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Abstract— In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we
investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots.
We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures
align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive
to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on
per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning
with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns
better with human judgments, and is equally fast as the traditional scagnostic measures.

Index Terms—Scagnostics, scatterplots, sensitivity analysis, Robust Scagnostics.

1 INTRODUCTION

Visual quality measures are useful tools for algorithmically assessing
visual patterns in data [9, 13]. A prominent example of such measures
are the scagnostics measures [49, 50] that characterize 2D distributions
in scatterplots based on their geometric features. Various visualization
tools and techniques have been built upon such measures [4, 19, 20].

While the field has recently begun to evaluate visual quality mea-
sures in more detail [9, 37, 39], the robustness of these metrics remains
underexplored. That is, do scagnostic measures reliably pick out visual
patterns of interest in scatterplots, even under noise or the presence of
adversarial structures? In order to promote robustness, Wilkinson and
Wills [53] proposed criteria that must be met by candidate scagnostics
(such as “they should be sensitive to differences in 2D point distribu-
tions” and “they should be on a common scale”). While a large-scale
evaluation of these factors on synthetic data appears to confirm that
scagnostic measures have these properties [53], we identified several
issues when working with these measures in practice. Our hypothesis
is that synthetic data may not fully capture how scagnostic measures
vary, and that more realistic data may reveal robustness concerns [39].

To fill this gap, we present an in-depth study of the sensitivity of
scagnostic measures, both theoretically and experimentally. In particu-
lar, we examine how much the output values (of scagnostic measures,
or human judgments concerning these measures) vary as the result of
variations in the input (i.e., changes to individual scatterplots). The
results of our studies help us to better characterize potential sensitivity
issues of scagnostic measures and to design alternative measures that
are robust w.r.t. these issues. To do so, we first augment the data used
by Wilkinson and Wills [53] with samples that have a wider variety of
cluster characteristics [39]. This extension helps us to test a broader set
of visual patterns. In total, we constructed a data set with 60 million
synthetic scatterplots and 69K scatterplots obtained from real data.

Based on these scatterplots, we conducted a structured sensitiv-
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ity analysis of the two different versions of scagnostics published
in [50] and [52]. We begin by studying the measures’ sensitivity with
regard to the two pre-processing steps of data binning and deleting
outliers. We then perform perturbing operations, such as deleting ran-
dom points, and rotating the scatterplot. We chose these perturbing
operations to create relatively little change in the visual structure of
the data, so from a human perspective, there ought to be little change
in the visual patterns present in the scatterplots. We would then hope
that scagnostics, which are meant to capture the main visual patterns,
would be invariant to these perturbations.

Investigating scagnostics’ sensitivity to these changes revealed four
main finding. (1) The data binning procedure (a vital pre-processing
step to make computation performant on large scatterplots) can result
in large changes to all scagnostic measures. (2) The newer Outlying
measure in [52] (i.e., Scag-06), designed to detect both exterior and
interior outliers, is less robust than the older Outlying measure in [50]
(i.e., Scag-05). However, the older method lacks the ability to detect
interior outliers. (3) Under certain conditions, the Clumpy measure
does not accurately represent the characteristics of distributions with
multiple clusters. (4) All measures except Outlying and Clumpy are
sensitive to deleting outliers but robust to other perturbing operations.

To better understand the large sensitivity of the Outlying and Clumpy,
we furthermore conducted a user study investigating how well human
judgments align with these scagnostic measures. From this study we
learned that (1) humans are relatively insensitive to small perturba-
tions in scatterplots when assessing outlyingness and clumpiness and
(2) cluster-specific densities heavily influence human perception of
clumpiness, while the number of clusters has a smaller effect.

Motivated by the study results, we propose Robust Scagnostics (i.e.
RScag) which capture the spirit of the original scagnostic measures,
but are designed for additional robustness. RScag consists of two ma-
jor components: an adaptive binning approach and hierarchy-based
scagnostics. Adaptive binning preserves underlying data densities more
faithfully than the original scagnostic hexagon binning approach, while
hierarchical scagnostics computes measures on local clusters, allowing
more flexibility for representing different numbers of clusters and clus-
ter densities. We evaluate RScag on our collection of scatterplots and
our human response data. The findings indicate that RScag outperforms
existing scagnostic measures with respect to numerical and perceptual
robustness.

In summary our main contributions are:
• we construct a large set of 60M synthetic and 69k real-world

scatterplots by expanding existing data distributions, our code
and dataset are available at github1;

• we conduct a sensitivity study for the nine scagnostic measures
and two pre-processing steps (data binning and deletion of out-
liers), discovering patterns of unexpected sensitivity; and

1https://github.com/ArranZeyuWang/RScag



• we propose and evaluate a novel robust scagnostics approach,
RScag, to preserve more structural information and to be more
consistent with human judgments.

2 RELATED WORK

A complete review of visual quality measures can be found in Bertini
et al. [13] and Behrisch et al. [9]. Here we restrict our discussion to
measures designed for scatterplots and their evaluation.

2.1 Scatterplot Quality Measures

Scagnostics were originally proposed by John and Paul Tukey in the
1980s [49] for identifying interesting scatterplots from large scatter-
plot matrices by algorithmically characterizing certain visual patterns.
Based on that, Wilkinson et al. [50, 52] developed nine computation-
ally efficient scagnostic measures using planar proximity graphs, and
demonstrated their utility for selecting interesting scatterplots, sorting
scatterplot matrices, and identifying outliers. Seo and Shneiderman [40]
present a similar idea called rank by feature, but it is based on classical
statistics (means, medians, correlations, etc.) rather than the Tukeys’
non-parametric measures. Because of the usefulness of such quantita-
tive measures, scagnostic-type measures have also been developed for
other plots [8, 22, 32], and extended to different types of patterns [34].

Scagnostics’ main application is to guide the interactive exploration
of complex data. For example, Anand et al. [5] use them to explore
interesting low-dimensional random projections of high-dimensional
data. Dang et al. [19] apply scagnostics to identify interesting sub-
sequences from multivariate time-series data. Hafen et al. [25] use
them to sample panels from a trellis display, Anand and Talbot [4] to
select good partitioning variables for small multiple displays, and Dang
and Wilkinson [21] to choose appropriate data transformations.

Many other visual quality measures exist for scatterplots that follow
the spirit of scagnostics. Some of the first measures that have been
proposed were Tukey’s area of the peeled convex hull [47], Silverman’s
kernel density isolevel contours [43], as well as related measures by
Hastie and Stuetzle [27]. Today, for different purposes a variety of
different measure types exits. In terms of scatterplots, visual clutter
measures [10, 12], correlation measures [26, 28], and visual cluster
separation [1, 6, 39, 44, 45] have gained much attention.

Among them, the visual cluster separation measures are most related
to our work, since they aim to characterize the cluster characteristics
in distributions similar to the Clumpy measure in scagnostics. Aupetit
and Sedlmair [6] propose a general framework to construct such visual
cluster separation measures, and their quantitative evaluation showed
that local density-based measures outperform other measures, a finding
that was further confirmed by Shao et al. [41, 42]. In line with these
findings, our proposed robust scagnostics are also based on local density
and compute each measure in terms of local clusters.

2.2 Evaluation of Scatterplot Quality Measures

Visual quality measures can be evaluated through human subjects stud-
ies, sensitivity analysis, or use-case scenarios. Since use-cases are
application-dependent, we concentrate on the first two study types.

Human Subjects Studies. Various studies rely on human judgments
to assess the nature and strength of visual patterns of interest in charts.
The human judgments are compared to the corresponding quality mea-
sures of these patterns. Ideally, human judgments and statistical quality
measures would be tightly correlated. Using this approach, Sips et
al. [44] evaluated measures for class separability in scatterplots. Their
results indicated a good correlation between the proposed measures
and human judgments. Tatu et al. [46], and Lewis et al. [33] have also
studied class separation in controlled user studies. Using a more faceted
approach, both studies found that some measures contrast with human
judgments while others align relatively well.

Instead of asking a few people to observe many datasets, Sedlmair
et al. [38, 39] set out to conduct a data study in which class separation
is judged by a small number of trained experts. The study revealed
that the tested measures failed in almost 50% of the cases under these

more realistic conditions. In a follow-up work, they used this carefully
collected human data as an input to a machine learning framework [37].
This framework was then used to automatically evaluate and compare
how well measures predict human judgments in both existing mea-
sures [37] and the new ones they proposed [6]. Recently, Behrisch et
al. [8] conducted a similar data study in order to systematically evaluate
and rank measures for adjacency matrices.

The closest methodologies to our work are in studies done by
Lehmann et al. [31] and Pandey et al. [35]. The former study compared
the consistency between filtering relevant scatterplots based on human
perception versus selecting them by a subset of scagnostic measures
and shows that the selected scagnostic measures outperform the other
measures [2, 30, 45]. Pandey et al. [35] conducted a study, in which
users had to group sets of scatterplots according to their subjective
judgment of similarity. Comparing the results with the nine scagnostic
measures, they concluded that the measures do not align well with fac-
tors that humans would take into account for their similarity judgments.
This result prompted us to investigate if there are additional data factors
not captured in existing scagnostic measures.

Sensitivity Studies. A sensitivity analysis [36] refers to quantifying
the change in outputs due to small perturbations of the inputs. A
good quality measure should be insensitive to small input changes but
sensitive to large ones. A few methods [7,15–18] have been proposed to
compute the sensitivity information of specific visualization processes
and augment visualizations with such information. Here, we mainly
focus on the ones developed for quality measures.

Wilkinson and Wills [53] created a large set of synthetic datasets
and selected a few real datasets to understand the distribution of their
scagnostic measures. The study shows that their measures are sensitive
to distributional changes, but it is unclear how sensitive the measures
are to small changes of different data factors. Furthermore, they did
not test how human judgments are sensitive to such data changes. In
contrast, Behrisch et al. [8] evaluated the sensitivity of Magnostics
by observing how such measures change as different levels of noise
are added to the data. Similar to that approach, we add different
levels of perturbation to different data factors and observed how much
they influence scagnostic measures. Additionally, we examine human
judgments under perturbation and compare them to our algorithmic
results.

3 BACKGROUND: GRAPH-THEORETIC SCAGNOSTICS

In this section, we briefly review scagnostics [50, 53] including its
pipeline, basic geometric graphs, preprocessing steps, and the nine
measures. In particular, we examine the relationship between scagnostic
measures and the basic geometric graphs and highlight the connections
between the involved preprocessing steps and the different measures.
For a full description of the measures we refer the reader to the original
papers [50, 53] or our supplementary materials.

Fig. 1. Pipeline for computing scagnostics, where the Outlying value is
obtained after all outliers are removed, and then the other measures are
computed.

3.1 Algorithm Pipeline
Scagnostics provide nine measures for characterizing different patterns:
Outlying, Skewed, Clumpy, Convex, Skinny, Striated, Stringy, Sparse,
and Monotonic. As shown in Fig. 1, computing most measures except
Monotonic involves two preprocessing steps: data binning and deleting



outliers. Since geometric graphs need to be re-built once outliers are
detected and removed, building geometric graphs is also a core step.

Fig. 2. Examples of four geometric graphs built after deleting outliers
highlighted in gray.
Data Binning: To improve the performance of scagnostics, hexagon
binning [14] is used to reduce data while preserving data characteristics.
Starting with a 40×40 hexagonal grid, the points of a scatterplot are
binned and checked to see if the number of non-empty cells is more
than 250. If so, the points will be re-binned with a twice as coarse bin
size until there are no more than 250 nonempty cells.

To attenuate the influence of data binning in scagnostic measures,
Wilkinson et al. [52] suggest using a weighting function w to adjust the
measures Skewed, Sparse and Convex:

w = 0.7+
0.3

(1+ t2)
, (1)

where t = n/500 and n is number of points.

Building Geometric Graphs: Scagnostics are based on geometric
graphs. The Delaunay Triangulation (DT) is constructed first, and then
a Minimum Spanning Tree (MST), convex hull, and alpha hull are built
based on the DT. MST, convex hull and alpha hull all are subgraphs of
the DT, although they are defined using different criteria. By setting
the value of α to the 90th percentile of the MST edge lengths [53], the
formed alpha hull does not include sparse or striated point sets, see
black points outside of alpha hull in Fig. 2 (c).

Detecting Outliers: To improve the robustness of scagnostic, outliers
are deleted before computing the measures. Following Tukey [48], a
potential outlier is a point whose adjacent edges in the current MST
have edges larger than ω:

ω = q75 +1.5(q75−q25), (2)

in which qi refers to the i-th percentile of the sorted edge lengths of the
MST. After deleting outliers, the output is the Outlying value and the
updated geometric graphs (examples are given in Fig. 2). The convex
hull and alpha hull are used for computing Convex and Skinny values,
while the MST is used to compute the other measures.

3.2 Scagnostic Measures
The nine scagnostic measures reveal many hidden features such as
density, shape, or association level in the input scatterplot [50]. In the
following, we mainly review the Outlying and Clumpy measures, which
are most relevant to our findings. Note that a measure called Straight
appeared in Scag-05 [50], but was removed in Scag-06 [52]; hence, we
did not test it.
Outlying Measure: The Outlying measure indicates the impact of
outliers on the data. Based on the edge lengths of the MST, it is defined:

coutlying = length(Toutliers)/length(T ) (3)

where length(T ) is the total length of edges in the initial MST and
length(Toutliers) measures the total length of edges adjacent to outliers.

In the definition of the Outlying measure from Scag-05 [50], a point
is classified as an outlier if it satisfies the condition in Eq. 2, but also
has a degree of one. This additional condition prevents the measure
from detecting interior outliers (see v2 in Fig. 3 (a)). To address this
issue, the newer definition of the Outlying measure in Scag-06 [52]
ignores this condition, but might therefore remove additional points.

Fig. 3. Differences between the definition of the Outlying measure in
Scag-05 (a) and Scag-06 (b,c). (a) Only the point v1 is removed by the
older version of outlying. In Scag06, v1 and v2 are removed in the first
iteration (b) and v3, v4 and v5 are further removed in the second iteration
(c) , which results in a new long edge of the graph.

Fig. 3 (b,c) shows an example, where v1 and v2 are deleted in the first
iteration and then three non-outlier points v3, v4, and v5 are further
removed at the second iteration. Deleting these points results in a newly
formed long edge e4. As per the pipeline shown in Fig. 1, different
versions of the Outlying measure can result in different values of the
other scagnostic measures.

Fig. 4. Two edges
used for comput-
ing the Clumpy
measure.

Clumpy Measure: This measure depicts the
clustering of data points based on the edge lengths
of the MST. It is obtained by testing each edge e j
with the following procedure:

• remove edges which are longer than e j;

• select two point subsets linking to the ver-
tices of e j;

• find the longest edge ek from the smaller
subset; and

• compute the Clumpy value by:

cclumpy = 1− length(ek)/length(e j). (4)

After iterating over all edges, the maximal value is taken as the output
of Clumpy measure. This measure is therefore built on the assumption
that the data consists of two clusters and only takes into account the
intra-cluster distances and the largest inter-cluster distance within the
small cluster (see Fig. 4). Such a definition is not able to accurately
characterize certain cluster structures in some scatterplots.

3.3 Existing Limitations

From the above brief review, we identified three computational aspects
of scagnostics that might be further improved:

• It is unclear how binning impacts the robustness of the final
scagnostic measures, even when considering the included weight
function, and we will demonstrate the effect of binning in Sec. 4.2;

• Both versions of the Outlying measure have drawbacks and it is
unclear which one is more robust; and

• the Clumpy measure is determined by two edges, which might not
accurately characterize patterns within complex distributions [41].

To address these limitations, we perform a sensitivity analysis of
scagnostic measures to assess their robustness (Section 4) and conduct
a user study to assess the consistency between human judgments and
scagnostics (Section 5). Based on the results of these two studies, we
propose a new robust set of scagnostic measures for better capturing a
wide variety of data patterns (Section 6).



Fig. 5. Examples of scatterplots with different cluster-specific charac-
teristics generated by Binormal distributions: (a) a circular distribution;
(b) a rotated elliptical distribution; (c) a circular distribution with varying
densities; (d) a three-cluster distribution with varying cluster sizes; (e) a
four-cluster distribution with varying cluster densities and shapes; (f) the
two-cluster distribution with interior outliers (shown in red).

4 SCAGNOSTICS ROBUSTNESS

In this section, we perform a sensitivity analysis to test the robustness of
scagnostic measures and identify the factors influencing this robustness.
We use the R implementation of Scagnostics provided by Wilkinson and
Anand [51]. This package contains all Scag-05 and Scag-06 measures
except the Scag-05 Outlying measure, which we re-implemented in R.

First, we test how strongly the data binning algorithm influences the
resulting scagnostic measures, with the goal of removing the binning
step from our future sensitivity analyses if it has an outsized influence
on the resulting measure. We then conduct our main sensitivity analyses
across both versions of scagnostic measures on various datasets.

4.1 Data Augmentation

To simulate a variety of 2D point distributions, we first generated a large
number of scatterplots using ten 2D point distributions as in Wilkinson
and Graham [53]. However, they only considered some simple distri-
butions, while we were interested in more complex data features; in
particular, those known to impact visual cluster separation [39].

To address this gap, we sampled a large parameter space of the Binor-
mal distribution to generate both single and multi-cluster scatterplots
with varying cluster-specific characteristics. Since this distribution
enables us to control the size, density and shape of clusters with differ-
ent parameters, and to adjust the number and comparative distance of
distributions, many within-cluster and between-cluster data factors [39]
are incorporated into the data. In addition, we randomly placed a
few interior and exterior outliers into our multi-cluster scatterplots to
simulate contaminated data. In doing so, we generated around 800K
scatterplots, which are non-perturbed scatterplots used for sensitivity
analysis (see Section 4.3). More details about our parameter space
sampling can be found in the supplementary materials. Fig. 5 shows
six typical examples with variations in cluster size, shape, density and
outliers.

Besides our synthetic plots, we intended to gather more realis-
tic data. We first collected 1703 real-world datasets from various
sources [24, 35, 39]. Since most of these are high dimensional data, we
created scatterplots for each combination of two dimensions as well as
creating additional scatterplots through standard dimensionality reduc-
tion techniques [37]. In total, we created 69K real-world scatterplots
with a wide variety of shapes, number of points, and sizes.

Fig. 6. Relative changes of various measures in Scag-06 as a result of
including or omitting the binning step. In case a result is out of the plot
range (see Outlying and Clumpy ), we draw a dark transparent shadow
to indicate the amount.

Fig. 7. Dot plot showing Spearman’s rank correlation coefficient ρ of eight
scagnostic measures in Scag-05, Scag-06, and our proposed RScag
(see Section 6) obtained by applying random deletion operations to
our scatterplot dataset. The regression trend lines of ρ values except
Outlying and Clumpy measures are shown in gray dashes. Values close
to 1 indicate that the measure was relatively consistent across plots even
after points were deleted.



4.2 Binning Effect

To study the influence of data binning on the scagnostic measures, we
compute the relative changes, of the Scag-06 [52] scagnostic measures
on our scatterplot dataset both with and without binning:

Impact of binning =
|smw/o− smw/|

smw/o
(5)

where smw/ and smw/o are the values of the scagnostic measures with
and without binning, respectively. Since the Monotonic measure is
computed from the input data, we do not consider it in this study.

Fig. 6 summarizes the changes of the eight remaining measures.
We can see that all of them have large changes, where the ratios of
Outlying and Clumpy measures both exceed 400% for some data, while
the median of the change in the Clumpy measure is 63%. Binning has
a similar influence on the earlier scagnostic measures, Scag-05 [50];
this result is shown in the supplementary materials. This observation
is inconsistent with the one shown by Wilkinson et al. [52]. Because
of this large sensitivity, we exclude the binning step in our remaining
sensitivity study and compare measures based on the full scatterplots.

4.3 Sensitivity Analysis

To assess the sensitivity of scagnostic measures, we study the impact
of small perturbations in the scatterplots. Ideally, minor perturbations
should result in only minor changes to the resulting measures.

Perturbing Scatterplots: We provide two kinds of operations to
perturb scatterplots: i) randomly deleting a percentage of δ data points
10 times which results in 10 plots for each δ or ii) rotating the entire
plot by θ degrees which outputs one plot for each θ . By setting δ =
{0.5,1,1.5, ...,5} and θ = {1,5,15,45,90,180}, we generated around
60 million scatterplots using the real and synthetic data introduced in
Sec. 4.1. We do not employ other perturbations such as scaling and
translation here, because MST is translation and scale invariant [29].

Quantifying Sensitivity: Since values of some of the scagnostic
measures (e.g. Outlying and Clumpy) are typically quite small [53],
value changes of these measures might not be able to clearly indicate
their sensitivity. Therefore, we use the rank instead of the numerical
value [3] to analyze their sensitivity.

Given a set of scatterplots {s1, · · · ,sn}, we compute the measures
for each scatterplot and then rank the results in terms of one specific
scagnostic measure. For each measure and all associated scatterplots,
we compute the Spearman’s rank correlation coefficient ρ ∈ [−1,1].
If ρ is 1 (i.e., the ranking-based scatterplot aligns with curve y=x),
the ranks are perfectly correlated and the measure is insensitive to the
perturbation; if ρ is far from 1, the measure exhibits more sensitivity.
In our experiment, ρ is always larger than 0, see an example in our
supplementary materials.

Results: Fig. 7 shows the ρ values of eight scagnostic measures of
Scag-05 and Scag-06 generated by randomly deleting different amounts
of points. In general, we can see that when δ (the percentage of
deleted points) is not larger than 3%, most measures of Scag-05 are
larger than 0.95, while the threshold is 1.5% for Scag-06. Through a
closer inspection of the results, we make the following additional three
observations:

(1) The ρ values of the Clumpy measure are smaller than the others
in both versions of scagnostics. — This observation indicates that,
unlike in the prior sensitivity analyses [53], the Clumpy measure is less
robust than the other measures.

(2) The ρ values of the Outlying measure are most of the times
smaller than the rest in Scag-06. — The Outlying measure in Scag-06
is thus more sensitive to perturbations than the corresponding version
in Scag-05. Since many of the other measures are contingent on the
initial computation of the Outlying measure, their ρ values seem also
to be higher in general in Scag-06.

(3) Except the Clumpy and Outlying measures, the ρ values of all
other measures decrease quite smoothly as δ increases in Scag-05,
and even stronger in Scag-06. — This observation indicates that large
perturbations result in large changes to scagnostic measures for most
scatterplots. We also computed trends of the ρ values from all the
obtained measures (excluding Outlying and Clumpy for the reasons
mentioned above). The resulting regression lines are shown on top of
the values in Fig. 7 (dashed gray lines). They also show a clear decrease
in robustness for the measures of Scag-06.

Fig. 8. Illustrating the stability of MST. (a) MST of an input scatterplot
with the two points to be deleted indicated by circles; (b) deleting one
boundary point and its adjacent edge (in red) does not change the MST
structure; (c) deleting an interior point and its adjacent edges introduces
new edges in purple, resulting in a structural change of the MST. 25th
and 75th percentiles of the sorted lengths of the MST edges in (a,b,c)

The ρ values of measures obtained by rotating the scatterplots are
shown in the supplementary materials, they describe similar patterns
and observations. These results motivated us to further explore the
underlying reasons for the larger sensitivity of the Clumpy and Outlying
measures and to discuss their common limitations, aiming at providing
us insights for improving the robustness of scagnostics.

4.4 Rationale for High Sensitivity of Outlying and Clumpy

Perturbing a scatterplot may change the underlying MST. This, in turn,
impacts the scagnostic measures that rely on the MST. Taking the
deletion operation as an example, deleting a boundary point might not
change the MST structure, since any subtree of an MST is still an MST
that spans all the nodes of that subtree [29]. However, deleting interior
points will change the MST structure because of newly created edges.
Fig. 8 illustrates such changes, where the 25th and 75th percentiles
of the MST edge lengths increase by 22% and 6% after deleting the
point shown in Fig. 8 (c). Because of this, the Outlying and Clumpy
measures both exhibit high sensitivity to these sorts of perturbations.
In the following section, we show how MST changes influence the
sensitivity of Outlying in both versions of scagnostics.

4.4.1 Outlying Measure
To understand why the Outlying measure in Scag-06 is sensitive to
data perturbations, we investigated scatterplots with high sensitivity.
Fig. 9 shows an example, where the Outlying value changes drastically
from 1.31 to 0.45 after deleting the circled point in Fig. 9 (a) while
the Outlying value in Scag-05 remains 0 (see Fig. 9 (c)). Note that this
example reveals a case in which the value of the Outlying measure in
Scag-06 is larger than 1. This is inconsistent with the originally stated
requirement that scagnostic measures “should be on a common scale
of [0,1]” [53].

Carefully looking at Fig. 9 (a,b) shows that a few MST edges (labeled
in pink) are constructed during the deletion of outliers. These new edges
might be even longer than most of the edges in the initial MST, resulting
in a corresponding Outlying measure larger than 1. In contrast, only
deleting nodes with degree 1 as in Scag-05 does not introduce new
edges to the MST of the remaining points. This explains why the
Outlying measure in Scag-05 is less sensitive than the one in Scag-
06 and why its value always fits into a common scale. Ideally, an
Outlying measure should combine aspects of both versions: being
less sensitive to perturbations while also enabling the identification of
interior outliers.



Fig. 9. An example where the Outlying measure defined in Scag-06 is
sensitive to perturbation, while the version in Scag-05 does not detect
any outliers. The scatterplot and its final MST are defined by solid edges,
while the dotted and pink lines depict deleted and the newly inserted
edges during outlier deletion. (a,c) Original scatterplot and MST; (b)
Scatterplot and MST generated by deleting the circled point in (a).

Fig. 10. Scatterplots with varying densities and numbers of clusters
and the two edges in each scatterplot used for computing Clumpy value
(shown in green and purple).

4.4.2 Clumpy Measure

Although the Clumpy measure has been used in several applications
for identifying highly clustered areas [4, 5], only using two edges
for its definition might not accurately characterize complex patterns
in scatterplots, or distributions with multiple clusters [41]. In the
following, we show how the Clumpy measure behaves for scatterplots
with different cluster-like patterns as illustrated in Fig. 10.

Density Variance: Fig. 10 (a,b) shows two scatterplots that both consist
of two clusters. The large clusters on the top right of these scatterplots
have varying densities. However, they all have the same Clumpy value,
indicating that the Clumpy measure is not able to characterize the
density of the large cluster. For distributions with a single cluster, the
Clumpy measure not only cannot represent the density information, but
also has a very small value no matter how compact the cluster is (see
an example in the supplementary material).

Number of Clusters: In comparison to Fig. 10 (a), the scatterplot
in Fig. 10 (c) has an additional cluster on the bottom right, which is
more compact than the other two clusters. Although the green edge
that connects the other cluster to the additional one is quite long, the
Clumpy value in Fig. 10 (c) is smaller than the one in Fig. 10 (a).
This demonstrates that the Clumpy measure is not able to characterize
distributions with multiple clusters well. A good Clumpy measure
should be able to capture the characteristic of all clusters of a scatterplot.
The current version is based on two edges only and is therefore limited.

4.5 Summary

To characterize the robustness of scagnostic measures, we summarize
the behaviors of these measures below:

• The Outlying measure as defined in Scag-06 is not robust with
respect to data perturbations and special cases, while the version
defined in Scag-05 is more robust, but cannot identify interior
outliers;

• The Clumpy measure is also not robust, and is also not able to
characterize distributions with multiple clusters, or with complex
variation in cluster densities;

• The other scagnostic measures except Outlying and Clumpy are
less sensitive to data perturbations.

These findings motivated us to improve the definitions of the Out-
lying and Clumpy measures in order to increase their robustness (see
Sec. 6). We discuss an additional limitation caused by collinear points
in the DT in the supplementary materials.

5 USER STUDY

Pandey et al. [35] investigated perceived similarity in scatterplots by
comparing the results of user-driven groupings with the Euclidean
distances of all 9 scagnostic measures. However, it is unclear how
individual scagnostic measures align with human judgments. As we
saw in the previous section, small perturbations in scatterplots can radi-
cally alter the Outlying measure in Scag-06 and the Clumpy measure,
while certain cluster-like patterns are not captured by Clumpy measure.
Hence, to find out if small perturbations in scatterplots also alter the
perceived features of the plot and understanding how users perceive
cluster-like patterns, we designed a study with three parts. The first two
parts focus on how human judgments of perceived outlyingness and
clumpiness align with computed Outlying and Clumpy measures, while
the last one investigates the judgments of clumpiness compared to the
Clumpy measure specifically for scatterplots with complex, multi-modal
cluster patterns. Due to the space limit, we only show the compari-
son between Scag-06 with human judgments. Scag-05 results indicate
similar implications and can be found in the supplementary materials.

Hypotheses: For the first two parts, our hypothesis is that human judg-
ments of outlyingness and clumpiness would not align with the existing
scagnostic measures for small perturbations (see Section 4.4), but might
be consistent when perturbations are large (H1). More specifically, par-
ticipants would be insensitive to minor perturbations of the chart when
comparing measures, but would be sensitive to these perturbations once
they were sufficiently large.

For the last part, we similarly hypothesized that human perception
of clumpiness would be contingent on cluster-related features like
the number and size of clusters, which would not be consistent with
the existing Clumpy measure that cannot characterize distributions
with multiple clusters (see Section 4.4.2). We therefore expected high
misalignments in judgments for plots with multiple clusters (H2).

Participants: We recruited 24 participants (15 male, 9 female) from
the computer science department of our local university for the three
studies. Their ages ranged from 19 to 27 years (M = 23, SD = 1.87).
All participants reported normal or corrected-to-normal vision, and
had no color vision deficiencies. Subjects completed the study in
one and half hours on average and were compensated with $20.00
USD. We selected this group, rather than recruiting users via a crowd-
working platform, as all participants had more than 3 years experience
in designing and reading scatterplots.

Apparatus: The study was conducted on a desktop machine with a
3.4GHz Intel i7-6700 CPU, 8 GB of RAM and Windows 10 operating
system using a 23.8-inch LCD display with a resolution of 1920 x 1080
pixels. Participants only used the mouse to complete their tasks.

Tasks: Since our goal is to understand human sensitivity to data per-
turbations in terms of Outlying and Clumpy, the main experimental
task was choosing between two plots (one with, and one without per-
turbations) the one that has higher Outlying (task I) or Clumpy (task II
and III) values. Fig. 11 shows two instances of task I and task II; task
III can be found in the supplementary material. Each participant was
given 30 minutes in total to complete the entire task (with the remaining
time displayed on screen), but we did not impose any per-trial time
constraints. We recorded the response times, the specific plots that were



Fig. 11. Example comparisons from tasks I and II.

Fig. 12. Visual explanation of the concept of Outlying measure by three
similar scatterplots in which the Outlying value gradually increases from
(a) to (c).

chosen, and the error rate (the proportion of times that the participant
did not choose the plot with the higher scagnostics value).

Procedure: After a short explanation of the task and a training session,
the participants completed each of the three study tasks in order, with a
short interview and a five-minute break after each task.

In order to explain the concepts of Outlying and Clumpy measures,
we first gave them their word-wise definitions and then provided them
with some visual explanations. Specifically, we showed them three
examples of scatterplots exhibiting a gradual increase of the scagnostic
measure in question. For space reasons here we show only the Outlying
example in Fig. 12; examples for the Clumpy measure can be found in
the supplementary material.

To further understand how humans define outliers and clumpiness,
we asked participants a number of questions during the post-task in-
terviews: “which data points are considered to be outliers?” for task I,
“how do you compare the clumpiness of a pair of plots with different
amounts of perturbations?” for task II, and “which data factors influ-
ence your perception of clumpiness: size, density, number of cluster,
or others?” for task III. All questions were derived from a small pilot
study, in which we interviewed 6 visualization experts after showing
them 25 pairs perturbed/non-perturbed scatterplots and asking them to
rank them in terms of outlyingness and clumpiness. The black curves in
Fig. 14 show the results of the measures in Scag-06, where the red ones
show the new measures in robust scagnostics described in Section 6.

5.1 Task I: Outlying

Data: We randomly selected ten plots from each of the ten distributions
used by Wilkinson and Wills [53], resulting in 100 reference scatterplots
in total. Based on these references we generated two perturbed plots
for each of them with two different kinds of perturbation. We randomly
selected half (50) of the reference scatterplots for the deletion operation.
We in turn selected 5 scatterplots a piece in which we deleted δ ∈
{1,2,3,5,7.5,10,15,20,30,45}% of the data points. Similarly, of the
remaining 50 scatterplots, we selected 5 scatterplots a piece which we
rotated by θ ∈ {1,2,3,5,7.5,10,15,20,30,45} degrees. Users were
required to choose the plot with the higher Outlying value from each
pair of reference plot and its corresponding perturbed plot.

Results: We analyzed our results using bootstrapped 95% confidence
intervals of the sample means of the error rate. Fig. 14 (a) summarizes
the results. The error rate is larger than 50% when δ is less than 5%.
On the other hand, the error rate is less than 40% when δ is larger
than 10%. This is consistent with Hypothesis H1, indicating that the

Fig. 13. Response times of the lab study with perturbation by deletion.
We show mean values and deviation as 95% CIs of response times in
terms of Outlying (a) and Clumpy (b).

Outlying measure, as defined in Scag-06, does not align well with
human perception for small perturbations. In other words, human
judgments are largely insensitive to small perturbations.

Fig. 13 (a) shows the response times in this study. Participants
spent more time in comparing plots with small perturbations, and less
time on the ones with large perturbations. This observation is partially
consistent with Hypothesis H1. The results of rotation show similar
implications and are given in the supplementary material.

The answers to the interview questions indicate that most participants
interpreted any point far away from its nearest cluster as an outlier, no
matter whether it is an interior or exterior point. This indicates the goal
of the Outlying measure defined in Scag-06 is justified: both interior
and exterior outlying points are relevant to the visual perception of
outliers.

5.2 Task II: Clumpy

Data: We constructed reference scatterplots with a variety of cluster-
like patterns. Specifically, we chose spherical and clustered distribu-
tions [53] and eight binormal distributions with varying cluster number,
size, and density (see Sec. 4.1). We created 10 scatterplots for each of
these 10 distributions, resulting in 100 reference scatterplots. We fol-
lowed the same procedure as in Section 5.1 to perturb each scatterplot.

Results: We present our results in Fig. 14 (b). Initially, there appears to
be a similar pattern as in Fig. 14 (a), in that error rates are large when
the perturbations are small (indicating that humans are insensitive to
small perturbations whereas computer scagnostic measures are not).
A closer look reveals that the error rates are higher and remain high
even as δ increases. Our hypothesis was that the Clumpy measure does
not fully correspond to our participants’ intuitions about clumpiness.
Our results therefore only partially support Hypothesis H1. Fig. 13 (b)
shows the response times, which partially support Hypothesis H1.

During the interview we found out that most participants randomly
made a choice when the perturbations were small. Similarly, mostly
arbitrary decisions were made when perturbations (large or small) did
not impact the variance in density between the two plots. The partici-
pants were most comfortable making decisions when large variations
in cluster density and size were present. This suggests that defining
the Clumpy measure across only two edges does not match visual
judgments of clumpiness by humans.

5.3 Task III: Clumpy for Complex Clusters

Data: To explore human judgments of cluster-like patterns, we con-
structed scatterplots using the clusters based on the Binormal distribu-
tion. Based on that we introduced three kinds of scatterplot pairs for
the comparisons: same-cluster-number, one-more-cluster and random-
cluster-number aiming to understand how humans judge clumpiness in
terms of cluster-specific characteristics. For same-cluster-number pairs,
the two plots had the same number of clusters. For one-more-cluster
pairs, one plot had one more cluster than the other. For random-cluster-
number pairs, the number of clusters in both plots was randomly deter-



Fig. 14. Results of the lab study: Mean values and deviation for 95% CIs of error rates in terms of Outlying (a) and Clumpy (b,c) measures, which
are defined in Scag-06 are shown in black (see Section 5), while our proposed measures in red of each study (see Section 6).

mined. Since the cluster number varies from one to five, we created five
different cluster configurations for pairs with the same-cluster-number,
four different point distributions for the one-more-cluster, and one ran-
dom configuration. For each configuration, we randomly created 10
pairs of plots with varying cluster sizes, shapes, and densities.

Results: Fig. 14 (c) shows the overall results. Error rates were very
high across all three types of cluster pairs (larger than the chance of
50%), supporting our hypothesis H2: human judgments of clumpiness
seem to systemically differ from the Clumpy measure. These rates
were especially high for pairs with dissimilar cluster numbers one-
more-cluster and random-cluster-number, exceeding an error rate of
70%. This suggests that humans made differing judgments based on
the number and internal density of the clusters, a phenomena that is not
captured in the existing Clumpy measure.

We specifically asked the participants about the different cluster
pairs in the post-task interview. When two plots had the same number
of clusters or multiple different clusters, participants mainly used the
variability in density to judge clumpiness; the number of clusters had
only a weak influence on their judgments. When a plot with one cluster
was compared to a plot with multiple clusters, participants always
assumed the plot with multiple clusters to have a higher clumpiness.
Such observations motivated us to re-define the Clumpy measure with
more cluster-specific factors rather than only using two edges.

6 ROBUST SCAGNOSTICS

Our results suggest that scagnostic measures might not be able to
accurately and robustly characterize visual features in scatterplots,
especially the Outlying and Clumpy measures. To alleviate this issue,
we propose Robust Scagnostics (RScag) that compute each measure
based on a cluster hierarchy rather than one or two (Clumpy) global
cluster(s). Fig. 15 illustrates the pipeline, which also contains two pre-
processing steps: adaptive binning and cluster hierarchy construction.

Fig. 15. The pipeline for computing RScag. After adaptive binning and
building the cluster hierachy, all measures are computed except the
Monotonic measure.

6.1 Adaptive Binning
Binning can significantly improve computational performance. How-
ever, it can dramatically change the characteristics of the input data and
resulting measures, as shown in Fig. 6. To address this issue, we intro-
duce adaptive binning, which combines hexagonal binning and uniform
sampling to preserve the relative densities of an input scatterplot [11].

Given a scatterplot with n points, we first map all points to a 20×20
hexagonal grid and compute the average number of points in each
cell m. Next, we define the sampling ratio as γ = n/m and uniformly
sub-sample the points in each cell with the ratio γ , while requiring that
each cell contains at least one point. Fig. 16 (b,c) shows the results
generated by applying the existing binning and our binning strategies.
The density variability of the input scatterplot in Fig. 16 (a) is lost by
hexagonal binning (subfigure (b)), but is kept by our strategy in (c).

By using our adaptive strategy, the computed scagnostic measures
more closely resemble the values from the original plots. Fig. 16 (d)
compares the relative change ratios (see Eq. 5) of Outlying and Clumpy
values generated by our binning strategy and traditional hexagonal
binning. Our strategy preserves the Clumpy value while reducing the
change ratio of Outlying values from 56% to 24%.

6.2 Hierarchy-based Scagnostics
After the adaptive binning, we construct a cluster hierarchy for comput-
ing scagnostics while deleting outliers. Before describing the construc-
tion procedure for the cluster hierarchy, we first need to define robust
versions of Clumpy and Outlying measures.

Robust Outlying Measure: To preserve the robustness of the Outlying
measure in Scag-05, we also take all nodes with degree 1 and associated
edge weight greater than ω (see Eq. 2) as outliers, but we compute
ω in terms of local clusters rather than the whole MST. Suppose a
cluster hierarchy is obtained from the MST, interior outliers would
become exterior outliers for each local cluster. In this way, both exterior
and interior outliers can be identified while preserving the robustness.
Fig. 17 (a) shows an example of this process.

For a cluster hierarchy with leaf clusters {l1, · · · , lc}, our Outlying
measure is defined as:

coutlying = ∑
i

ni

n
length(To(li))
length(T (li))

, (6)

where n refers to the overall number of points, ni is the number of
points in the i-th sub-cluster, To(li) refers to the set of outlier edges in
li, and T (li) is the set of MST edges in li.

Robust Clumpy Measure: Our robust Clumpy measure is based on
splitting large clusters C into sub-clusters separated by the edge e j
under review, whereas the existing Clumpy measure ignores the density
of large sub-clusters (see Figs. 10 (a,b)). To address this issue, we
re-define the Clumpy measure by incorporating the longest edge em of
the larger sub-cluster and the number of points in each of them:

cclumpy(C) = 1− length(ek)nk + length(em)nm

length(e j)(nk +nm)
, (7)

where nk and nm refer to the number of points in the small and large
sub-cluster linked to e j , respectively.

The subtrahend in Eq. 7 can be considered as the weighted Davies-
Bouldin (DB) Index [23], which is defined as the ratio of the sum



of the within-cluster scatter to the between-cluster separation. The
only difference is that the DB Index uses averaged point distances
to compute the within-cluster scatter, while we use the largest point
distances, see an instance in Fig. 17 (b).

For a cluster hierarchy with leaf nodes {c1, · · · ,cl}, we compute the
overall Clumpy value by computing cclumpy(ci) for each leaf cluster
and sum them up:

cclumpy = ∑
i

ni

n
cclumpy(ci). (8)

Building A Hierarchy: Taking the whole point set as a single cluster
C, we perform the following procedure to build the cluster hierarchy:

1. delete outliers by computing ω (Eq. 2) for all edges of C.

2. find the edge e j that maximizes cclumpy(C).

3. if e j is smaller than ω then terminate.

4. split C into two clusters Cl and Cr.

5. repeat the whole procedure for Cl and Cr.

Due to space limits, the illustrations for this algorithm can be found
in the supplementary material.

Other Measures: After finishing this procedure, we have a cluster
hierarchy with leaf nodes {c1, · · · ,cl} and the resulting Outlying value.
For each of the other measures, we compute the value within each leaf
cluster and then determine the weighted average of all values, as for
the Clumpy measure defined in Eq. 8.

6.3 Comparison with Scagnostics
We validated RScag through conducting several comparisons with the
original scagnostics. We generate the results of RScag by using the
same perturbations as in Section 4.3, compute the error rate in the
results of the user studies, and analyze the runtime of both methods for
comparison. The results show that our R-Scag better aligns with human
perception while their computation time is less than for Scag-06.

Perturbations: Fig. 7 shows our results at the bottom. The ρ values of
our measures are larger than 0.9 when δ is not larger than 3%, and they
are always larger than 0.85. And the slope of its trendline is relatively
small and is similar with Scag-05 which reflects that they change
smoothly as δ increases. Our measure shows a similar sensitivity for
the other perturbing operations that are shown in the supplementary
material. These results confirm that our R-Scag is generally robust to
perturbations.

User Study: Fig. 14 compares human error rate in our user study using
both Scag-06 and RScag as ground truths by following the same setup
(participants, tasks, procedure) introduced in Sec. 5. Fig. 14 (a) shows
that when α is less than 3%, our Outlying measure has similar error
rates as that in Scag-06, but our error rate is more than 10% lower
as δ grows larger than 3%. This indicates that our Outlying measure
aligns better with human judgment of outliers. Fig. 14 (b) shows a
similar pattern for the Clumpy measure, although the improvement is

Fig. 16. Comparison of two binning methods and resulting changes for
the scagnostic measures. (a) input; (b) result of hexagonal binning; (c)
result of our adaptive binning; (d) relative change ratios (in percentage)
of Outlying and Clumpy measures defined in Scag-06, obtained by
comparing the scagnostic measure from (a) to the ones from (b,c).

Fig. 17. Illustration of robust hierarchy-based measures: (a) Outlying
measure; and (b) Clumpy measure. Both are defined on local clusters.

slightly smaller (around 7% when δ is greater than 5%). For the cluster
pattern study (Fig. 14 (c)), our robust version performs much better,
with improvements of 18%, 46%, and 59% across the three types of
cluster pairs.

From the above observations, we conclude that our Outlying and
Clumpy measures are more consistent with human judgments, espe-
cially when computing Clumpy values for complex cluster distributions.

Performance: The computational complexity of constructing the DT
and MST can be reduced to O(nlogn) in both cases, where n is the
number points after binning. Since the complexity of the cluster hier-
archy construction is O(kn) (k << logn), our algorithm has the same
time complexity as Scag-05 and Scag-06. In practice, Scag-06 may
be the slowest because of the iterative rebuilding of the DT and MST
after deleting outliers. RScag performs the second best because of the
additional hierarchy construction compared to Scag-05.

Moreover, we compare their runtime by applying them to scatterplots
with various Binormal distributions on the same machine as mentioned
in Sec. 5. Table 1 shows the results. While Scag-05 is the fastest and
Scag-06 the slowest, all of them reveal similar costs. These observations
are consistent with the above analysis.

Table 1. Average runtime (in ms) for three versions of scagnostics for
Binormal scatterplots with different numbers of points.

Number of points 100 200 500 1000 1500 2000
Scag-05 23 28 35 49 57 67
Scag-06 27 33 46 69 77 89
R-Scag 23 29 39 53 62 77

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a comprehensive robustness analysis for
scagnostics. We find that Outlying and Clumpy measures are nega-
tively effected by data binning. We further conducted a user study
for assessing how human judgments of outlyingness and clumpiness
correlate with Outlying and Clumpy measures, which revealed that:
i) human perceptions do not align with these measures for small per-
turbations, and ii) the perception of clumpiness mainly depends on a
few cluster relevant factors such as the per-cluster density. To address
these issues, we propose Robust-Scagnostics (RScag), which is robust
to perturbations and more in line with human judgments.

For future work, we plan to conduct a large-scale user study to further
examine the effect of different cluster relevant factors on perceived
clumpiness. Second, we intend on applying our robust scagnostics to
different applications [4, 19]. Lastly, we would like to extend robust
scagnostics to quantify visual features in multi-class scatterplots and
parallel coordinates.
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