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Abstract
One main task for domain experts in analysing their nD data is to detect and interpret class/cluster separations and outliers.
In fact, an important question is, which features/dimensions separate classes best or allow a cluster-based data classification.
Common approaches rely on projections from nD to 2D, which comes with some challenges, such as: The space of projec-
tion contains an infinite number of items. How to find the right one? The projection approaches suffers from distortions and
misleading effects. How to rely to the projected class/cluster separation? The projections involve the complete set of dimension-
s/features. How to identify irrelevant dimensions? Thus, to address these challenges, we introduce a visual analytics concept for
the feature selection based on linear discriminative star coordinates (DSC), which generate optimal cluster separating views
in a linear sense for both labeled and unlabeled data. This way the user is able to explore how each dimension contributes
to clustering. To support to explore relations between clusters and data dimensions, we provide a set of cluster-aware inter-
actions allowing to smartly iterate through subspaces of both records and features in a guided manner. We demonstrate our
features selection approach for optimal cluster/class separation analysis with a couple of experiments on real-life benchmark
high-dimensional data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

High dimensional data occur in a number of domains, such as
biology, physics, or economy. To support the user gain insight-
s from such data, visual cluster exploration is an effective way
[CL06, SMT13], which visualizes the clusters in low dimensional
space. Regarding this, star coordinates [Kan01] (SC) project n di-
mensional data onto a 2D space. By interactively changing the SC’s
parameters, the cluster structures of high dimensional data may be
revealed. However, finding good projections through this kind of
user interactions is a tedious, time-consuming, error-prune, trial-
and-error process. Thus, we formulate star coordinates as a special
case of linear dimensionality reduction [DL07, JW02] to automat-
ically separate the data’s clusters/classes best and in order to facil-
itate a reliable and simple feature selection techniques for our do-
main experts for both: labeled and unlabeld nD data. By interacting
with our discriminative star coordinates (DSC), a purposeful visual
cluster analysis of high dimensional data is enabled. Moreover, s-
ince the projection properties deciphers the influence of dimensions
to the projection, our approach allows an efficient feature selection
by the domain experts.

Feature selection is in that regard one of the most relevant appli-
cations for domain experts that aim to identify a subset of relevant
features for model construction. Regarding cluster exploration, our
application partners are interested in finding subspaces, i.e. a set
of features/dimensions, that allows linear separation between the
clusters. Although projection pursue [FT74] can automatically find
the best linear separation according to a particular quality measure,
it does not allow users to interactively explore the relationship be-
tween features and cluster separation. On the other hand, interac-
tively exploring the projection space to find good projections from
the scratch is a tedious procedure.

One popular example for this is the cluster separation in the WD-
BC data set: In good projections, doctors figured out that two global
clusters separate well, which allow to discriminate between malig-
nant and benign breast cancer tumour cells. Figure 1(left) shows
the separation. This way, the doctors were able to identify which
features/dimensions allow such a separation of the cell types.

However, apparently, this interactive process may be overwhelm-
ingly time consuming and it guarantees no success. Even worse,
success is just coincidently possible. Nevertheless, the domain ex-
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perts still rely on the interactive exploration approach. Why is it
so? Due to a simple fact: our domain experts are experts for their
domain, but neither for data analysis nor for,e.g., machine learning.
Thus, we provide a visualization approach that the domain expert-
s can use without any further effort or knowledge. Nonetheless, it
enables an efficient feature selection for interesting subspaces to
reliably allow the linear separation of cluster/classes.

In summary, the main contributions of this paper include:

• We introduce data-driven algorithms for labeled and unlabeled
data to get the best separating projections;

• We judge why our projections successfully address the issue of
reliability, misleading, and the infinite number of projections;

• We illustrate how a (quick) feature selection is enabled by our
approach and define a visual analytics scheme that facilitates in-
teractive feature analysis and cluster exploration; and

• We demonstrate our prototype for a set of standard real bench-
mark nD data sets.

In the following we motivate our work by discussing the clus-
ter/class separation background and by deriving and introducing
the infinite number issue, the reliability issue, and the misleading
issue, which will be successfully addressed by our technique.

2. Motivation

One relevant information in order to analyze nD data is to know
how the data are grouped and separated in between, denoted clus-
tering and class separation, respectively.

In detail, if data – such as illustrated in Figure 1(a) – are linearly
separable, one can assume a linear boundary that separates the data
in class A on the left side and class B on the right. The (toy) exam-
ple in Figure 1(b) illustrates this (blue line). The less distant a data
record is to this boundary, the less likely is it to have classified this
record correctly. In other words, the inverse distance to the classi-
fication boundary is a measure for the reliability and quality of the
classification. Thus, one would suppose the quality of classifica-
tion of Figure 1(c) to be better than that of Figure 1(b), because the
class-based records are more distant to the boundary. Clearly, one
is interested in maximizing the empty margin (red lines) around the
boundary in order to get reliably cluster/classes of the data. More-
over, the smaller the average distance of a cluster record is to its
average point (called centroid), the more likely is it that records be-
long to this cluster and does not potentially shape up a cluster by
its own. See Figure 1(e-f). In fact, compact clusters that minimiz-
ing their spread are preferred, such these in Figure 1 (f). To sum up,
for reasons of reliability one is interested in clusters that maximize
the margin and minimizing their spread, which well fits with the
objective of LDA [?]. These are the separation properties that are
usually to be considered as to be relevant and interesting in the nD
data.

However, the separation properties of high-dimensional data it-
self cannot be visually analysed, since the lack of dimensionality.
Thus, an established approach is to project the data (in a multivari-
ate sense) onto a 2D domain. Figure 1(a) illustrates how such a
projection from nD to 2D may look like. Unfortunately, there is an
infinite number or multivariate projections, often condense in the
term curse of dimensionality: Some projections show the data sep-
aration reliably. Some projections show separation, that does not
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Figure 1: Cluster/Class Separation Properties

exist in the data, due to several reasons, such as distortion, overlap-
ping, and so fourth in the projection process. These projection are
not reliable at all. Moreover, the majority of projections show no
separation properties at all.

From this, a set of questions arise, which motivates our work:

• Infinity Projections Issue: How can we find a finite set of pro-
jections (or a single) that separates the projected points best,
from the number of infinite ones?

• Reliability Issue: How can we maximize the reliability of the
seen clusters, i.e., how to maximize the margins and compact-
ness of the clusters/classes?

• Misleading Issue: How can we be sure that the seen separation
illustrated the the nD data separation correctly?

In the next section we revise work which is related to ours.

3. Related work

In this section, we review related work from the field of projection-
based data visualization.

Multidimensional Data Visualization: By showing all pairwise
combinations of scatterplots, a scatterplot matrix [BC87] reveals
all pairwise correlations. Parallel coordinates [Ins85] represent the
dimensions as a set of parallel axes and render each data tuple as
a polyline. These methods are tailored to visualize correlation and
trends, but are not effective in cluster analysis. Recently researchers
have tried to enhance the cluster analysis capability of these meth-
ods [JLJC05, ZYQ∗08], however, they can handle 20 dimensions
at most due to their poor scalability. See Keim et al. [AMS02] for
more details.

The most often used dimension reduction (DR) methods include
PCA, LDA [JW02], projection pursuit (PP) [FT74], and many vari-
ants of MDS [BG05]. PCA is an unsupervised method that pursues
a subspace preserving the maximal data variances, while LDA s-
elects the best subspace to linearly separate different classes from
a labeled data set. To combine the advantages of these two meth-
ods, Choo et al. [CBP09] propose a two-stage framework for vi-
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sualization of labeled data. LDA and PCA both assume the data
or class follows a Gaussian distribution, which might not be true
for some data. In contrast, PP pursues the most interesting projec-
tion where the “interestingness” is defined as the non-Gaussianity
of the projection [FT74]. All these methods belong to linear DR
methods that find the subspace by seeking a projection matrix. In
contrast, MDS [BG05] is a non-linear method that aims to preserve
the distances between data pairs in a low dimensional space. To
reduce the computation cost, part-linear multidimensional projec-
tion (PLMP) [PSN10] and local affine multidimensional projection
(LAMP) [JPC∗11] construct the embedding space through a subset
of representatives.

It is challenging to learn how each dimension is related to the
clustering result, because original data attributes are lost in the fi-
nal visualization. To address this issue, LDA or its variants are in-
tegrated together with star coordinates [RSRDS16,VLL11], whose
axes vectors are defined by the projection matrix. Our DSC further
extends such work to unlabeled data and provides a set of interac-
tive methods that facilitates the user to explore how each dimension
contributes to the class/cluster structures.

Star Coordinates: The method of star coordinates is proposed by
Kandogan et al. [Kan01]. It is defined by uniformly arranging n
coordinate axes on a circle with the origin at the center. With the
2× n projection matrix defined by n axes, star coordinates repre-
sent a 2D linear embedding of the original data. Based on such
low dimensional projections, Friedman et al. [FT74] find projec-
tion that robustly reveals structures in the data with the projection
pursuit method. To make a complete view of the data, Asimov in-
troduced the grand tour [Asi85] to visualize high dimensional data
with a sequence of two-dimensional embedding. Due to its efficien-
cy in visualizing high-dimensional clusters, Teoh and Ma [TM03]
use star coordinates to facilitate interactive visual classification. Re-
cently, Lehmann and Theisel [LT13] extend these approaches to an
orthography-preserving star coordinates, they provide optimal and
short data tours with them [LT15], and they generalize them in a
concept of general projective maps [LT16]. To increase estimation
accuracy, Sanchez and Sanchez [RSS14] suggest to combine data
centering with the orthography-preserving star coordinates [LT13].

The affine multivariate projection techniques still suffer from
the mentioned issues in Sec. 2. It remains unclear how to select
a separating projection from the infinite projection spaces, and if
a projection separates cluster/classes well, it is unclear how reli-
able/misleading these clusters are w.r.t. the original nD data, and
thus feature selection remains challenging.

Feature Selection: The feature selection itself has been considered
from the perspective of the general classifier description [GE03] or
of the feature classifier in nD data [SP14]. Either way, there is still
a need for visualization-based feature selection approaches, which
provide intuitive ways to rank features, compare features among
dimensions, and merge or combines features. Most work in this
area focus on using statistical metrics to characterize the relation-
ship between features [Guo03, SS05, TFH11]. Recently Krause et
al. [KPB14] propose an interactive features selection framework,
which interacts directly with the feature selection and classifica-
tion algorithm. Having similar spirit with this work, our DSC aims
to interactively find features that allow linear separation between
clusters.

4. Technical Background for Affine Projections

Given a data set X= {x1, · · · ,xn}, xi ∈Rn, which has been centered
and normalized, affine star coordinates project a nD point xi to a 2D
point x′i by the matrix multiplication

x′i = GT ·xi, (1)

with GT = (g1, · · · ,gn) is the 2× n projection matrix. Here, the
anchor point g j ∈R2 deciphers the influence and weight of dimen-
sion j to the projection, which can be interactively changed by the
user in order to visually explore the data. Figure 2 illustrates star
coordinates for a 3D data set.
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Figure 2: 3D data and a related Star Coordinates.

Apparently, manually finding a proper G is challenging. Thus,
automatic projection selection techniques have been more and more
used in recent years, for instance, by minimizing a certain objec-
tive function argminG fX. The objective fX defines the features of
interest to be captured in the data. We also rely on an optimization
process in order to define the best class separating projection ma-
trix Gdsc, called Discriminative Star Coordinates (DSC). It will
subsequently be introduced in detail.

5. Discriminative Star Coordinates

In this section, we are looking for a projection matrix Gdsc that
separates the classes/clusters best in the projection space. For this,
we define our Discriminative Star Coordinates (DSC) Gdsc as:

Gdsc = (e1(B) e2(B))T , (2)

where ei are the two eigenvectors to the two largest eigenvalues of
an optimal separation matrix B. The construction of B depends on
whether the data are labeled or not. Thus, we explain in Section 5.1
the construction of B for labeled nD data; and in Section 5.2 for un-
labeld nD data. Finally, we explain the visual design of our scheme
and illustrate the discriminative star coordinates exemplarily.

5.1. Discriminative Star Coordinates for labeled Data

If the data comes with an a priory classification, i.e., the data are
labeled, then both the number of classes and records per class are
known. In this case, the optimal separation matrix B, which max-
imizes the class separation in projection space, can be defined by
discriminant analysis approaches from the field of machine learn-
ing by following [Fuk90].
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For this, assume X consists of samples from k classes, the cor-
responding label is y = {y1, · · · ,yn}, where yi ∈ {1, · · · ,k}. Three
scatter matrices need to be considered: total scatter St , between-
cluster scatter Sb, and within-cluster scatter Sw are defined as fol-
lows [Fuk90]:

St =
m

∑
i=1

xixT
i = Sb +Sw, (3)

Sb =
k

∑
i=1

mi

m
(µi−µ)(µi−µ)T , (4)

Sw =
k

∑
i=1

∑
y j=i

(x j−µi)(x j−µi)
T , (5)

where m is the number of data records, xi ∈ Rn, µ = ∑
m
i=1 xi/m is

the mean of the data, mi is the number of the records of the ith class,
and µi = ∑y j=i x j/mi is mean of the ith class. The within-cluster
scatter of the projected X can be expressed as:

S′w =
k

∑
i=1

mi

m
(x′i−µ′yi

)(x′i−µ′yi
)T

=
k

∑
i=1

BT (xi−µyi)(xi−µyi)
T B

= BT SwB.

For simillar reasons apply:

S′b = BT SbB. (6)

Classes/clusters are optimally separated if the between-class scatter
S′b is maximized and the within-class scatter S′w is minimized, i.e.,
an optimal transformation B maximize trace tr(S′b) but minimize
trace tr(S′w):

max
tr(S′b)
tr(S′w)

= max
tr(BT SbB)
tr(BT SwB)

, (7)

approximated by

maxtr
BT SbB
BT SwB

. (8)

This gives B as the eigenvectors to

the largest k−1 eigenvalues of
Sb

Sw
(9)

for data X with k classes. Since it cannot find a discriminative
2D subspace to characterize the data with two classes, we use the
state-of-the-art To address this issue, we solve Eq. 8 with the state-
of-the-art method [JNZ09], which can efficiently find the global
optimum.

5.2. Discriminative Star Coordinates for unlabeled Data

Unlabeled data does not have a known data classification. Thus,
there is a need to integrate an initial classification or clustering pro-
cess of the data into the process of maximizing the separation in
the projection space, in order to reveal our discriminative star coor-
dinates. For this, we subsequently following the LDA-km algorithm
[DL07] to address this issue: Since so-called irrelevant dimensions

may confuse clustering algorithms [PHL04], a K-Means cluster-
ing is applied in a certain and relevant subspace. This leads to the
slightly modified optimization issue, as

max
B,y

tr(BT SbB)
tr(BT SwB)

. (10)

A closed form solution is not available anymore, but an iterative
pin-pong-esque algorithm does the trick, by alternatively fixing B
and y [DL07]. For this, our approach initiated an initial BT by a
PCA [VDMPVdH09] of the data X. Then, until it converges, our
approach does:

• Fixing B:
y is obtained by performing K-means in the space BT X (to mini-
mize the influence of the initial random centers, we run K-means
several times and choose the one with the smallest within-cluster
variation).

• Fixing y:
B is given by Eq. (9).

From experiences, the approaches converges usually in less than 10
iterations.

Finally, we are interested in finding the cluster number k which
yield the optimal quality of separation. Thus, in order to quantita-
tively evaluate the quality of separation, we measure its quality with
the silhouette coefficient [KR09], which penalizes class overlap:

Silh =
1
d

d

∑
i

b(x′i,x′ j)−a(x′i,x′ j)
max(a(x′i,x′ j),b(x′i,x′ j))

∈ [−1,1], (11)

where a is the average and b is the minimal distances between
member x′i and the remaining members x′ j of the same class.
Then, from a set of different cluster numbers ki, i= 1, ..., f , the final
number of clusters k is this that maximizes the average silhouette
Silh [KR09] over all classes c in projection space.

5.3. Visual Design of Discriminative Star Coordinates

In recent years, some standard design metaphors for multivariate
projections have been established – amongst others – by [Kan00,
LT13, FIB∗14, LT15, LT16], on which our approach also rely on,
which are:

• Each anchor point gi of Gdsc is given as vector gi−o to the origin
o, placed in the center of the visualization space.

• Per anchor point, a circle with the radius of its magnitude is
drawn to improve the user’s accuracy in perceiving data.

• The dimension index i is given at each anchor point gi.
• Each projected point is colored w.r.t. it class/cluster id.

Here, we represent the contribution of each dimension by the length
of its corresponding axis, where shorter axes indicate that the relat-
ed dimensions will likely have less contribution in separating clus-
ters [RSRDS16]. Beside these standard metaphors, we add two o-
vational metaphors to ease the inspection of the separation quality:

• All elements of a class are enveloped by a closed class-based col-
ored contour. For this, our approach draws a smoothed version
of the class-wise convex hull.
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• The uncertainty for a projected record belonging to a certain
class is the larger the more distant it is to its centroid. Thus, to
visualize the confidence, we set its opacity based on its distance
to its cluster centroid.

5.4. Outcome for Labeled/Unlabeled Data

We illustrated the DSC outcome for labeled/unlabeld data.

Labeled Data: For the case of labeled data, Figure 3 shows ra-
dial Star Coordinates (SC) [Kan00], orthographic star coordinates
(OSC) [LT13], and our discriminative Star Coordinates (DSC) in
comparison for two labeled data sets. On the top, a synthetic 3D
data set with 2 classes based on two Gaussians can be seen, and be-
low the 4D Iris data set with 3 classes is presented. Our DSC gives
the best class separation.
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Figure 3: Discriminative Star Coordinates for labeled data com-
pared with traditional Star Coordinates for (top) a 3D synthetic
data set with 2 classes and (bottom) the 4D Iris data set with 3
classes.

Unlabeled Data: For the case of unlabeld data, Figure 4 shows
a set of different iterations of the DSC approach from Section 5.2
for the unlabeled 16D Pendigits data set. Since we found that k = 3
clusters describe the inherent structure well, the figure illustrates
the outcome for this and different iteration numbers (a-c). For rea-
sons of completeness, we illustrate in (d) the case that K-means
will apply on the nD dataspace, instead of ignoring irrelevant di-
mensions (cf. Sec. 5.2). In total, we see that the cluster separation
increases quickly with the iteration number in our unlabeled DSC.

Interpretation: Note that in traditional Star Coordinates it is co-
incident if there will be a good cluster/class separation be seen, or
not. In fact, it is completely random if any chosen configuration
meet a well separating view or not, since the data were not con-
sidered. Thus, if no clusters/classes can be seen, it does not mean
that the classes could not be well separated and no clusters exist,
respectively. It just means that potentially an inappropriate configu-
ration is used. In contrast, our data-driven DSC approach enforced
class/cluster separation reliably, i.e., if no separation is seen than
one can rely on the fact that no linear separation is possible; but if
the data are linear separable then they will be reliably separated in
the projection spaces.

K-means on nD

1 Iteration 3 Iterations

6 Iterations

=.85 =.42

(a) (b)

(c) (d)

Figure 4: Discriminative Star Coordinates for unlabeled Pendigits
data.

Figure 5: The interface for visual cluster exploration and feature
selection: (a) the command view; (b) the DSC view; (c) the cluster
selection view; and (d) the bar view. In this example, the six selected
classes are well separated in the DSC view, where the un-selected
class is indicated by the gray icon in the cluster selection view.

6. Visual Cluster Exploration and Feature Selection

In this section, we present our prototype for the DSC-based visu-
al cluster exploration and feature selection. Our interface consists
of five coordinated views, illustrated in Figure 5: (a) the command
view; (b) the DSC view; (c) the cluster selection view; and (d) the
bar view. In the command view, the visual parameters can be set,
while the clusters of interest can be selected in the cluster selection
view. The bar view provides a sorted overview of the feature con-
tribution to the seen clustering, which gives a technique to detect
in a simple way features that contribute in a majority sense to the
seen projection. The related DSC projection itself is seen in the D-
SC view. In addition, in order to intuitively reveal the relationship
between clusters and data dimensions, we provide a set of cluster-
aware interactions.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Wang et al. / Linear Discriminative Star Coordinates for ExploringClass and Cluster Separation of High Dimensional Data

Figure 6: DSC visualizations for the BreastTissue data set, where the number of clusters is set to 4. (a,b) The default DSC view and the
bar chart view; (c) The DSC view generated by transforming the 1st and 9th axes; (d,e) The DSC view and the bar chart view generated by
removing the 3rd axis in (a); (f) The DSC view generated by removing the 6th axis in (d), where a blue point highlighted in a red box shows
the difference in cluster separation between (d) and (f); (g,h) The DSC view and the bar chart view generated by zooming in the green and
magenta clusters; (i) The DSC view generated by using the dimensions corresponding to the right-most 3 axes (8th, 4th and 1st ) in (g).

6.1. Anchor Point Interaction

Although the DSC configurations provided by LDA and ULDA
maximize the separation of all clusters, the separation among clus-
ters of specific interest to users may not be maximized. Thus, we
allow interaction of the anchor points gi of our DSC: Since the de-
fault DSC configuration visualizes the clusters with the maximal
overall separation, an anchor point interaction cannot give a better
configuration. However, this is not the goal here, but such interac-
tions support to study how the dimension/features influences the
separation degree of existing clusters. For example, shortening the
1st axis in the example of Figure 6(a) reduces the separation be-
tween red and blue clusters, suggesting that the two clusters are
separated along the first data dimension. Lengthening the 9th axis

enlarges the shapes of the green and magenta clusters, indicating
that both clusters have intra-cluster variation along the 9th dimen-
sion. Thus, such interaction is useful within the feature selection
analysis process.

6.2. Iterative Feature/Dimension Selection

Since the length of each axis reveals the contribution of the corre-
sponding dimension/feature to the clustering, the user can hypoth-
esize which dimension is uninformative. For this, we introduce the
following iterative process: By observing the bar chart of the sorted
axes lengths (Figure 6(b)), the user can remove dimensions/features
whose corresponding contributions are below a threshold. With the
remaining subset of dimensions/features, the DSC is re-computed
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and our coordinates view are updated. Through visually inspect-
ing the change of the cluster separation, the user may determine
whether the removed dimensions are indeed irrelevant or redundan-
t. This visual analytics related iteration process could also be done
automatically. But finding a proper threshold is not easy. Thus, our
user-based approach integrate the domain knowledge of the user
and the user’s ability to judge the results into the parameter space
exploration process. This could just hardly mimicked automatically
and is useful when the axes lengths bring ambiguity.

Figure 6(d,e,f) show two iterations of axes filtering. From the bar
chart view in Figure 6(b), the user can see that the 3rd axis has the
smallest length. Thus, the user may assume this axis does not affect
the clustering a lot and may filter this axis and get a new result as
shown in Figure 6(d,e). Comparing the zoomed view of Figure 6(d)
with the one in Figure 6(a), the separations among different clusters
have not been change much. This is consistent with the result from
the qualitative measure. While removing the next smallest (the 6th)
axis in Figure 6(d), the separation between the blue and the ma-
genta clusters becomes smaller; see the blue point highlighted by
red boxes in Figure 6(d,f) is an example. This indicates that the
6th dimension of the input data helps to separate the blue and the
magenta clusters.

6.3. Cluster-based Zooming

DSC shows that all clusters are separated with the maximal separa-
tion, but it does not imply that the subset of clusters are maximally
separated. To help the user to learn the separation of a subset of
clusters and how the data dimensions contribute to such clusters,
we allow the user to perform cluster-based zooming where DSC
takes the points belonging to the selected clusters as the input data
and visualize them to the user.

Figure 6(g,h) shows the DSC view and the bar chart view by
zooming in the selected green and magenta clusters. Comparing
the axes lengths shown in Figure 6(g) with Figure 6(a), we can see
the 2nd and 5th axes become less important for separating the green
and magenta clusters while the 7th and 8th axes become more im-
portant. By carefully observing the bar chart view (Figure 6(h)), we
can see that the first three axes (8th, 4th and 1st ) contributes 83%
and thus we hypothesize whether these three dimensions are suffi-
cient to separate the two classes. Hence, the user further picks these
three axes and gets the DSC view (Figure 6(i)), where two clusters
are close to each other but still can be separated. As a result, the us-
er can learn that the corresponding three dimensions are sufficient
to discriminate these two clusters.

7. Case Study: DSC-based Feature Selection in Practice

We have implemented and tested our prototype visualization sys-
tem on a PC with an Intel Xeon E5540 2.53 GHz CPU and 4.0 GB
RAM using C++. Our system can achieve interactive visualization
for the data sets used in this paper. Since both labeled and unla-
beled data can be visualized with our system, we demonstrate its
effectiveness with two data sets, where we analyze the data with
the following pipeline: (1) run DSC to get the cluster visualization;
(2) remove irrelevant axes by observing the axes lengths; (3) rotate
and scale the axes. As linear DR methods, LDA and LDA-km both

are very fast where the computation of the DSC for all tested data
sets can be finished in less than 1 second.

7.1. Unlabeled USDA Food Data

First we present a case-study on the USDA food composition da-
ta set (http://www.ars.usda.gov/), which was organized by Tatu et
al. [TMF∗12]. After preprocessing, this data contains 722 records
and each record consists of 18 dimensions where each dimension
represents one type of nutrients.

Although many approaches [Jai10] can automatically find the
number of clusters, it is not easy to incorporate user’s experience
into them. Instead, our ULDA configured DSC provides an inter-
active way to find the proper number of clusters. Figure 7(a,b,c,d)
show the clustering results by setting number of clusters to 3, 4, 5,
and 6, respectively. We can see almost all clusters in Figure 7(a,b,c)
are well separated, while the new cluster in cyan shown in Fig-
ure 7(d) only contains one point which overlaps with the green yel-
low cluster. Hence, the proper number of clusters appears to be 5.
This is consistent with the result generated by using Bayes Infor-
mation Criterion (BIC) [Jai10].

Since the cluster structures in Figure 7(d) are consistent with the
ones shown in Figure 7(a,b,c), one of co-authors, a machine learn-
ing expert, wants to analyze how different features contribute to
such structures. Figure 7(e) shows the contribution of each dimen-
sion/feature to the clustering result of Figure (d), where we can
see that the lengths of the left-most four axes : 1st (Beta_Carot),
8th (Magnesium), 17th (Vit_E), and 11th (Sodium), are noticeably
shorter than the rest. In contrast, the right-most 4 axes 18th (Wa-
ter), 3rd (Carbohydrt), 4th (Energ_Kcal), and 10th (Protein) take
major roles and the sum of the contributions of these dimensions
is 68.3%. Considering this, we remove the first four axes and get a
new DSC visualization (Figure 7(f)).

Compared Figure 7(f) with Figure 7(a), we can see that five clus-
ters in Figure 7(f) are still separated although the red cluster has a
little overlapping with the green yellow and blue clusters. Adjust-
ing the axes in Figure 7(f), 5 clusters are shown more clearly in
Figure 7(h). Figure 7(g) illustrates the contributions of the rest axes
to the clustering in Figure 7(f), where the most important 4 axes are
the same with the ones in Figure 7(e) and contribute 73.4%. From
this, we can conclude that there is a high level of redundancy in
the original data, and the main nutrients in discriminating different
foods are Water, Carbohydrt, Energy and Protein. By exploring 216
subspaces, Tatu et al. found that Protein is a dominant dimension
in clustering by exploring 216 subspaces, which is consistent with
our conclusion.

7.2. Labeled PENDIGITS Data

The PENDIGITS data set [AA97] contains 7494 training samples,
where each sample is a digit and by 8 (x;y) coordinates leading to
a 16-dimensional feature vector. Note that the coordinates are both
resampled along the pen’s original trajectory and are normalized.
As a result, the reconstructed samples may look distorted and may
not look like the represented digits. For example, Figure 8(f,g,i,j)
show four digits 6, 0, 9 and 4.
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Figure 7: The star coordinates visualization for the unlabeled USDA data set. (a-d) show the star coordinates where the numbers of cluster
are set to 3, 4, 5, 6, respectively; (e) the bar chart view of the DSC result in (c); (f,g) the DSC view and the bar chart view generated by
removing first four axes whose length are noticeably shorter than the rest shown in (e); (h) The DSC view generated by manipulating the
most important 4 axes, allowing the five clusters to be shown more clearly.

In this case study, we focus on explore how to separate different
clusters (digits) and detect the outliers from the clustering results.
Since this data has been widely used to test dimension reduction
methods, we first compare the projections generated by three DR
methods: projection pursuit (PP), the method used by Van Long and
Linsen [VLL11] (VL), and LDA, as shown in Figure 8(a,b,c), re-
spectively. We can see that none of them can separate all ten classes,
but they produce the class structures with different levels of sepa-
ration, where the silhouette coefficients of these three results are
0.14, -0.05 and 0.26, respectively. In particular, LDA results the
classes with the minimal overlapping (see Figure 8(c)) while VL
produces classes with the largest overlapping. Although both meth-
ods maximize the separation between classes, LDA simultaneously
minimizes the spread so that the classes in Figure 8(c) are more
compact than the ones in Figure 8(b). Although PP is not targeted
at class separation, its resulted class structures have better separa-
tion than the ones in Figure 8(a). This indicates that some classes do
not follow Gaussian distributions so that LDA cannot clearly sepa-
rate all of them. On the other hand, integrating LDA with our DSC
can reveal how each dimension contributes to the class structures.
As shown in Figure 8(a), the last (x;y) (15th and 16th dimension-
s) plays the most important role in differentiating different digits.
This suggests that where the writing ends provides the strongest
clue about which digit is written.

Moreover, the presented cluster-based zooming allows the us-
er to further explore clusters of interest and see whether and how

they can be separated. For example, the red and blue clusters (dig-
its 0 and 6, respectively) overlap with each other in Figure 8(a,b).
Zooming into these two clusters makes them separated as shown
in Figure 8(c), except for an outlier highlighted in a black box. To
investigate why this outlier appears in the red cluster, we found its
corresponding sample and compare it with representative samples
from both clusters. Figure 8(e,f,g) show these three samples, where
we can see the outlier sample looks different from representative
samples from both clusters, which explains that why it is projected
to the far corner of the cluster for digit 0. Figure 8(d) shows an-
other example, where yellow, orange, and light blue clusters (rep-
resent digits 4,9,1, respectively) are separated after cluster-based
zooming, except one orange point appears in the yellow cluster. To
inspect the corresponding sample for the outlier (Figure 8(h)), we
compare it with two representative samples of the yellow and o-
range clusters. From Figure 8(h,i,j), we can see that the shape of
this outlier sample indeed looks ambiguous.

8. Discussion

Our visual analytics approach facilitates an interactive and iterative
feature selection approach in order to find features that separate
classes/clusters efficiently, successfully, and quickly. Some real-life
examples were illustrated in Sec. 7. Moreover, our approach de-
couples domain experts from the need to have broad knowledge in
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Figure 8: The star coordinates visualization for the labeled PENDIGITS data set, which contains 10 different clusters and each cluster
corresponds to a digits. (a) The scatterplot visualization generated by projection pursuit result; (b) The scatterplot visualization generated
by the result of the method [VLL11]; (c) The default DSC view; (c) The DSC view generated by zooming in the red and blue clusters (represent
0 and 6, respectively), where the outlier is highlighted with a black box; (d) The DSC view generated by zooming in the yellow, orange and
light blue clusters (represent 4, 9, and 1, respectively), where the outlier is highlighted with a black box; (e) The digit 6 corresponding to the
highlighted blue outlier in (c); (f,g) The representative samples from the clusters for digits 0 and 6, respectively; (h) The digit 9 corresponding
to the highlighted orange outlier in (d); (i,j) The representative samples 9 and 4 from the two clusters, respectively.

computer science or machine learning to conduct exploration tasks,
and allows them to solely focus on their specific domain.

For this, our DSC approach manages labeled and unlabeld da-
ta, and it addresses the three introduced issues that domain ex-
perts (and users in general) have: It detects data-driven a projec-
tion that separates classes/clusters well and provides it to the user.
This way, the Infinity Projection Issue is addressed and a trial-
and-error-based interactive search (for separation exploration) in
the unlimited projection spaces is not required anymore. The com-
putational time is negligible compared to the time consuming in-
teractive search. In that regard, the DSC is a subset but superior
to the available visual affine projection approaches, such as SC or
OSC, where it is random to meet a separating view. Due to the data-
driven nature, our DSC maximizes margins and the compactness in
a linear separable manner, meaning that it gives reliable the view
with the best separation quality (cf. Reliability Issue). Again, this
fact makes it superior to SC and OSC in general: these approach-
es are not data-driven and even a well-separating view could be
based on misleading distortion effects [LT13] and is thus not reli-
able. Since even the compactness is maximized w.r.t. structures in
the data, the DSC shows cluster without the misleading effect (cf.
Misleading Issue): a seen non-compact cluster is non-compact be-
cause its compactness cannot be enlarged anymore. Thus, the user
can rely on that the cluster is really non-compact in the data. The
same applies also for compact clusters in the data.

Since we rely on the first largest eigenvalues of a well-separating
transformation, there is still a loss of information in the projection
process. This is an issue for projection techniques in general, s-
ince a low-dimensional embedding is not bijective. For reasons like
that and to broaden the analytic possibilities in general, we allow

in our visual analytics concept to interact with the anchor points
in order to evaluate the dimension-wise influence for the cluster-
separation, we provide an iterative feature selection concept to e-
valuate the separation of interesting subspaces, and an interactive
cluster-zooming and inspection for individual cluster evaluation. In
fact, we allow dimension-wise inspections and inspections of sub-
sets of both features and records.

However, our approach comes with some limitations. First, we
use the axis length to measure the feature contribution, which as-
sumes the features are independent to each other. This might not
be true if the features are high correlated with each other. Second,
we consider only linear separation and we leave non-linear sepa-
ration issues to future work. Thus, if no linearly well-separating
view can be found by our technique, it does not mean that the data
may be non-linear separable. Last, only continuous numeric data
can be handled up to now. In general, it is challenging to deal with
categorical data visually or even worse to mix up metric and cat-
egorical data. This restriction applies also to our approach but we
are interested in figure this issue out in the future.

9. Conclusion

Our linear discriminative star coordinates shows clusters with the
maximal linear separation and allows a quick feature selection ap-
plication within a visual analytics scheme. This enables a set of
interactions to study how each dimension is related to the cluster-
ing. This way, the user can analyze how clusters are formed in the
high dimensional space, as illustrated for our benchmark data. In
the future, we are going to extend this approach to non-linear sep-
aration schemes and we want to allow also the use of categorical
data.
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