768 KB

• Description: Calculate a + b

• Input:
• The input will consist of a series of pairs of integers a and

b, separated by a space, one pair of integers per line.

• Output:
• For each pair of input integers a and b you should output

the sum of a and b in one line, and with one line of output
for each line in input.

• Sample Input:
1 5

• Sample Output:
6

Solution

/* C code */

#include “stdio.h”

int main()

{

int a, b;

while (scanf(“%d %d”, &a, &b)

!= EOF) {

printf(“%d\n”, a+b);

}

return 0;

}

/* Java code */

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

Scanner in = new Scanner(System.in);

while (in.hasNextInt()) {

int a = in.nextInt();

int b = in.nextInt();

System.out.println(a + b);

}

}

}

Set of problems that you can train on

• Source: Fundamental
Problems
http://acm.zjut.edu.cn

1181

1185

1190

1191

1187

1204

1208

1205

1044

1167

1166

1174

1175

1176

1177

1178

1179

• Source: Fundamental

Problems

http://acm.uva.es

http://acm.uva.es/p/v1/100.html

http://acm.uva.es/p/v101/10189.html

http://acm.uva.es/p/v101/10137.html

http://acm.uva.es/p/v7/706.html

http://acm.uva.es/p/v102/10267.html

http://acm.uva.es/p/v100/10033.html

http://acm.uva.es/p/v101/10196.html

http://acm.uva.es/p/v101/10142.html

http://acm.zjut.edu.cn
http://acm.uva.es
http://acm.uva.es/p/v1/100.html
http://acm.uva.es/p/v101/10189.html
http://acm.uva.es/p/v101/10137.html
http://acm.uva.es/p/v7/706.html
http://acm.uva.es/p/v102/10267.html
http://acm.uva.es/p/v100/10033.html
http://acm.uva.es/p/v101/10196.html
http://acm.uva.es/p/v101/10142.html

评分标准

•作业: 85%

•比赛: 15%

2015年2月25日星期三 59

