
Palettailor: Discriminable Colorization for Categorical Data

Kecheng Lu, Mi Feng, Xin Chen, Michael Sedlmair, Oliver Deussen, Dani Lischinski, Zhanglin Cheng, Yunhai Wang

Palettailor | Colorization Palettailor | Tableau Palettailor | Colorgorical

Fig. 1. Results for different types of categorical data visualizations: (left) Palettailor versus Colorization [6]; (center) Palettailor versus
Tableau [30]; (right) Palettailor versus Colorgorical [10]. Our system integrates the creation and the assignment of colours to a
visualization in a data-aware manner.

Abstract—We present an integrated approach for creating and assigning color palettes to different visualizations such as multi-class
scatterplots, line, and bar charts. While other methods separate the creation of colors from their assignment, our approach takes data
characteristics into account to produce color palettes, which are then assigned in a way that fosters better visual discrimination of
classes. To do so, we use a customized optimization based on simulated annealing to maximize the combination of three carefully
designed color scoring functions: point distinctness, name difference, and color discrimination. We compare our approach to state-of-
the-art palettes with a controlled user study for scatterplots and line charts, furthermore we performed a case study. Our results show
that Palettailor, as a fully-automated approach, generates color palettes with a higher discrimination quality than existing approaches.
The efficiency of our optimization allows us also to incorporate user modifications into the color selection process.

Index Terms—Color Palette, Discriminability, Multi-Class Scatterplot, Line Chart, Bar Chart

• K. Lu, X. Chen, Y. Wang are with Shandong University. E-mail:
{lukecheng0407, chenxin199634, cloudseawang}@gmail.com.

• M. Feng is with Twitter Inc. E-mail: miamfeng@gmail.com.
• K. Lu and Z. Cheng are with Shenzhen VisuCA Key Lab, SIAT, China.

E-mail: zl.cheng@siat.ac.cn.
• M. Sedlmair is with VISUS, University of Stuttgart, Germany. E-mail:

michael.sedlmair@visus.uni-stuttgart.de.
• O. Deussen is with Konstanz University, Germany and Shenzhen VisuCA

Key Lab, SIAT, China. E-mail: oliver.deussen@uni-konstanz.de.
• D. Lischinski is with Hebrew University, Jerusalem, Israel. E-mail:

danix@mail.huji.ac.il
• Y. Wang and Z. Cheng are joint corresponding authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

1 INTRODUCTION

Visualizing categorical data in statistical graphics such as bar charts,
line charts, or scatterplots is most commonly realized by encoding
each category (or class) with a unique color. One major task during
visual analysis is then to discriminate between the different classes.
While it is well-known that class discriminability is strongly influenced
by the assigned colors [9, 17], finding an appropriate set of colors for
the different classes in a specific visualization is still a complex and
time-consuming endeavor, even for experts.

The most common way to obtain an appropriate color mapping is to
find a good color palette first and then assign the colors to classes in the
best possible way. To ease this procedure, a few color palette tools have
been provided, such as ColorBrewer [11] or Colorgorical [10], which
allow users to select highly discriminable and preferable palettes. Since
the creation of such palettes ignores the specific data of a visualiza-

tion, a good palette might still not be optimal to visually discriminate
classes in different forms of visualization. Hence, users often need to
try different palettes and color assignment schemes until the desired
result is achieved. Recently, Wang et al. [36] proposed a method that
automatically assigns colors of a given palette to classes of multi-class
scatterplots by maximizing their discriminability. This technique en-
ables users to bypass the second stage of the standard color assignment
process, but it is limited to scatterplots and still requires the author to
select a good palette. In contrast, Chen et al. [6] proposed an auto-
matic color selection approach for multi-class scatterplots by searching
discriminative colors in the a* and b* channel of the CIELAB space.
However, leaving out L* channel often does not allow to find col-
ors with high enough discriminability, especially when the number of
classes is large. Since such an approach directly colorizes multi-class
scatterpots without any input palette, we refer to it as Colorization in
this paper.

To fill this gap, we propose Palettailor, a data-aware color palette
generation framework, that automatically generates categorical palettes
with maximized discriminability for different visualization types. To
achieve this goal, we adapted three color-scoring functions: Point Dis-
tinctness [36], Name Difference [13], and the Color Discrimination
constraint. The first function is measured from the visualizations, while
the last two terms from the palettes. By doing so, we combine the
two stages of palette selection and color assignment to a single frame-
work. Users only need to specify weights of the different color-scoring
functions and background color to create suitable palettes. In terms of
these functions, our notion of “data-aware” mainly refers to the spatial
distribution and cardinality of categories in a given scatterplot, while
data semantics can be reflected by, e.g., constraining color names (see
Section 5.1). As far as we know, few existing color palette generation
tools take all these factors into account.

To realize this idea, we customize state-of-the-art class separation
measures [2] for designing color-based class discriminability. Wang
et al. [36] measure Point Distinctness by using a K-Nearest-Neighbor-
Graph with taking the two nearest neighbors per point, but we hypothe-
size that this might not work for all cases since the KNN method would
only connect with k neighbors and might not be able to accurately
characterize local class separability. Instead, we suggest to use an
α-shape [34] graph that connects a set of points within an α-ball so as
to better characterize the local discriminability.

With such a pre-computed geometry-based class separation, an op-
timal color palette can be found by evaluating all possible solutions
and then ranking them accordingly. The color space, however, is too
large for an exhaustive investigation and so we propose a customized
simulated annealing algorithm [26] to rapidly and efficiently obtain a
near-optimal solution. In doing so, we can generate the palettes for
scatterplots and other types of visualizations with 40 classes in less
than 15 seconds.

We evaluated our approach through carefully designed scatterplots
and line charts by comparing our colorized results with the ones pro-
duced by the state-of-the-art palettes (e.g.,Tableau [30] and Colorgor-
ical). We first conducted a pilot study for each visualization type to
justify whether our design is valid. We then carried out an online study
with three tasks for a scatterplot: the first two tasks investigated how
well our generated palettes help users to discriminate classes, while the
third task aimed at finding out if our results align with user preferences.
Similarly, we carried out another online study for a line chart with a
discrimination task and again measuring the alignment with user pref-
erences. The results show that our method is able to produce palettes
optimized for class discrimination and aligned with user preferences
for different chart types that are more effective than state-of-the-art
palettes in most cases.

On the basis of our method, we implemented a web-based palette
generation tool that allows users to generate suitable palettes for multi-
class scatterplots, but also for other categorical visualizations such as
bar and line charts. In summary, the main contributions of this paper
are:

• We propose a data-aware approach based on simulated annealing
for automatically generating color palettes for different visualiza-

tion types. It is based on user-defined weights for three different
scoring functions and extends state-of-the-art separation measures
(Section 3).

• We quantitatively evaluate the resulting color palettes and vi-
sualizations, and compare the results with state-of-the-art color
palettes; online user studies show the usefulness of our approach
(Section 4).

• We present an interactive tool1 that demonstrates the practical
applicability of our method and helps exploring categorical infor-
mation visualizations (Section 5).

2 RELATED WORK

Since we focus on color palette generation, related work is divided into
color palette creation and color palette optimization. For the generation
of color ramps, a slightly different color assignment problem, we refer
readers to recent surveys [22, 24, 31, 37] .

2.1 Color Palette Creation
Creating a categorical color palette that enables viewers to distinguish
between data elements is a crucial task for many visualizations. Pre-
vious attempts have derived practical guidelines based on perceptual
constraints, such as “colors should be well separated” [12], “should not
compete with each other” [32], and “should not be unappealing” [38].
Following these guidelines, a few interactive color palette creation
systems have been developed. Healey [12] proposed to choose repre-
sentative colors from ten hue regions in Munsell’s color space, while
maximizing the perceptual distances between them. Maxwell [20]
selects colors that maximize the discriminability between classes, but
also takes into account their spatial distribution. Their approach has
two major limitations. One is that the generated colors are not aestheti-
cally pleasing or easy to see; and the other is that it defines perceptual
distances based on the so-called maximum scaled difference, which
might not align well with human perception. We want to find a much
more general solution. Colorgorical [10] also overcomes this draw-
back, but does not take into account the data distribution. The resulting
palettes might thus not allow to discriminate classes in given data or
in a particular visualization. The Colorization method proposed by
Chen et al. [6] automatically selects colors for multi-class scatterplots
in the CIELAB color space to yield a maximal color distinguishability.
This technique targets the same problem as ours, but has three main
drawbacks: (i) using density to encode class separability does not lead
to an accurate measurement; (ii) leaving L* as a user-adjustable pa-
rameter and only optimizing a* and b* values limits the approach to a
2D plane in CIELAB and does not provide enough colors with large
color differences; (iii) using Euclidean Distance for computing color
distances leads to generated colors that are often at the boundary of the
2d plane due to the optimization. Our method avoids these drawbacks.

Another approach for designing discriminable palettes is to use pre-
fabricated ones. A typical example is ColorBrewer [11], an online tool
for generating color palettes optimized for choropleth maps. Although
ColorBrewer offers different high-quality palettes for different cardi-
nalities, it does not allow users to customize them. Colorgorical [10]
enables users to customize palettes by specifying desired hues, but it
does not take the underlying data into account and thus cannot cus-
tomize colors for specific classes or visualizations. Our data-aware
approach inherently offers such flexibility.

2.2 Color Palette Optimization
Once a color palette is selected, users often want to refine the colors
until a desired set is achieved and then find a proper assignment to the
categories within the data.

Color Optimization. Optimizing a selected color palette can be per-
formed by applying different criteria, such as optimizing data com-
prehension, aesthetics, energy saving, or helping with color vision
deficiency (CVD) [39]. Wang et al. [35] introduced a knowledge-based
system that employs established color design rules to optimize chosen

1http://www.palettailor.net

http://www.palettailor.net

colors for discriminating spatial structures in 2D and 3D visualizations.
Chuang et al. [7] proposed to optimize color palettes with the goal of
lowering the energy consumption of display devices, and Machado et
al. [19] presented a physiologically-based model for simulating color
perception so that the refined palettes can efficiently improve the visu-
alization experience for individuals with CVD.

Lee et al. [17] proposed to measure the visual saliency of each
visible point of a class and used this metric to optimize palettes for
better class discrimination. This method takes the color contrast against
the background into account, however, it aims to optimize the given
color palette in terms of spatial adjacency of the given data. In contrast
to their work, our approach directly produces discriminable colors
for different categorical visualization types such as bar or line charts;
furthermore, we also incorporate color contrast with the background
into the discriminability measure.

Rather than optimizing palettes for a specific visualization, Fang
et al. [8] provided an approach for maximizing perceptual distances
among a set of given colors. Although this approach can incorporate
various user-defined constraints, it is independent of the given data and
thus the produced visualization might not clearly show the different
class structures in the data.

Color Assignment. Assigning colors properly to different classes is
a crucial step in categorical data visualization. Assuming that cate-
gorical values have semantics, Lin et al. [18] propose a method that
automatically matches each value to a unique color from a given palette.
Setlur and Stone [28] use linguistic information to generate semanti-
cally meaningful colors. Since most classes in a visualization might
not have clear semantics, Wang et al. [36] allow user modification and
customization within their optimization framework. To that end, they
take spatial adjacency into account, but require a discriminable palette
first. Our approach unifies palette creation and color assignment into a
single procedure and is also able to adapt to user wishes. In addition, it
supports palette completion and introduces semantics by handling color
names. By constraining color selection with user-specified color names,
our approach could also be extended to achieve data semantics-based
colorization similar to existing approaches [18, 28].

3 METHODS

Given categorical data with m classes C = {C1, · · · ,Cm}, we assume
to have a point set X = {x1, · · · ,xn} where each xi is associated with
a class label l(xi) and the j-th class (with n j data points) consist of
{x j

1, · · · ,x
j
n j}, j ∈M = {1, · · · ,m}, the background color is represented

by c0. We formulate the search for a color palette P = {c1, · · · ,cm} as
an optimization problem with the objective function E(P):

argmax
P

E(P) = ω0EPD +ω1END +ω2ECD, (1)

where each class Ci is assigned a unique color ci and each weight ωi is
a value range from 0 to 1.

In the following, we will introduce the constraints we use for optimiz-
ing the colors in different visualization types: Point Distinctness(PD),
Name Difference(ND) and Color Discrimination(CD), and then de-
scribe how we solve the overall optimization problem.

3.1 Scoring Functions
Since scatterplots are the most commonly used chart type with points
as visual marks, we decided to use them to illustrate our method. The
arguments, however, also hold for other types of visualizations, as
shown later.

Point Distinctness. Similar to [36], we define the distinctness of a data
point xi from its neighbours using a color mapping P as follows:

α(xi) =
1
|Ωi| ∑

x j∈Ωi

∆ε(ci,c j)g(d(xi,x j)), (2)

where the Ωi are the nearest neighbors of xi with ci = P(l(xi)),c j =
P(l(x j)) color mapping functions, ∆ε is the perceptual color distance

(a) (b)

(c) (d)

Fig. 2. Comparison of nearest neighbors definitions in KNN graphs and
α-Shape graphs. (a) Results generated by a KNN graph using only point
distinctness: the generated colors are hard to discriminate; (b) Nearest
neighbors of the selected point in the KNN graph; (c) Results generated
by α-Shape graph only using point distinctness: the generated colors
are easily to discriminate; (d) Nearest neighbors of the selected point in
the α-Shape graph.

metric called CIEDE2000 [29] and g(d(xi,x j)) is a distance-based
function that assigns large weights to nearby points and small weights
to distant points; we used g(d) = 1

d in our implementation.
In contrast to Wang et al. [36], we define Ωi using an α-Shape

graph [2] instead of a KNN graph. The reason for this is that nearest
neighbors within of an KNN graph may have an arbitrarily large or
small distance to the point of interest. Although the distance-based
function g(d) helps for reducing the influence of neighbors with large
distances, having neighbors with only small distances might result in
a colorization that is hard to discriminate. Fig. 2(a) shows an exam-
ple where the two well-separated clusters enclosed by the rectangle
receive similar colors for the KNN-based approach and are thus hard
to distinguish. In contrast to this, the α-Shape graph connects only
points that are neighbors in the Delaunay graph and in addition their
α-balls intersect (see Fig. 2(d)). This property allows us to select the
closest neighbors of a given point within a certain radius. Fig. 2(c)
shows the colorization result, now the two nearby clusters enclosed by
the rectangle can be discriminated easily.

The colorization results for the same scatterplot using these two
different graphs are shown in Fig. 2(a,c).Since the two nearby clusters
highlighted by the rectangle are well separated and dense, the k nearest
neighbors of each point belong to the same class in the KNN graph
and the point distinctness is zero; this leads to similar assigned colors
for the two clusters. In contrast, point distinctness computed from the
α-Shape graph takes into account only neighbors within a given radius
and therefore results a discriminable colorization.

Point Distinctness is defined as the sum of the Point Distinctness of
all points in each class:

EPD =
m

∑
j=1

n j

∑
i=1

α(x j
i). (3)

Name Difference. Two colors might be perceptually different but are
referenced by the same name, confusing color selection. For example,
the color “Violet” is perceptually different from “Dark Purple”, but
they are often referred by the same name “Purple”, making it difficult
to reference them by name in a visualization. To model such name-
color associations, Heer and Stone [13] introduce the concept of Name
Difference (ND), that measures the probability of two colors having the

(b)(a)

(d)(c)

Fig. 3. Colorization results based on different optimization criteria: (a)
without Class Discrimination constraint; (b) without considering back-
ground color making it hard to see points of one class; (c) integrating the
white background into the optimization lets the class appear in a dark
color; (d) integrating the black background color into the optimization
changes the colorization of many classes in order to create the necessary
contrast.

same name. It was used by Colorgorical [10] for generating palettes
with perceptually separated colors. For a palette, its ND is defined as the
minimal Hellinger distance [13] between the probability distributions of
all color name pairs. Another option is to compute the cosine distance,
the angle between the two distributions:

ND(ci,c j) = 1− cos(Tci ,Tc j) = 1− Tci Tc j

||Tci ||||Tc j ||
, (4)

Where T is the name count matrix for the color terms, with Tc the row
vector for color c. Due to its simplicity and familiarity, we use the
cosine distance to measure the name difference of two colors. For a
palette, our goal is to compose it as much as possible from colors with
different color names, thus its overall Name Difference is defined as
the average value of all color pairs:

END =
2

m(m−1) ∑
i 6= j∈M

ND(ci,c j). (5)

Color Discrimination. Since the spatial distance between marks might
influence the perception of color differences [5], we employ a hard
constraint into our optimization: each two colors should have a minimal
CIEDE2000 distance of 10, so that each pair of colors can be distin-
guished even for large spatial distances. Meanwhile, the minimum
color distance should be as large as possible to protect the optimization
from reaching unsatisfying results. Fig. 3(a) shows that without using
the color discrimination constraint classes with small overlap might be
assigned improper colors: the green and limegreen classes are hard to
distinguish, also the green and cyan classes. In addition, we also take
the background color c0 into consideration to prevent the optimization
from generating colors indistinguishable from the background, see
Fig. 3(b),(c),(d) for illustration. The formal definition of the Color
Discrimination is:

EDC = min
0≤i 6= j≤m

∆ε(ci,c j). (6)

To achieve good optimization results we need to balance the three
terms. For the Point Distinctness, we use a normalized weight relative to
an initial score at the beginning of the optimization taken from a random
palette that satisfies basic requirements. Based on out experiments

Name Difference is multiplied by a factor of 2.0, while the Color
Discrimination constraint is multiplied with a factor of 0.1.

3.2 Extension to Line and Bar Charts
We extended our method to generate color palettes for other categorical
visualizations such as line and bar charts. We achieved this by inter-
preting these charts as special cases of scatterplots, which allowed us
to fit them into our optimization framework. We are well aware of the
fact that this is a very simple form of implementation, but the results
are promising.

Fig. 4 illustrates the process. To colorize a line chart, we discretize
the lines into equidistant points and process them the same way as the
points of a scatterplot. Note that we discretize line segments with large
slopes result into more point samples, indicating that such lines need to
be discriminated stronger from each other.

A bar chart is different from a line chart in that nearest neighbors
are pre-defined by the adjacent bars. Thus we treat every bar as a
single point class with a center at the middle of the bar; its nearest
neighbors are the two adjacent bars. An example is shown in Fig. 4(c),
where we took the length of the connecting lines between each two
center points as the distance of the corresponding bars. In addition, we
used the reverse function g(d) = 1

d to scale up distances of bars with
similar heights for better distinguishing them. Our technique achieves
high-quality results compared to state-of-the-art palettes and is more
flexible and steerable, some results can be seen in Fig. 4(b,d). Due to
the space limits, we show more results in the supplemental material.

(a) (b)

(c) (d)

Fig. 4. Converting line and bar charts to point-based representation
for colorizing them: (a) each curve in a line chart is discretized into
equidistant points; (b) colorized line chart; (c) for a bar chart, the center
of each bar is represented as a point and connected to its two adjacent
bars for forming the graph; (d) colorized bar chart.

3.3 Simulated Annealing
Our method takes categorical data with m classes as input, then itera-
tively tries to find an optimized color palette, with each color assigned
to a class. Similar to Gramazio et al. [10], we filter out strongly disliked
colors whose luminance value is in the range of L ∈ [35,75] and hue
values H ∈ [85◦,114◦]. To find m colors with maximal energy with
respect to Eq. 1, we use Simulated Annealing [1], a stochastic opti-
mization method for finding optima. In comparison to the optimization
adopted by Pham and Karaboga [26], Simulated Annealing yields better
results at comparable run times, this way also facilitating an interactive
generation of palettes.

Algorithm 1 Simulated Annealing for Colorization

1: randomly initialization P0

2: best palette Pbest = P0

3: t = 0
4: while Tt > Tend do
5: Q = Pt

6: if random(0, 1) < 0.5 then
7: randomly disturb one color of Q
8: else
9: randomly exchange two colors of Q

10: end if
11: while ∃∆ε(ci, cj) < τ ; ci ∈ Q do
12: randomly disturb ci or cj to get a new Q
13: end while
14: ∆E = E(Q)− E(Pt)
15: if ∆E > 0 then
16: Pt+1 ← Q
17: else
18: with probability exp(∆E/Tt), Pt+1 ← Q
19: end if
20: if E(Pbest) < E(Q) then
21: Pbest = Q
22: end if
23: Tt = αTt, t← t+ 1
24: end while

1

Starting with a high “temperature” and an initial guess, the method
iteratively updates the palette, while gradually lowering the tempera-
ture until convergence is achieved. During this procedure, intermediate
results worse than the current iteration can be accepted with a proba-
bility related to the “temperature”. If the cooling of this temperature
is slow, it is more likely to reach the global optimum. Algorithm 1
shows the details of our implementation. It has three customized com-
ponents: generating a new solution, palette refinement by imposing
hard constraints, and finding the optimal colorization. In the following
we explain each of these components in detail. In line with suggestion
of previous works [15], we use the following values: cooling coeffi-
cient α = 0.99, initial temperature T = 100,000 and end temperature
Tend = 0.001. The effect of different parameter values and number of
iterations on the final result is shown in the supplemental material.

Initialization of P (line 1). We found that using random initialization
can generate reasonable results in most cases. Although P can also
be initialized by any existing good palette, the results are almost the
same as the ones produced from random initializations. Since existing
palettes also might not have enough colors, P0 is set to a random
initialization by default.

Generating a new solution (line 6-10). With the initial palette P0 =
{c1,c2,...,cm}, we create the new solution by two different ways: adding
a small random offset to each component of the randomly selected color
ci in P, or by randomly exchanging two colors. These two ways of
updating unify the generation of the palette and the color assignment in
a single process that assigns each class its most appropriate color.

Palette refinement by imposing hard constraints (line 11-13). To
guarantee that all colors in Q are sufficiently discriminable, we check
if any pair of colors would be closer to each other than a noticeable
difference threshold τ , which is suggested to be 10, cf. [5]. If this is the
case, we randomly perturb these colors until the differences between
all color pairs are larger than τ .

Finding the optimal colorization (line 14-22). After palette refine-
ment, we score the created palette Q as well as the previous one Pt (line
14) to decide whether to accept this solution or not (line 15-19). Our
goal is to generate a discriminable visualization and hence we preserve
the best result for each iteration (line 20-22).

3.4 Time Complexity
We implemented our algorithm using JavaScript and tested it on a
computer with an Intel Core i7-7700HQ processor with 32GB memory.
The point distinctness can be decomposed into two steps [36]; thus, the
input data can be pre-computed and we separate this pre-processing step
from the simulated annealing algorithm. In this way, the performance
of our method is not related to the number of data points but instead
depends only on the number of classes.

In each iteration of the optimization we apply the scoring functions
two times, with a time complexity of O(m2). For a total number of
iterations t, the time complexity for the whole algorithm is O(tm2).
Fig. 5 left shows that the optimization can find reasonable palettes for
scatterplots with 20 classes in less than 3s and for 40 classes in less
than 15s. Fig. 5 right shows the convergence curves, our method has a
number of strong oscillations at the beginning and then oscillates more
smoothly until it converges. We checked all generated palettes with 40
classes and found that the distances of all color pairs were larger than
the noticeable difference threshold [5]. Thus, we assume that Palettailor
can generate 40 or more discriminable colors, of course only under the
assumption of side-by-side comparison [23].

10 20 30 40
0

2

4

6

8

10

12
13

3
Class Number

Ti
m

e
(s

)

0 600 1,200 1,800

3.5

4.5

5.5

6.5

Num. of iterations

E(
P)

Fig. 5. Time complexity of our method: (left) optimization time versus
number of Classes. (right) energy level E(P) versus number of iterations.

4 EVALUATION

We evaluate the quality of our palette generation method by comparing
the resulting visualizations from our method with those from the ex-
isting methods: Tableau [30], Colorgorical [10] and Colorization [6].
As shown in Fig. 6, the existing palette generation methods have differ-
ent levels of automation. For fully manual (Tableau) or partly manual
methods (Colorgorical), we compared our method with both a best and
a worst/random palette result (more details below).

To test these methods, we conducted two experiments through Ama-
zon Mechanical Turk (AMT) with 155 participants in total. Experiment
1 focuses on multi-class scatterplots, while Experiment 2 tests our ap-
proach on line charts. We test the different methods with two types
of tasks: discrimination tasks and preference tasks. In discrimination
tasks, we ask participants questions that necessitate them to visually
separate, or “discriminate”, data from differently colored classes/lines.
In preference tasks, we ask them about their subjective preferences be-
tween visual encodings with colors from the different palette generation
methods.

Discrimination hypotheses. For discrimination tasks, we had the
following hypotheses:
H1 Palettailor’s results are not worse than the best cases from the

manual process of designer-crafted palettes (Tableau Best) and
auto-generated palettes (Colorgorical Best).

H2 Palettailor’s results are better than the worst or random cases from
the manual process of designer-crafted palettes (Tableau Worst)
and auto-generated palettes (Colorgorical Random).

H3 Palettailor’s results are better than the existing fully-automated
method (Colorization).

Besides discriminability, we also want to find out that whether our
results are aesthetically preferred by people or not, thus we have the

other two hypotheses:

Preference hypotheses. In terms of preference tasks, we have the
following hypotheses:
H4 The preferences of Palettailor’s results are not worse than

designer-crafted palettes (Tableau).
H5 Palettailor’s results are preferred over the auto-generated palettes

(Colorgorical and Colorization).

Methods
Palette Generation Process

Color Generation Color Assignment
Conditions

Tableau

Colorgorical

Colorization

Palettailor

Manual

ManualAutomatic

Automatic Automatic

Automatic Automatic

Tableau Best

Tableau Worst

Colorgorical Best

Colorgorical Random

Colorization

Palettailor

Fig. 6. On the left column we show the existing methods that generate
color palettes for visualizations including Tableau [30], Colorgorical [10]
and Colorization [6], together with our proposed method Palettailor.
These methods adopt different palette generation processes that have
different levels of automation (shown in the middle columns). For exam-
ple, Colorgorical’s process involves automatic color palette generation
and manual color assignment, meaning that it needs manual effort to
assign the colors from the palette to the visualization.

4.1 Experiment 1: Scatterplot Experiment

In this experiment, each participant completed one of three tasks from
two different discrimination tasks and one preference task. As stimulus
we used 30 multi-class scatterplot datasets for each task. For coloring
the classes, we included six palette conditions – one from our method
and the other five from existing methods (see right column of Fig. 6).

4.1.1 Experimental Design

Tasks & measures. We tested two discrimination tasks, and one pref-
erence task.

• Counting (discrimination) task. Following the methodology by
Wang et al. [36], we asked participants to count the number of
classes in a scatterplot and to choose an answer among several
options. For each participant, we recorded the time taken for
each trial, and counted the errors by calculating the differences
between the actual number of classes and the participant’s re-
sponse. The counting task focuses on global discriminability. We
reported the error measure as time is not of primary interest for
our hypotheses.

• Comparison (discrimination) task. Following the methodology
by Gleicher et al. [9], we asked participants to judge which of two
specified class centroids was higher and to choose a value from a
choice with two-alternatives. For each participant, we recorded
the time taken and error(0/1) for each trial. The comparison task
focuses on local discriminability.

• Preference task. Participants were shown a series of image pairs,
each containing two scatterplots selected from two different con-
ditions: one from Palettailor and the other from a benchmark
condition. For each figure, the participant was asked to choose the
plot they preferred. A neutral choice button was also provided.

To avoid potential carryover effects between tasks, we measured pref-
erence on the colored visualizations as a stand-alone task, instead of
measuring it in the context of each discrimination task.

Conditions & sample palette generation. As shown in Fig. 6, we
have six conditions in total, one from our method (Palettailor), and
the other five conditions from the existing methods (Tableau Best,

Table 1. Organization of Datasets for the Discrimination Tasks: 30
datasets × 6 conditions. C: condition; G: participant group.

C1 C2 C3 C4 C5 C6
Dataset 1 G1 G2 G3 G4 G5 G6
Dataset 2 G6 G1 G2 G3 G4 G5
Dataset 3 G5 G6 G1 G2 G3 G4
Dataset 4 G4 G5 G6 G1 G2 G3
Dataset 5 G3 G4 G5 G6 G1 G2
Dataset 6 G2 G3 G4 G5 G6 G1

...
Dataset 29 G3 G4 G5 G6 G1 G2
Dataset 30 G2 G3 G4 G5 G6 G1

Tableau Worst, Colorgorical Best, Colorgorical Random, and
Colorization).

Since Tableau is a designer-crafted method, we included two condi-
tions to mimic the best and worst discriminable results generated from
the manual process. In a situation, for example, where the class number
m is smaller than 10, a designer needs to manually choose m colors
from the Tableau 10 palette. We run Wang et al.’s color assignment
method [36] on the Tableau palette and select the first m colors with the
highest and lowest scores for generating what we call Tableau Best and
Tableau Worst conditions. We repeated this process multiple times and
used the most suitable palettes as the final version in the experiment.

For Colorgorical, we specified the parameters in a way that we re-
ceived a Low-Error setting: 20% Perceptual Distance, 40% Name Dif-
ference, 40% Pair Preference (see original paper for more details [10]).
We repeatedly generated 5 palettes with these settings via their tool and
randomly chose one of them. We then applied the color assignment
process from Wang et al. [36] to simulate a designer’s optimized assign-
ment, and used a random assignment to represent a common default
result (Colorgorical Best and Colorgorical Random conditions). We
directly used Chens method [6] as the condition Colorization, since
it is a fully-automated process. For Palettailor, the palettes were gen-
erated using the default weight setting of our method: [1,1,1]. Pilot
tests showed that this setting performed best among different weight
settings.

Scatterplot dataset generation. We used 30 multi-class scatterplot
datasets with 6 to 10 classes in the experiment. Each dataset had two
target classes that were meant for comparison. We generated the data
points of the target classes using the method by Gleicher et al. [9]. The
data points were placed according to a uniform random distribution in a
400×400 area, the height difference between these two classes was 30
pixels. Additionally, we generated the rest of the classes (distractors)
using Gaussian random sampling and randomly placed them in an
500×500 area. This way the distractors have two kinds of relations
to the target classes: intersecting them and including them. We used
the Gaussian process to control the overall properties of each class
such as size and density [27]. To simplify the variety of visual shapes
we defined sizes to be large or small, and densities to be sparse or
dense. Hence there were four types of classes: large & dense (n = 100,
σ = 50), small & dense (n = 50, σ = 20), large & sparse (n = 50,
σ = 100), and small & sparse (n = 20, σ = 50). See the supplemental
material for more details.

Experiment organization. We used a between-subjects layout in the
experiment to test the effects of 6 conditions using 30 datasets. We did
not adopt a within-subjects design (i.e., each participant going through
all the 180 condition-dataset combinations) because this would lead to
unwanted learning effects, as one would see each dataset repeatedly six
times. Thus instead, we had each participant to see different subsets of
datasets for different conditions. As shown in Table 1, we used a Latin
Square arrangement for the combination of datasets and conditions to
avoid ordering effects. Thus there were six participant groups, each
having 30 trials, every participant was assigned to one of the groups.

Pilot study & power analysis. We conducted a pilot study to check
the experimental setup. It was also used to infer first insights about
the effect sizes to be expected, the effect sizes were fed into a power

Table 2. Participants recruited for the formal study. G# specifies the
participant group (more details see text)

Task Participants G1 G2 G3 G4 G5 G6
Counting 47 9 9 9 7 6 7

Comparison 33 6 5 6 5 5 6
Preference-1 25 5 5 5 5 5 NA

Slope 30 8 7 5 5 5 NA
Preference-2 20 5 5 5 5 NA NA

analysis. For example, the power analysis (with an effect size Cohens
d of 0.4, alpha of 0.05 and beta level of 0.8) suggested a minimum
number of 24 participants for detecting a meaningful difference between
Palettailor and Colorgorical Best in the counting task.

Participants. We recruited 105 participants for the main experiment
using a crowd sourcing platform. According to the completion times in
the pilot study, we paid each $2.5 for the Counting Task, $1.5 for the
Comparison Task and $0.5 compensation for Preference Task, in order
to exceed the US minimum wage. All the participants gave us their
informed consent, and no participant reported color vision deficiency.

Procedure. Each participant went through the following procedure:
(1) viewing the instructions of the task and completing two training
trials (except Preference Task); (2) performing the task as accurately
as possible based on the instruction to do so; and (3) providing basic
demographic information. See the supplemental material for more
details.

4.1.2 Results

Following the methodology of previous studies, we analyzed the results
using 95% confidence intervals, and also conducted Mann-Whitney
tests to compare the differences between conditions. We selected this
more conservative, non-parametric test as we observed in the pilot study
that some measures were non-normally distributed. We also computed
the effect size using Cohen’s d, i.e., the difference in means of the
conditions divided by the pooled standard deviation. In addition, we
checked the data collected for both pilot and main studies, and found
no significant interaction effects between datasets and conditions, so
we focus on reporting the main effects.

Discriminability. Fig. 7(a)&(b) show the error results for the counting
and comparison tasks, including effect sizes and p-values. Here, we
focus on the analysis of error. We also measured time, but as it is not
of primary interest for our hypotheses we provide the results in the
supplemental materials.

The results are generally aligned with our discriminability hypothe-
ses (H1-3).

First, we compared Palettailor to the best cases of the manual pro-
cesses, i.e., Tableau Best and Colorgorical Best. We found that the
Palettailor condition has significantly less errors (p = 0.029) than
Colorgorical Best in the counting task. We did not observe other sig-
nificant differences between these conditions. The result indicates that
our approach appears not to be worse than the best cases of manually
designer-crafted palettes and auto-generated palettes (H1), and might
even lead to a better performance in the counting task.

Second, we compared Palettailor to the random or worst cases of
the manual processes, i.e., Tableau Worst and Colorgorical Random.
We found that in the counting task, Palettailor has a significantly lower
error rate (p < 0.001) than Colorgorical Random. In the comparison
task, Palettailor has a significant lower error rate (p = 0.042) than
Tableau Worst. This partially confirms H2 that our method is better
than some of the manually created worst or random cases for certain
discrimination tasks.

Finally, Palettailor is clearly better than the Colorization method,
for both the counting task and the comparison task (p < 0.001). Thus,
H3 is fully confirmed and our method is indeed better than the existing
fully-automated method in terms of discriminability.

Preference. For each comparison within the preference experiment,
we assigned a preference score, i.e., 1 for preferring Palettailor,−1 for
preferring another condition, and 0 for a neutral choice. We aggregated

the scores for each pair containing Palettailor and a benchmark condi-
tion, e.g., Tableau Best - Palettailor. An average score value greater
than 0 indicates that Palettailor is preferred over the other condition,
and vice versa. The results are summarized in Fig. 7(d).

We found that Palettailor is significantly preferred over the designer-
crafted palettes: Tableau Best (p = 0.014) and Tableau Worst (p <
0.001). This finding is not aligned with our hypothesis H4. We also
found that Palettailor is significantly preferred over Colorgorical Best
(p < 0.001), yet there is no clear preference between Palettailor and
Colorgorical Random or Colorization. This observation partially
aligns with H5 and will be further discussed in Section 4.3.

4.2 Experiment 2: Line Chart Experiment

In addition to scatterplots, we also applied our method to line charts
and evaluated its effectiveness in Experiment 2. We used 30 line
chart datasets for each task as stimulus. The setup of Experiment 2
was similar to Experiment 1; the differences between the two will be
described below.

4.2.1 Experimental Design

Tasks & measures. Each participant completed one of two tasks:
• Slope (discrimination) task. Following the methodology by Javed

et al. [14], we asked participants to find out which line had the
largest increase and to choose an answer among several options.
For each participant, we recorded the error (0/1) and time taken
for each trial. Similar to Experiment 1, we focused on reporting
the error measure, see the supplemental materials for the details
on time.

• Preference task. Similar to Experiment 1, each participant was
shown a series of image pairs, each containing two line charts,
one from the Palettailor condition and the other from one of the
benchmark conditions. The participant was asked to choose the
one s/he preferred.

Conditions & sample palettes. In contrast to Experiment 1,
we only tested five conditions in total, our method (Palettailor),
as well as Tableau Best, Tableau Worst, Colorgorical Best, and
Colorgorical Random. We did not include Colorization as it is not
applicable to line charts. We used the same process as in Experiment 1
to generate the sample palettes for every condition.

Line chart dataset generation. We generated 30 different line charts
with 6-10 lines following a carefully designed method. Every line
chart had a target line with the largest increase; other lines with smaller
increases were used to distract participants. We generated the target line
with an increase of 0.35, with every point being within [k−0.175, k+
0.175] (k is a random number and k ∈ [0,1]). Then we repeated the
process to generate the rest of the lines, each with an increase less than
0.3, i.e., every point within [k− 0.15,k+ 0.15]. Each line chart was
displayed in an 400×400 area, thus the minimum difference of increase
between the largest and other lines on the screen is 0.05× 400 = 20
pixels. See the supplemental material for more details.

The other aspects of the experiment were similar to Experiment 1.
We used a between-subjects layout to avoid unwanted learning effects.
We had 30 datasets and 5 conditions, the participants were divided
into five groups, each going through a subset of 30 condition-dataset
combinations. We conducted a pilot study including 11 participants
from a crowd sourcing platform. As shown in Table 2, we recruited 50
participants in total for Experiment 2. Each participant went through
the same procedure as that in Experiment 1, and was paid $1.5 for the
Slope Task and $0.5 compensation for the Preference Task to exceed
the US minimum wage.

4.2.2 Results

Discriminability. Fig. 7(c) shows the error results for the slope
task. We observed no significant differences between Palettailor and
Tableau Best or Colorgorical Best, which indicates that our approach
is not worse than the best cases of manually designer-crafted palettes

Palettailor

Colorization

Colorgorical Random

Colorgorical Best

Tableau Worst

Tableau Best

0.9 1.2 1.5 1.8
Error

0.79~[0.67, 0.94]

0.87~[0.74, 1.01]

0.99~[0.86, 1.11]

1.24~[1.12, 1.36]

1.59~[1.42, 1.76]

0.80~[0.69, 0.91]

28385

26919

24277

20065

16963

0.46

0.67

−0.01~[−0.19,0.18]

0.07~[−0.12,0.25]

0.2~[0.01,0.38]

0.46~[0.28,0.66]

0.72~[0.53,0.91]

μ~95%CI W p-value
(a) Scatterplot - Counting Task

Palettailor

Colorization

Colorgorical Random

Colorgorical Best

Tableau Worst

Tableau Best

0.2 0.3 0.4 0.5
Error

(b)

(c)

(d)

(e)Linechart - Slope Task Linechart - Preference Task

Scatterplot - Preference Task

Scatterplot - Comparison Task
μ~95%CI W p-value

0.25~[0.18, 0.32]

0.36~[0.29, 0.43]

0.34~[0.27, 0.40]

0.31~[0.24, 0.38]

0.46~[0.38, 0.53]

0.26~[0.19, 0.33]

13509

11745

12192

12597

10674

0.82

0.11

0.3

−0.02~[−0.23,0.19]

0.23~[0.03,0.45]

0.18~[−0.02,0.42]

0.11~[−0.1,0.32]

0.43~[0.21,0.66]

Palettailor

Colorgorical Random

Colorgorical Best

Tableau Worst

Tableau Best

0.50 0.55 0.60 0.65 0.70 0.75
Error

0.59~[0.51, 0.66]

0.63~[0.55, 0.69]

0.58~[0.50, 0.65]

0.68~[0.61, 0.75]

0.61~[0.53, 0.67]

16380

15586.5

16396.5

14885.5

0.83

0.68

0.57

0.13

−0.02~[−0.24,0.18]

0.04~[−0.17,0.26]

−0.06~[−0.27,0.15]

0.16~[−0.05,0.37]

μ~95%CI W p-value

Sc
at

te
rp

lo
t

Li
ne

ch
ar

t
Discrimination Tasks Preference Tasks

μ~95%CI V p-value

0.19~[0.02, 0.34]

0.27~[0.11, 0.42]

0.29~[0.13, 0.43]

0.13~[−0.02, 0.29]

−0.01~[−0.19, 0.13]

5880

6624

6649.5

5680

5147.5

0.11

0.87

0.2~[0.04,0.37]

0.29~[0.13,0.47]

0.32~[0.14,0.51]

0.13~[−0.03,0.29]

−0.01~[−0.17,0.15]

μ~95%CI V p-value

0.35~[0.19, 0.47]

0.45~[0.30, 0.58]

0.25~[0.07, 0.38]

0.33~[0.18, 0.46]

6555

7560

5848

6697.5

0.4~[0.21,0.59]

0.51~[0.3,0.74]

0.27~[0.1,0.43]

0.37~[0.19,0.55]

Discriminability: Palettailor’s results are
comparable to the best cases of manu-
al-crafted palettes (e.g., Tableau Best),
sometimes better than the random cases
of manual-crafted palettes for certain task
(e.g., Colorgorical Random in the counting
task), and consistently better than existing
fully-automated method (Colorization)
across two scatterplot tasks.

Preference: Palettailor’s results are
consistently preferred over the results
of manual-crafted palettes, both their
best and worst/random results. There
is no significant difference between
Palettailor’s results and the fully-auto-
mated method (Colorization).

Colorization − Palettailor

Colorgorical Random − Palettailor

Colorgorical Best − Palettailor

Tableau Worst − Palettailor

Tableau Best − Palettailor

−0.6 −0.3 0.0 0.3 0.6
Preference

Colorgorical Random − Palettailor

Colorgorical Best − Palettailor

Tableau Worst − Palettailor

Tableau Best − Palettailor

−0.6 −0.3 0.0 0.3 0.6
Preference

(a value greater than 0 indicates that Palettailor
is preferred over the other, and vice versa)

0.029

<0.001

<0.001

0.042

<0.001

0.014

<0.001

<0.001

0.002

<0.001

<0.001

<0.001

d~95%CI

d~95%CI

d~95%CI

d~95%CI

d~95%CI

Fig. 7. Results for scatterplot and line chart experiments: For each task (e.g., the counting task in the scatterplot experiment, marked as Scatterplot
- Counting Task), we give a confidence interval plot and a statistic table. In the table, for each condition we provide the statistics including the
mean with 95% confidence interval (µ ∼95%CI), the W-value and p-value from the Mann-Whitney test, and the effect size (d ∼95%CI). For the
discrimination tasks on the left, we conducted statistical tests to compare Palettailor to every other condition, and provide W or V values, p-value and
effect size (d ∼95%CI) accordingly in the tables.

Table 3. The summary of results. E1 and E2 indicate the scatterplot and
line chart experiment. (**) means a hypothesis is confirmed; (*) means
partly confirmed.

Hypothesis E1 E2
H1 Discriminability is not worse than the best manual cases. ** **
H2 Discriminability is better than the random manual cases. *
H3 Discriminability is better than the automated method. ** NA
H4 Preference is not worse than the designer-crafted palettes.
H5 Preference is better than the auto-generated palettes. * **

and auto-generated palettes (H1). Also, we did not observe clear dif-
ferences between Palettailor and the worst or random manual cases,
i.e., Tableau Worst or Colorgorical Random. This finding does not
aligned with H2. We discuss the detailed implications of these results
in the next section.

Preference. The results are summarized in Fig. 7(e), where an average
preference score larger than 0 means that Palettailor was preferred
over the other condition, and vice versa. We found that Palettailor is
preferred over the designer-crafted palettes: Tableau Best (p < 0.001)
and Tableau Worst (p < 0.001). This finding does not align with
our hypothesis H4. We also found that Palettailor is preferred over
Colorgorical Best (p = 0.002) and Colorgorical Random (p < 0.001),
which aligns with H5.

4.3 Discussion
The results of the two experiments are summarized in Table 3. In terms
of discriminability, we found that Palettailor appears not to be worse
than the best cases of color generation processes that involve manual
steps (i.e., the Tableau Best and Colorgorical Best conditions). We
also found that Palettailor is more effective than some less-optimized
manual cases for certain tasks (e.g., the Colorgorical Random condi-
tion in the scatterplot-counting task). Furthermore, Palettailor is con-
sistently better than the fully-automated approach (i.e., Colorization).
The results indicate that Palettailor can automatically generate palettes

that are not worse than those from the manual approaches, and that
are more discriminable than those from the fully-automated palette
generation approach.

However, although the results regarding discriminability are gen-
erally aligned with our hypotheses for the scatterplot experiment, we
found no significant differences in the line chart experiment. One possi-
ble explanation is that the visual complexity of a line chart is generally
lower than for a scatterplot. Thus, having discriminable clusters in a
scatterplot may aid more to people’s visual performance than having
discriminable lines in a line chart. This leads to the necessity to further
explore how Palettailor can benefit visual perception when applying it
to different visualization types.

In terms of preference, we observed that Palettailor is preferred over
designer-crafted palettes (i.e., the Tableau palettes), and that it is also
preferred over some auto-generated palettes for certain visualizations
(e.g., the Colorgorical palettes for scatterplot visualizations).

From our results it seems like that visualizations with brighter col-
ors were generally preferred (i.e., the Palettailor, Colorization and
sometimes Colorgorical palettes), and yet the designer-crafted palette
Tableau was less preferred. There are several potential explanations.
It is possible that the preference of bright colors is due to the cultural
background of the participants [25], given that all the participants were
recruited from the US. Another explanation is that for some people,
when looking at visualizations with bright colors, they may gain cogni-
tive ease [33]. In other words, they may be biased towards believing
that it would be easier to tell apart clusters or lines (i.e., performing
discrimination tasks), no matter whether the colors could truly aid dis-
criminability. The result can also potentially be explained by affective
response [3], i.e., more saturated colors are strongly correlated with in-
tensity and positive impressions. Such affect might have caused higher
rates of the brighter palettes. Future research may benefit the design of
Palettailor in supporting people’s aesthetic preferences.

Fig. 8. A screenshot of our interactive system. Users can load different
datasets and generate suitable color palettes. If they are satisfied with a
result, they can download the image or export the palette definition to
use in their own system. We also offer a history for users to find their
previous results.

4.4 Limitations
The goal of our user study was an initial exploration of the effectiveness
of our method. We thus focused on benchmarks from systematically
generated datasets and sample palettes. At the same time, we fixed
or limited some of the other factors, which may affect the generaliz-
ability of the study results. Although our proposed method is capable
of supporting a variety of visualization types, in the study we only
chose two types: scatterplots and line charts. While these are common
visualization types, we did not cover visualizations with larger area
marks, such as bar or area charts. In addition, our method is capable of
tailoring palettes based on the background color, but for the study, we
chose a white background as it is the most commonly used canvas color
to display visualizations. Lastly, in our study we measured aesthetic
preferences as a stand-alone task to avoid potential carryover effects.
However, it might be possible that people’s preference would change
based on the tasks they are doing. Further studies need to be conducted
to comprehensively examine these factors.

5 INTERACTIVE SYSTEM FOR COLORIZATION

Based on the automatic approach presented above, we developed an
interactive color palette generation system (Fig. 8) that allows users to
feed in personal preferences when looking for good colors. After the
user uploads his/her data, different color palettes will be produced auto-
matically. Users may also edit color palettes based on their preferences.
A history and other interactive features support the user in finding a
desired color palette.

5.1 User Interaction
Our system provides three main ways to interact with color palettes:
adjustable palette generation, constrained palette generation, and palette
completion.

Adjustable palette generation. Users can adjust the weights of the
three scoring functions to generate palettes with different emphasis.
For example, if a user wants to emphasize on local discrimination, then
s/he can turn up Point Distinctness or turn down Color Discrimination
or Name Difference. If a user wants to create a palette composed of as
many color names as possible, s/he can turn up Name Difference.

Constrained palette generation. Users can also specify preferable
colors for palette generation. We use 11 universal basic color terms
(blue, brown, green, orange, pink, purple, red, yellow, black, grey, and
white) [4] as our Hue Filter. For example, when a user selects some col-
ors for generating a color palette, our system will automatically search
for optimized palettes within the respective ranges. As our algorithm
takes the background color into account, we also allow users to specify
a background color and adjust the luminance range accordingly.

Palette completion. Our system enables users to fix colors of a palette.
Once some colors are fixed, our system will evaluate the current palette

as well as the data characteristics, and search for optimized other colors
to complete it.

(a) (b) (c)

Fig. 9. CIFAR10 dataset: (a) Palette generated by default setting; (b)
User-specified Hue Filter with “green” and “blue”; (c) After clicking on
colors to lock them, our system completes the palette automatically.

5.2 Case Study

We conducted a case study with a data expert to evaluate the usability
of our system. The dataset we used for this study was the CIFAR10
dataset [16] that includes classification results for images of ten object
classes (e.g., cats, ships). The expert first used the default settings
of our system to automatically produce a palette for assigning colors
to different objects in the dataset. Seeing the result in Fig. 9(a), she
was able to easily discriminate every class. After generating multiple
palettes with our default settings, she used the Hue Filter and chose two
preferable colors (“green” and “blue”). The result is shown in Fig. 9(b).
Even though all colors are variants of blue and green, it is still possible
to discriminate all classes. However, the expert preferred the previous
results by our default setting, so she used the history to find the results.
Rather than generating a totally new palette, she wanted to preserve
some colors. So she clicked on these colors to lock them and produced
another palette, shown in Fig. 9(c). Overall, she was very satisfied with
the system and used all our modalities to create a good palette.

6 CONCLUSION

We presented Palettailor, a data-aware approach for producing color
palettes for categorical visualizations that allows a better visual dis-
crimination of classes while being visually pleasing. This goal is
achieved by a simulated annealing-based optimization, which we feed
with three scoring functions: point distinctness, name difference, and
color discrimination constraint. We evaluated Palettailor through a
crowd-sourcing study, which empirically demonstrated that our pro-
duced palettes allow for good class discrimination, are preferred by
users, and can do that fully automatically.

Our current measure of point distinctness is based on position and
color of the points in the underlying visualizations. However, class
discriminability in human perception is also related to many other
factors such as mark shape, mark size, and rendering order [21]. In the
future, we would like to extend our model to incorporate such factors as
well. Weighting the point distinctness by the number of points in each
class is able to generate reasonable results in most cases. However, it
might de-emphasize classes with fewer data points, such as outliers. To
address this issue, we will integrate a user-steered parameter so as to
assign priorities to small categories. In addition, we would also like
to let our technique support more visualization techniques such as pie
charts and parallel coordinates. We also want to include the generation
of color palettes for people with color vision deficiencies.

ACKNOWLEDGMENTS

This work is supported by the grants of the NSFC (61772315,
61861136012), the Open Project Program of State Key Laboratory
of Virtual Reality Technology and Systems, Beihang University
(No.VRLAB2020C08), the CAS grant (GJHZ1862) and Deutsche
Forschungsgemeinschaft (DFG) – Project-IDs DE 620/26-1, as well as
251654672 – TRR 161 Quantitative methods for visual computing.

REFERENCES

[1] E. Aarts. A stochastic approach to combinatorial optimization and neural
computing. Simulated Annealing and Boltzmann Machines, 1989.

[2] M. Aupetit and M. Sedlmair. SepMe: 2002 new visual separation measures.
In IEEE Pacific Visualization Symposium, pp. 1–8, 2016. doi: 10.1109/
pacificvis.2016.7465244

[3] L. Bartram, A. Patra, and M. Stone. Affective color in visualization. In
Proceedings of the 2017 CHI conference on human factors in computing
systems, pp. 1364–1374, 2017.

[4] B. Berlin and P. Kay. Basic color terms: Their universality and evolution.
Univ of California Press, 1991.

[5] A. Brychtová and A. Çöltekin. The effect of spatial distance on the dis-
criminability of colors in maps. Cartography and Geographic Information
Science, 44(3):229–245, 2017.

[6] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Trans. Vis. & Comp. Graphics, 20(12):1683–1692, 2014.

[7] J. Chuang, D. Weiskopf, and T. Möller. Energy aware color sets. Computer
Graphics Forum, 28(2):203–211, 2009. doi: 10.1111/j.1467-8659.2009.
01359.x

[8] H. Fang, S. Walton, E. Delahaye, J. Harris, D. Storchak, and M. Chen.
Categorical colormap optimization with visualization case studies. IEEE
Trans. Vis. & Comp. Graphics, 23(1):871–880, 2017. doi: 10.1109/tvcg.
2016.2599214

[9] M. Gleicher, M. Correll, C. Nothelfer, and S. Franconeri. Perception
of average value in multiclass scatterplots. IEEE Trans. Vis. & Comp.
Graphics, 19(12):2316–2325, 2013. doi: 10.1109/tvcg.2013.183

[10] C. C. Gramazio, D. H. Laidlaw, and K. B. Schloss. Colorgorical: Creating
discriminable and preferable color palettes for information visualization.
IEEE Trans. Vis. & Comp. Graphics, 23(1):521–530, 2017. doi: 10.1109/
tvcg.2016.2598918

[11] M. Harrower and C. A. Brewer. ColorBrewer.org: an online tool for
selecting colour schemes for maps. The Cartographic Journal, 40(1):27–
37, 2003. doi: 10.4324/9781351191234-18

[12] C. G. Healey. Choosing effective colours for data visualization. In Proc.
IEEE Conf. on Visualization, pp. 263–270, 1996. doi: 10.1109/visual.1996
.568118

[13] J. Heer and M. Stone. Color naming models for color selection, image
editing and palette design. In Proc. SIGCHI Conference on Human Factors
in Computing Systems, pp. 1007–1016, 2012. doi: 10.1145/2207676.
2208547

[14] W. Javed, B. McDonnel, and N. Elmqvist. Graphical perception of multiple
time series. IEEE Trans. Vis. & Comp. Graphics, 16(6):927–934, 2010.

[15] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simmu-
lated annealing. Science, 220(4598):671–680, 1983.

[16] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

[17] S. Lee, M. Sips, and H.-P. Seidel. Perceptually driven visibility optimiza-
tion for categorical data visualization. IEEE Trans. Vis. & Comp. Graphics,
19(10):1746–1757, 2013. doi: 10.1109/tvcg.2012.315

[18] S. Lin, J. Fortuna, C. Kulkarni, M. Stone, and J. Heer. Selecting
semantically-resonant colors for data visualization. Computer Graph-
ics Forum, 32(3pt4):401–410, 2013. doi: 10.1111/cgf.12127

[19] G. M. Machado, M. M. Oliveira, and L. A. Fernandes. A physiologically-
based model for simulation of color vision deficiency. IEEE Trans. Vis. &
Comp. Graphics, 15(6):1291–1298, 2009. doi: 10.1109/TVCG.2009.113

[20] B. A. Maxwell. Visualizing geographic classifications using color. The
Cartographic Journal, 37(2):93–99, 2000. doi: 10.1179/caj.2000.37.2.93

[21] L. Micallef, G. Palmas, A. Oulasvirta, and T. Weinkauf. Towards percep-
tual optimization of the visual design of scatterplots. IEEE Trans. Vis.
& Comp. Graphics, 23(6):1588–1599, 2017. doi: 10.1109/TVCG.2017.
2674978

[22] S. Mittelstädt, D. Jäckle, F. Stoffel, and D. A. Keim. Colorcat : Guided
design of colormaps for combined analysis tasks. In E. Bertini, ed.,
Eurographics Conference on Visualization (EuroVis) : Short Papers, pp.
115–119. The Eurographics Association, 2015. doi: 10.2312/eurovisshort.
20151135

[23] T. Munzner. Visualization Analysis and Design. AK Peters visualization
series. CRC Press, Boca Raton, FL, 2015. doi: 10.1109/pacificvis.2016.
7465242

[24] P. Nardini, M. Chen, F. Samsel, R. Bujack, M. Bottinger, and G. Scheuer-
mann. The making of continuous colormaps. IEEE Trans. Vis. & Comp.

Graphics, December 2019. doi: 10.1109/tvcg.2019.2961674
[25] S. E. Palmer and K. B. Schloss. An ecological valence theory of human

color preference. Proceedings of the National Academy of Sciences,
107(19):8877–8882, 2010.

[26] D. Pham and D. Karaboga. Intelligent optimisation techniques: genetic al-
gorithms, tabu search, simulated annealing and neural networks. Springer
Science & Business Media, 2012.

[27] M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual
cluster separation factors. Computer Graphics Forum, 31(3pt4):1335–
1344, 2012. doi: 10.1111/j.1467-8659.2012.03125.x

[28] V. Setlur and M. C. Stone. A linguistic approach to categorical color
assignment for data visualization. IEEE Trans. Vis. & Comp. Graphics,
22(1):698–707, 2016. doi: 10.1109/tvcg.2015.2467471

[29] G. Sharma, W. Wu, and E. N. Dalal. The ciede2000 color-difference
formula: Implementation notes, supplementary test data, and mathematical
observations. Color Research & Application, 30(1):21–30, 2005. doi: 10.
1002/col.20070

[30] Tableau Software. The tableau visualization system. http://www.
tableausoftware.com/.

[31] C. Tominski, G. Fuchs, and H. Schumann. Task-driven color coding. In
Proc. Int. Conf. on Information Visualisation, pp. 373–380, 2008. doi: 10.
1109/iv.2008.24

[32] E. R. Tufte, N. H. Goeler, and R. Benson. Envisioning information, vol.
126. Graphics press Cheshire, CT, 1990.

[33] A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics
and biases. science, 185(4157):1124–1131, 1974.

[34] R. C. Veltkamp. The γ-neighborhood graph. Computational Geometry,
1(4):227–246, 1992.

[35] L. Wang, J. Giesen, K. T. McDonnell, P. Zolliker, and K. Mueller. Color
design for illustrative visualization. IEEE Trans. Vis. & Comp. Graphics,
14(6):1739–1754, 2008. doi: 10.1109/tvcg.2008.118

[36] Y. Wang, X. Chen, T. Ge, C. Bao, M. Sedlmair, C.-W. Fu, O. Deussen, and
B. Chen. Optimizing color assignment for perception of class separability
in multiclass scatterplots. IEEE Trans. Vis. & Comp. Graphics, 25(1):820–
829, 2019. doi: 10.1109/TVCG.2018.2864912

[37] M. Wijffelaars, R. Vliegen, J. J. Van Wijk, and E.-J. Van Der Linden.
Generating color palettes using intuitive parameters. 27(3):743–750, 2008.

[38] A. Zeileis, K. Hornik, and P. Murrell. Escaping RGBland: selecting
colors for statistical graphics. Computational Statistics & Data Analysis,
53(9):3259–3270, 2009. doi: 10.1016/j.csda.2008.11.033

[39] L. Zhou and C. D. Hansen. A survey of colormaps in visualization. IEEE
Trans. Vis. & Comp. Graphics, 22(8):2051–2069, 2016. doi: 10.1109/tvcg.
2015.2489649

http://www.tableausoftware.com/
http://www.tableausoftware.com/

	Introduction
	Related Work
	Color Palette Creation
	Color Palette Optimization

	Methods
	Scoring Functions
	Extension to Line and Bar Charts
	Simulated Annealing
	Time Complexity

	Evaluation
	Experiment 1: Scatterplot Experiment
	Experimental Design
	Results

	Experiment 2: Line Chart Experiment
	Experimental Design
	Results

	Discussion
	Limitations

	Interactive System for Colorization
	User Interaction
	Case Study

	Conclusion

