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Fig. 1. Influence of aspect ratio α on the perception of trends and cluster separability for the Sunspot dataset [21] (a, b, c) and the
Contraceptive Method Choice (CMC) dataset [10] (d, e). (a) Line chart with the default aspect ratio, and (b) the aspect ratio selected by
an existing method (RV) [40], where both methods obscure the trends over the cycles. (c) The aspect ratio selected by our method
(imgRV), where detailed cycle oscillations are revealed. (d) Scatter plot of three data clusters with the default aspect ratio, where the
visual separation between the two clusters on the left is unclear. (e) The aspect ratio selected by our method shows clearer cluster
structures.

Abstract—Selecting a good aspect ratio is crucial for effective 2D diagrams. There are several aspect ratio selection methods for
function plots and line charts, but only few can handle general, discrete diagrams such as 2D scatter plots. However, these methods
either lack a perceptual foundation or heavily rely on intermediate isoline representations, which depend on choosing the right isovalues
and are time-consuming to compute. This paper introduces a general image-based approach for selecting aspect ratios for a wide
variety of 2D diagrams, ranging from scatter plots and density function plots to line charts. Our approach is derived from Federer’s
co-area formula and a line integral representation that enable us to directly construct image-based versions of existing selection
methods using density fields. In contrast to previous methods, our approach bypasses isoline computation, so it is faster to compute,
while following the perceptual foundation to select aspect ratios. Furthermore, this approach is complemented by an anisotropic
kernel density estimation to construct density fields, allowing us to more faithfully characterize data patterns, such as the subgroups in
scatterplots or dense regions in time series. We demonstrate the effectiveness of our approach by quantitatively comparing to previous
methods and revisiting a prior user study. Finally, we present extensions for ROI banking, multi-scale banking, and the application to
image data.

Index Terms—Aspect ratio, image-based method, Federer’s co-area formula, density field, anisotropic kernel density estimation.

1 INTRODUCTION

Visual attributes like size, shape, and slope greatly influence the ex-
pressiveness and effectiveness of a visualization [25]. In particular,
the aspect ratio (defined as the fraction, height/width, throughout the
paper) has a dramatic effect on the perception of data patterns in a
visualization [6]. A well-chosen aspect ratio may reveal trends and
relevant clusters that are hidden by a bad aspect ratio.

Figure 1 demonstrates the influence of the aspect ratio. An improper
aspect ratio obscures the oscillations over the cycles (Figure 1 (a, b))
and leads to a poor visual cluster separation (Figure 1 (d)). In contrast,
an appropriate aspect ratio attempts to reveal major patterns as much
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as possible (Figure 1 (c, e)). Therefore, methods for automatically
choosing a proper aspect ratio for a given visualization are of high
interest for a broad range of visualizations and applications.

Selecting appropriate aspect ratios for 2D line charts has been well
studied. Cleveland et al. [8] pioneered the principle of banking to 45◦
and proposed two methods: average absolute orientation (AO) and arc
length weighted average absolute orientation (AWO). Both methods
select aspect ratios by banking the orientation of a line chart’s line
segments at around 45 degrees. AWO generally produces reasonable
aspect ratios for most data. Guha and Cleveland [29] and Talbot et
al. [34] suggested two alternative approaches: the resultant vector (RV)
and arc length based (AL) methods, based on geometric measures such
as the resultant vector and the curve’s arc length, respectively. Recent
work [40] showed that both methods tend to satisfy the banking to 45◦
principle and select almost the same aspect ratio as AWO, while RV is
usually faster and more robust.

However, all aforementioned methods are specifically designed for
line charts and cannot handle other common 2D visualizations such
as scatter plots. To facilitate scatter plots, Fink et al. [16] selected
aspect ratios based on a Delaunay triangulation [16]. Various geometric
criteria were employed, e.g., large minimum angle and total edge
length. However, due to the lack of a perceptual foundation, aspect
ratios selected by this method might not be favoured by users for certain
datasets. Moreover, it is relatively slow; as reported in the paper, it
requires several minutes to compute the aspect ratio for a scatter plot
with 1,000 points. Talbot et al. [34] proposed an isoline-based approach
to selecting aspect ratios by applying existing methods to 2D isolines
extracted from the density field derived from a scatter plot. This method



can find proper aspect ratios for most data; however, it depends on (i) the
number of isolines extracted from the density field and (ii) the quality
of the density field constructed from the data. Insufficient isolines or
an improper kernel for estimating the density field [33] might result in
undesirable aspect ratios that obscure patterns in the data.

In this paper, we present a generalized image-based approach for
finding aspect ratios for 2D diagrams such as scatter plots, density
function plots, and line charts. If the input data is not given in the form
of a density field but as discrete geometric points, we construct such
a field by kernel density estimation (KDE) with Gaussian kernels. In
contrast to previous methods, our approach works directly with density
fields defined over 2D visualizations without the need to generate
intermediate data such as the isolines; see Figure 2. We formulate
our approach based on Federer’s co-area formula [14] in geometric
measure theory to transform line integrals over sets of isolines of the
density field to area integrals over the density field itself. Using our
formulation, previous methods that can be rewritten as line integrals
can be extended to work directly with density fields. In addition, to
faithfully characterize data patterns, we introduce anisotropic KDE to
construct the density fields, where the kernel associated with each data
point adapts to the local structure around the point.

Compared to conventional isoline-based approaches, our method
also follows the principle of banking to 45◦, but it avoids discrete
isolines as intermediate data and works directly with the density fields.
Hence, it achieves an accurate and fast computation. Since density
fields are often continuous and even smooth, directly computing the
aspect ratios from them avoids the limitations of existing methods,
e.g., they cannot handle data with spike noise [40] (see Figure 1 (b)).
Moreover, our approach is not limited to using a density field of a
discrete visualization but can be applied to any non-negative and un-
normalized field. Hence, we refer to our approach as an image-based
approach, and thus, it not only encompasses cases that can be handled
by the previous methods, but can also be applied more broadly to
continuous scatter plots and even to 2D images in general.

As shown by Wang et al. [40], AWO, AL, and RV can be formulated
using line integrals; hence, they can be extended to work directly with
density fields. Comparing our image-based versions of these methods
with previous isoline-based versions with a large number of isolines,
we recommend our method, image-based RV (imgRV), as the default
aspect ratio selection method, since it produces results similar to most
of the other methods but is the fastest and the most robust. We revisit
examples and the user study by Fink et al. [16] and show that choices
made by our method are mostly consistent with user preferences.

Last, we show three extensions of our method including region-of-
interest (ROI) banking, multi-scale banking, and using images as an
input. We summarize the main contributions of our paper below.

• We present a new aspect ratio selection approach that works
directly with density fields constructed from a broad range of 2D
visualizations. Three image-based aspect ratio selection methods
are formulated by extending the line integral forms of existing
methods AWO, AL, and RV.

• We introduce anisotropic kernels to better characterize the local
structures in the data visualizations.

• We provide a comprehensive evaluation of a variety of methods,
showing that the results of our image-based methods and isoline-
based methods converge, but our methods are about an order of
magnitude faster than existing methods.

2 RELATED WORK

Bertin, in his seminal work on the semiotics of graphics [2], already
pointed out the importance of a proper aspect ratio for the perception
and readability of diagrams. Hereafter, this influence was studied for
decades, especially for widely-used visualization techniques such as
line charts and scatter plots. A number of approaches for the automatic
selection of aspect ratios were developed for these techniques.

Banking methods for line charts. Cleveland et al. [8] were the first
to systematically study how the aspect ratio influences the perception

of line charts. Their user studies show that judging the slope ratio be-
tween two adjacent line segments is most accurate when the orientation
resolution (range of orientations of the two involved line segments) is
maximized. They also showed that maximizing the orientation reso-
lution is equivalent to centering the absolute value of the mid-angle
(average orientation) at 45◦. This is known as the banking to 45◦ prin-
ciple, which is the foundation of most aspect ratio selection methods.
More recent work by Talbot et al. [35] found that the ability to estimate
slopes is sub-optimal when the mid-angle is 45◦. Nevertheless, most
existing methods still focus on optimizing for an aspect ratio that banks
lines in the visualization to 45◦.

Based on the 45◦ principle, Cleveland et al. [5–7] and various other
researchers developed a number of aspect ratio selection methods, in-
cluding median absolute slope (MS), average absolute slope (AS),
average absolute orientation (AO), and arc length weighted average
absolute orientation (AWO). All these methods attempt to center the
slopes (or orientations) of line segments around a value of one (or
45◦). MS and AS bank the median and average absolute slope of line
segments to one, whereas AO and AWO bank the average absolute
orientations to 45◦. AWO weights the average absolute orientation by
the lengths of the line segments; doing so it produces more satisfactory
results for most cases [7]. Heer and Agrawala [19] developed two
methods to directly compute the orientation resolution: global orienta-
tion resolution (GOR) and local orientation resolution (LOR). Since
GOR considers all pairs of line segments in a plot, it is usually slow,
whereas LOR considers only successive pairs of line segments, so it
is much faster, but it tends to select aspect ratios that are excessively
large or small. By using an L1 norm in LOR, L1-LOR [40] was found
to produce more reasonable aspect ratios for most data.

Rather than following the 45◦ principle, Guha and Cleveland [29]
suggested the resultant vector (RV) method, which banks the RV of a
line plot to one. RV is the ratio of the total variation of line segments
in y and x direction. Though its perceptual foundation is not clear,
the method produces good results. Similar to RV, the arc length based
(AL) [34] method is also not based on the 45◦ principle; it selects the as-
pect ratio by minimizing the arc length of a line chart. Talbot et al. [34]
showed that RV can be interpreted as AL using the Manhattan distance
metric, and thus, both methods share several empirical advantages
such as parameterization invariance, robustness, and low computational
costs. Recently, Wang et al. [40] showed parameterization invariance
of AL, RV, and AWO using line integrals, and proved that RV and AL
tend to satisfy the 45◦ principle. Through a systematic evaluation of
most aspect ratio selection methods, they showed that RV and L1-LOR
have complementary properties for revealing different data patterns of
interest, and thus, they proposed a dual-scale banking method that takes
advantages of RV and L1-LOR.

Banking methods for scatter plots. The aspect ratio selection meth-
ods above can only handle 1D functions presented as line charts. How-
ever, the 2D data may not be represented as a 1D function in general,
e.g., 2D distributions of data samples, 2D scatter plots, as well as many
other common forms of 2D visualizations.

For such visualizations, a number of banking methods have been
proposed. From a perceptual point of view, banking ellipse-shaped
clusters to circles seems to be a preferable solution [38], since ellipses
have an orientation, which may interfere with the perception of the
clusters [11, 24]. Cleveland et al. [6] fitted continuous LOESS curves
(local polynomial regression) to the data of a scatter plot and banked
the curves to find the aspect ratio. A drawback of these methods is that
if the data does not have a clear correlation (or trend) [30], the LOESS
curve will not be able to characterize the data, e.g., by separating
clusters appropriately. Talbot et al. [34] converted a scatter plot into
a density field by kernel density estimation, computed the isolines,
and used the line segments as input to existing aspect ratio selection
methods. They showed that AL and MS produce good aspect ratios
for most data by banking ellipses to circles. Wang et al. [40] evaluated
a variety of aspect ratio selection methods on 2D scatter plots and
showed that AWO, RV, and AL usually select similar aspect ratios.
Although their approach works well for most data, it may not produce
reasonable results if there are insufficient isolines or the density field



Fig. 2. Comparative overview of the isoline-based (blue arrows) and our image-based approach (red arrows). Our method bypasses the construction
of isolines and directly computes the aspect ratio from the density field. Step 1 is obsolete, if the input data is already given as a density field.

does not well characterize the data. In this work, we avoid isolines
in the computation, and formulate our method to work directly with
the 2D density functions. Thus, we can bypass the isoline extraction,
which is typically time-consuming and error-prone.

Fink et al. [16] proposed an alternative approach that works directly
with data points in the scatter plot based on a Delaunay triangulation.
Although the approach is able to produce reasonable aspect ratios for
some datasets, it does not have any perceptual foundation, and thus,
its results might not be consistent with the user preference. Moreover,
computing and processing a Delaunay triangulation to determine the
aspect ratio is an expensive process that takes several minutes for
a scatter plot with only a thousand points [16]. As shown by the
evaluation, our results are more favored by the users. Furthermore,
our extended image-based RV can be solved in a closed form, which
is faster than all previous methods, and the result is also close to the
isoline-based approach with a large amount of isolines; see Figure 3.

The co-area formula. An important inspiration for our work is the
co-area formula [14] from geometric measure theory. This formula
expresses the integral over the level sets of a function as the integral of
the function itself, where we use the term “level set” as interchangeable
with isolines in 2D or isosurfaces in 3D. We are not the first to use this
formula for data visualization. It has been successfully employed in
other visualization contexts to generalize discrete methods by including
density representations over a continuous domain. One example is the
computation of histograms (frequency plots) for isovalue statistics of
3D scalar fields visualization [4, 12, 31]. Other examples include the
continuous variants of scatter plots [1], parallel coordinates [20], func-
tion plots [22], and projected multidimensional attribute spaces [27].
One of our use cases is the aspect ratio optimization for continuous
scatter plots. Here, the density representation for continuous scatter
plots [1] can be used as the direct input, thus improving the perception
of these 2D diagrams. This is complementary to, and can be combined
with, other methods, such as feature highlighting in continuous scatter
plots [23] and automatic selection between line charts and scatter plots
for displaying time series [39].

3 IMAGE-BASED ASPECT RATIO SELECTION MODEL

In this section, we first review isoline-based aspect ratio selection
approaches and identify their drawbacks. Then, we derive our image-
based approach using the co-area formula [28] to enable us to work
directly with the density fields, and finally show how AWO, RV, and
AL can be extended through our image-based approach.

3.1 Isoline-Based Aspect Ratio Selection Approaches

The core assumption of existing isoline-based approaches is that the
input data plot can be represented by finite isolines extracted from the
density field of the plot. Then, we can apply conventional methods
to select aspect ratio (denoted as α) based on the extracted isolines.
Considering that the input data plot is scaled to a square domain denoted
as Ω without loss of generality, and ~X = {~x1, · · · ,~xn} is a set of n sample
points in the given data plot, the isoline-based approaches have the

Fig. 3. (a-c) Results of isoRV with increasing m (number of isovalue sam-
ples), and equivalently, with increasing number of isolines. (d) Density
field input. (e) Result of our imgRV.

following three major steps for computing the aspect ratios (see also
the running example shown in Figure 2):

(i) Density field construction. This step is obsolete if the input is
already given as a density field (e.g., from continuous scatter plots [1]
or from an image). In the case of scatter plots, a density field is
constructed from the sample points:

Φ :~xi 7−→ ρ(~xi) , where ~xi ∈Ω⊂ R2 and ρ ∈ R . (1)

Since the solution of α is unknown at the moment, the density field is
simply constructed in Ω with a default aspect ratio α = 1. The approach
constructs the density field based on the prominence of~xi in Ω using
Kernel Density Estimation (KDE):

ρ(~x) =
1
n

n

∑
i=1

K~H(~x−~xi) , for ~x ∈Ω , (2)

where K~H(~x) is a kernel function with bandwidth matrix ~H. Typical
choices for the kernel function are Gaussian and Epanechnikov func-
tions, and we use the Gaussian function here. Typically, the density
field is sampled on a uniform grid (image) over the domain of Ω.

(ii) Isoline extraction. Once the density field (ρ) is available, the
approach finds the density value range, normalizes ρ to [0,1], uniformly
samples m isovalues (denoted as ti, i = 1, · · · ,m) in [0,1], and extracts
a set of isolines (denoted as L(ti)) for each isovalue ti.

(iii) Aspect ratio computation. In the last step, the approach gathers
the line segments of the isolines, and applies an existing aspect ratio
selection method (e.g., AL or RV) to determine the aspect ratio.



If AL is used, we denote the overall approach as isoAL; if RV is
used, we denote it as isoRV for the rest of the text. Since some of the
methods for selecting the aspect ratio are parametrization-dependent,
we need a dense coverage by the isolines to obtain an accurate α .

Figure 3 presents results with a simple data set to illustrate the effect
of m (or the number of isolines) on aspect ratio selection. We extract
different numbers of isolines (a)–(c) from the same density field (d)
using varying m, and then compute the aspect ratios from the extracted
isolines using isoRV. The results shown in (a)–(c) show that a coarse
sampling (m = 5) might not sufficiently characterize all structures in
the density field, whereas a finer sampling (m = 16) would produce
many isolines, even for such simple data. Our image-based approach
(e) bypasses the isoline extraction and finds the aspect ratio directly
from the density field. It is equivalent to considering isolines of all
isovalues in the density field domain, thus our aspect ratio result (e) is
close to isoRV’s result when m is large (c).

Therefore, we can see that the isoline-based approach heavily relies
on two factors: (i) a sufficient number of isolines (usually densely
sampled) and (ii) a density field that faithfully represents the data.
In contrast, our approach bypasses the first aspect and introduces an
anisotropic kernel to address the second aspect; by these means, it is
able to generalize the aspect ratio selection for general 2D diagrams.

3.2 2D Integral Representation
To characterize all patterns in a 2D visualization, we may increase m
to sample more isovalues and extract more isolines (see Figure 3). In
theory, when m tends to infinity, we would have considered isolines
of all isovalues in the density range. However, this would produce a
large amount of isolines, so having a large m will be too costly for the
computation. As suggested by Marsden and Tromba [26], an infinite
sum of all isolines is equivalent to the integral over the associated
density field. Their work motivated us to derive a new formulation that
works directly with the density field instead of the isolines.

In the following, we denote Ωα as the domain with aspect ratio α ,
where Ωα is obtained by stretching or compressing the square domain
Ω (or Ω1.0) in y direction. Moreover, we denote ρα and Lα (ti) as an
α-stretched density field and isoline set L(ti), respectively, in Ωα .

Now, let us consider a single isoline set Lα (ti) that corresponds to
isovalue ti. As suggested by Wang et al. [40], several existing aspect
ratio selection methods can be formulated as an optimization of a line
integral, say f , which depends on the input data ~X and aspect ratio α .
Hence, we can integrate over the line segments (or arc length elements
ds) along Lα (ti), and formulate the following objective:

min
α∈(0,∞)

∫
Lα (ti)

f (~X ,α)ds . (3)

Next, since an infinite sum of all isolines is equivalent to integrating
the density field, we can consider all possible isolines sampled over all
isovalues in the density range through the following integration:

min
α∈(0,∞)

∫ 1

0

( ∫
Lα (t)

f (~X ,α)ds
)

dt . (4)

where we use t instead of ti due to the integration; note that the density
range has been normalized to [0,1], therefore we have t ∈ [0,1].

Since a numerical integration over a large amount of curves is com-
putationally very expensive, we apply the co-area formula [15] to the
problem and convert the integrals over the range of isovalues to inte-
grals over the domain in which the isolines are defined. In this way,
Eq. (4) can be re-formulated as∫ 1

0

( ∫
Lα (t)

f (X,α)ds
)

dt =
∫

Ωα

f (X,α)||∇ρα (~x)||d2~x , (5)

where f (X,α) is required to be Lipschitz continuous (i.e., f should
have bounded gradient) and ∇ρα (~x) is the gradient field of the density
field ρα . In practice, we work with a sampled version of the density
field where the gradient always exists and is bounded. Note also that

the infinitesimal distance element d~x is in Ωα , while dx and dy are in
Ω1.0; since we scale Ω1.0 in y direction (by α) to obtain Ωα , we thus
have the following relationship between the two domains:∫

Ωα

d2~x = α

∫
Ω1.0

dxdy . (6)

Furthermore, the gradient magnitude term ||∇ρα (~x)|| in Eq. (5) ac-
counts for the uneven sampling of isolines over domain Ωα . By apply-
ing the chain rule, we have

∇ρα (~x) =
(

∂ρ

∂x
,

1
α

∂ρ

∂y

)
, (7)

where ∂ρ/∂x and ∂ρ/∂y refer to the gradient of the density field ρ in
x and y direction, defined over the domain Ω1.0.

Substituting Eqs. (6) and (7) into Eq. (5), we obtain

1∫
0

 ∫
Lα (t)

f (X,α)ds

 dt =
∫

Ω1.0

f (X,α)

∣∣∣∣∣∣∣∣(α
∂ρ

∂x
,

∂ρ

∂y

)∣∣∣∣∣∣∣∣dxdy,

(8)

which provides the foundation for extending the existing aspect ratio
selection methods to directly process density fields while avoiding
isolines. Note that this 2D integral form does not require ρ to be
a probability density function; it can be any non-negative and un-
normalized field. Hence, we refer our approach as an image-based
approach, since it can be applied to any non-negative 2D field. It
should be noted that this co-area representation can be combined with
feature detection approaches [23, 41] so that the selected aspect ratio
can highlight features of interest, which is left for future work.

3.3 Image-Based Extensions
Using the formulation we derived in Eq. (8) and the line integral forms
from Wang et al. [40], we are now ready to create our image-based
versions of several aspect ratio selection methods:

ImgAL. The arc length based (AL) method [34] selects α by minimiz-
ing the total arc length of line segments in the plot, while preserving
the area under the plot. Since the arc length is inherently a variable of
the line integral, the objective of AL can be reformulated (from [40])
as the following line integral:

min
α∈(0,∞)

n

∑
i=1

1√
α
||∆xi,α∆yi|| = min

α∈(0,∞)

∫
C

1√
α

ds , (9)

where C is the set of line segments in the plot. Comparing Eq. (9)
with Eq. (3), we can see that f (X,α) of AL is simply 1/

√
α . Hence,

by substituting f = 1/
√

α into Eq. (8), we obtain the objective of the
image-based version of AL (denoted as imgAL):

min
α∈(0,∞)

∫
Ω1.0

∣∣∣∣∣∣∣∣(√α
∂ρ

∂x
,

1√
α

∂ρ

∂y

)∣∣∣∣∣∣∣∣ dxdy , (10)

where the gradient (∇ρ) at each point in Ω1.0 is multiplied with the
following area-preserving squeeze mapping:

Sα :=
( √

α 0
0 1/

√
α

)
.

ImgAWO. AWO [5] selects an aspect ratio that banks the weighted
average absolute orientations to 45◦:

min
α∈(0,∞)

∣∣∣∣ ∑i |θi(α)|li(α)

∑i li(α)
− π

4

∣∣∣∣ ,
where θi(α) is the absolute orientation and li(α) the length of each
line segment. Hence, AWO aims at finding a proper α , such that the



Fig. 4. (a) Isotropic (top) vs. anisotropic (bottom) density fields. (b, c) Im-
gRV results produced from isotropic and anisotropic density fields, resp.

mean density of the plotted curve is close to π/4. Like AL, AWO can
be formulated using line integral terms:

min
α∈(0,∞)

∣∣∣∣ ∫C |θ(α)|ds∫
C ds

− π

4

∣∣∣∣ . (11)

However, since Eq. (11) is not a single line integral as AL, we cannot
directly apply Eq. (8) to Eq. (11). Hence, we consider C in each line
integral term as sets of isolines over all isovalues and apply Eq. (8) to
transform each line integral term in Eq. (11). By further expressing θ

in the formulation using gradients ∂ρ

∂x and ∂ρ

∂y in Ω1.0, we can obtain
the following objective of imgAWO:

min
α∈(0,∞)

∣∣∣∣∣∣
∫

Ω1.0

∣∣∣tan−1
(

α
∂ρ

∂x /
∂ρ

∂y

)∣∣∣ ∣∣∣∣∣∣(α
∂ρ

∂x ,
∂ρ

∂y

)∣∣∣∣∣∣dxdy∫
Ω1.0

∣∣∣∣∣∣(α
∂ρ

∂x ,
∂ρ

∂y

)∣∣∣∣∣∣dxdy
− π

4

∣∣∣∣∣∣ , (12)

which is subject to the same optimization process as AL. For the deriva-
tion details, please refer to the supplemental materials.

ImgRV. The resultant vector (RV) method [29] takes the ratio of the
total variation of line segments in x and y direction as the aspect ratio.
Hence, we can write it in the following line integral form:

α =
∑i |∆xi|
∑i |∆yi|

=

∫
C |cosθ |ds∫
C |sinθ |ds

. (13)

Similar to the derivation for imgAWO, we consider C as sets of isolines
over all isovalues and apply Eq. (8) to each line integral term. Then, we
replace cosθ and sinθ by using the gradients ∂ρ

∂x and ∂ρ

∂y of the density
field in Ω1.0 and obtain the following objective of imgRV:

α =

∫
Ω1.0
|| ∂ρ

∂y ||dxdy∫
Ω1.0
|| ∂ρ

∂x ||dxdy
, (14)

which can be regarded as the ratio between the total variations in x
and y direction over the whole density field. Again, please refer to
Appendix A for the derivation details. Since imgRV has a closed form,
it is faster to compute than imgAWO and imgAL, for which we have to
solve a minimization problem; see Section 5 for more details.

4 ANISOTROPIC KERNEL DENSITY ESTIMATION

A particularly interesting aspect of our method is that the kernels for
constructing the density field are selected in relation to the data. The
KDE associated with such kernels is referred to as anisotropic KDE.

Isotropic KDE. Before introducing anisotropic KDE, we first briefly
review isotropic KDE. Given a 2D domain, a Gaussian kernel function
models the density in a local region defined by

K(~x) =
1

2π

√
|~H|

exp
(
−1

2
~xT ~H−1~x

)
, (15)

Fig. 5. (a) Convergence of the conjugate gradient optimization of ImgAL
and ImgAWO. Shown are the objective values against the number of
iterations, where imgAL reaches a good solution in less than 30 iterations,
whereas AWO requires 39 iterations. (b) Objective values plotted over
the aspect ratio, while the red line marks the aspect ratio selected by
imgRV. In this example (CMC dataset [10]), all three methods find a
similar aspect ratio of 0.48, showing three clusters in circular shapes.

where position ~x is expressed as a column vector. The bandwidth
matrix ~H scales and rotates the region. Thus, the choice of ~H affects
the precision of the density field in characterizing the data patterns.
Typically, KDE adopts Silverman’s rule of thumb [33] to determine a
diagonal matrix for the bandwidth matrix ~H with two elements

~H =

(
hx 0
0 hy

)
.

For example, hx can be computed by

hx = 1.06×min{sx,
R

1.34
}n−1/5 , (16)

where sx is the standard deviation of the input data points X in x
direction and R = x[0.75n]− x[0.25n] is the difference between the 25%
and 75% quantiles of {xi}. The value of hy is computed similarly.

Such Gaussian kernels result in isotropic, axis-aligned elliptical
density regions of the same size around each point, so the resulting
density field may not represent the data patterns well (see Figure 4 (a)).

Anisotropic KDE. To better characterize the data patterns by the den-
sity fields, we introduce anisotropic Gaussian kernels. These kernels
are selected in a data-aware manner, such that each kernel creates an
elliptical density region aligned to the main orientation of the data
around each data point. For each data point~xi, we perform a principal
component analysis (PCA) on its k nearest neighbors and obtain the
corresponding eigenvectors {ν1

i ,ν
2
i } and the associated principal direc-

tions. Since the principal directions maximize data variance, we use
them to adjust the shape of the Gaussian function:

~Hi = ~H [ν1
i ;ν

2
i ] , (17)

where ~Hi is the bandwidth matrix of the i-th point. Thus, each point
has its own ~Hi and its associated elliptical region with an orientation
that adapts to the local data pattern. Figure 4(a) shows the density
fields generated by isotropic KDE and anisotropic KDE, where we can
see that the local orientation is clearly characterized. Accordingly, the
plot shown in Figure 4(d) with the aspect ratio selected by using the
anisotropic density field clearly reveal the sin function, while the one
in Figure 4(c) is not able to reveal the pattern.

5 NUMERICAL IMPLEMENTATION

Compared to isoline-based approaches, our image-based approach con-
sists of only two steps: (i) density field construction and (ii) aspect ratio
computation. To accelerate the k nearest neighbor search for construct-
ing the anisotropic kernel function, we build a k-d tree over the input
data points. In addition, since imgAL, imgAWO, and imgRV all need
the gradient information, we sample a 2D uniform grid at a resolution



of wg× hg over the density field ρ and perform the Sobel operator
to compute the gradient field ∇ρ , where wg and hg are empirically
set as 1000. Doing so, we are able to accelerate the computation of
the integrals in Eqs. (10), (12), and (14), which are implemented as a
Riemann sum over all grid points in the domain.

To calculate the optimal aspect ratio for imgAL and imgAWO, we
numerically find the value that minimizes the objective functions from
Eqs. (10) and (12) by using the conjugate gradient method [17]. Like
Talbot et al. [34], we parametrize the 1D search problem with log(α),
this lets the optimization converge in less than 30 iterations. The
optimal aspect ratio for imgRV can also be easily obtained by directly
using Eq. (14). Figure 5 presents an exemplary result in which all three
methods find very similar optimal aspect ratios; a more comprehensive
evaluation will be presented in Section 6.1.

We implemented our approach in R (see code in supplemental ma-
terials) and ran it on a machine with an Intel® Core™ i5-4200H with
2.8 GHz dual-core CPU in double precision. Our experiments on 100
datasets showed that imgRV mostly took around 50 to 300 ms, thus
allowing for interactive manipulation; see Section 6.1 for details. The
performance could be further boosted up by exploiting parallel compu-
tation on the GPU.

6 EVALUATION

We performed four experiments to evaluate our image-based methods.
First, we quantitatively compared our methods with isoline-based meth-
ods (Section 6.1) for two purposes: (i) learn to see if our methods
produce similar aspect ratios as isoline-based methods but in less time,
and (ii) find out, which one of our three methods is fastest and most ro-
bust. Second, we studied the convergence of our image-based methods
with isoline-based methods and the corresponding methods designed
for line charts (Section 6.2). Next, we presented a parameter analysis
to find proper parameters for the best method recommended by the first
experiment (Section 6.3). Lastly, we configured the best method with
proper parameters, and revisited the user study by Fink et al. [16] to
show that choices made by our method are mostly consistent with the
user preferences (Section 6.4).

6.1 Quantitative Comparison with Isoline-based Methods
Comparing extensively with various methods, Wang et al. [40] showed
that the RV method not only produces similar results to classical meth-
ods such as AWO and AL, but also is the fastest and most robust. On
the other side, Talbot et al. [34] extended various aspect ratio selection
methods designed for line charts (including RV) into isoline-based
methods to work for scatter plots. Therefore, we selected the isoline-
based RV method (isoRV) as a representative of isoline-based methods,
but extracted a large number of isolines for isoRV to capture most of
the structures in the data. To be specific, we computed a 1000×1000
density field for each dataset. In addition, we took out the effect of
anisotropic KDE, and used isotropic KDE for both isoRV and our
image-based methods. We only summarize the comparison results with
isoRV in the following, detailed comparison results with most methods
are presented in the supplementary material.

Datasets. For a comprehensive comparison, we gathered 100 scatter
plots with substantial variations in terms of the number of data points,
ranging from 200 to 5000. Among them, 71 datasets show the dimen-
sionality reduction results provided by Sedlmair et al. [32] and the rest
are real bivariate datasets collected from the UCI repository [10].

Measure. To find out if our methods produce similar aspect ratios as
isoRV, we measured the relative deviation of the aspect ratios selected
by our methods from the ones selected by isoRV:

deviation =
αimgX −αisoRV

αisoRV
∗100% , (18)

where αimgX refers to α selected by imgRV, imgAL, or imgAWO.

Results. To summarize the deviation results for the 100 datasets, we
created the boxplots shown in Figure 6 (a). These boxplots show that
the deviations of aspect ratios selected by our methods are very small,

Fig. 6. (a) Deviation of aspect ratios selected by our image-based
methods (imgRV, imgAL, and imgAWO) from those selected by isoRV;
(b) runtime of our methods and isoRV for aspect ratio selection.

Fig. 7. (a) Boxplots showing the convergence of imgRV and isoRV over
100 datesets with increasing number of isovalues (m). On top left, we
show the convergence plots for two typical datasets, Page Blocks [10]
and Cars [36], indicating that when m reaches over 500, imgRV and
isoRV select very similar aspect ratios, i.e., very low deviations. (b)
Resulting dataset plots for the aspect ratios chosen by imgRV and isoRV.
In (a) the result for 100 isovalues is out of the plot range, we indicated it
by a dark transparent shadow.

ranging only from −2% to 1.5%; particularly, the range for imgRV
is typically very small, revealing that the method typically selects the
same aspect ratio as isoRV. Note also that we aim for precision in this
part of the experiment, so we considered a large amount of isolines for
isoRV with m = 1000.

Figure 6 (b) summarizes and compares the time performance of all
four methods. In this part of the experiment, we used m = 500 to
extract isolines for isoRV, since this is sufficient for isoRV to handle
most datasets (see Section 6.2), and isoRV can perform faster. As
seen from Figure 6 (b), imgRV is the fastest, it took less than 0.37
seconds consistently for all datasets; imgAL is the second, but it still
took around 0.7 seconds, which is roughly two times slower than img-
RV. In contrast, the other two methods, isoRV and imgAWO, required
around 3.2 and 5.2 seconds. Therefore, we consider imgRV to be able
to support interactive aspect ratio selection for typical datasets, which
is about an order of magnitude faster than isoline-based methods.

Recommendation. After carefully inspecting the comparison results,
we come up with the following two observations: (i) all three image-
based methods select similar aspect ratios as isoRV, where the maximal
absolute deviations of the three methods are less than 2% ; and (ii)
imgRV produces most similar results to isoRV, while it is the fastest
among the four methods being compared. Therefore, we recommend
imgRV as the representative method for our image-based approach.



Fig. 8. Illustrating the relationship between RV and imgRV using two
time-series datasets: CO2 [6] (top) and Computer [9] (bottom). (a,d) Line
charts and aspect ratios selected by directly applying RV to the curves;
(b,e) Smoothed line charts and aspect ratios selected by applying RV to
the smoothed curves shown in red; (c,f) Line charts and aspect ratios
selected by directly applying imgRV to the curves.

Fig. 9. (a) Deviation (in %) and computing time (b) for creating aspect
ratios for 100 datasets in domains of various resolutions: 100× 100,
200×200, 500×500, and 1000×1000.

6.2 Convergence Study
We refer the isoline-based methods and the original methods designed
for line charts as geometric methods, since both work with line seg-
ments. In the second experiment, we compare their convergence with
our image-based methods. Since the previous experiment showed that
imgRV produces almost the same results as isoRV, we take imgRV
as the representative of image-based methods. Furthermore, we take
isoRV as the representative of isoline-based methods, and RV as the
representative of the original methods designed for line charts.

imgRV vs. isoRV. Unlike our imgRV, the quality of aspect ratio
selected by isoRV strongly depends on the amount of isolines. Hence,
we tried different m over the 100 datasets in the previous experiment
when using isoRV to select aspect ratios, and computed the deviations
in aspect ratios using Eq. (18). Figure 7 (a) summarizes the results.
From the boxplots, we can see that when isoRV has a sufficiently large
amount of isolines (i.e., large m) as inputs, the aspect ratios selected
by imgRV and isoRV converge. However, isoRV typically requires at
least m=500 for most datasets. Thanks to the image-based formulation,
our approach (imgRV) can bypass the isoline construction and directly
compute the aspect ratios from the density fields.

imgRV vs. RV. By converting line charts to density fields, our methods
can also be used to find aspect ratios for line charts. Since density fields
are smooth representations of the original line charts, our imgRV may
not produce similar aspect ratios as RV, which works on the unsmoothed
polygonal data. Hence, if we properly smooth the data, imgRV and
RV might produce similar aspect ratios. Figures 8 (a, b, c) show results
produced with RV, smoothed RV, and imgRV using the CO2 dataset [6],
where a similar upward trend is clearly observable in Figures 8 (b, c).

Fig. 10. Influence of the number of nearest neighbors (k) on the con-
structed anisotropic density field and the aspect ratios selected by
imgRV on the eFashion dataset [13]. (a) Density field constructed by
isotropic KDE and its resulting plot; (b, c, d) Density fields constructed by
anisotropic KDE with different k and the resulting plots.

Figures 8 (d, e, f) show the Computer dataset [9], which further confirms
our observation that applying RV to smoothed data produces aspect
ratios similar to the ones selected by imgRV.

6.3 Parameter Analysis
In the third experiment, we studied how to select the resolution of
density fields and number of nearest neighbors for our image-based
methods (typically, imgRV):

(i) Resolution of density fields. Patterns in data are generally better
characterized by density fields of higher resolution, but this increases
the required computing time. Hence, we performed an experiment to
find the proper resolution for revealing all necessary aspects of the data
while consuming less computing time. We considered four different
resolutions: 100×100, 200×200, 500×500, and 1000×1000, and ap-
plied imgRV to compute the aspect ratio for each of the 100 datasets
described in Section 6.1. To study the influence of the resolution, we
again used the deviation measure defined in Section 6.1 and took the
aspect ratios computed with the highest resolution as the references.

Figure 9 (a) summarizes the results for the 100 datasets. It shows
that the deviations for a resolution of 500×500 are in a small range of
[−0.2%,0.15%], thus the aspect ratios selected with domain resolutions
500×500 are similar to those selected with 1000×1000. Figure 9 (b)
summarizes the time performance of imgRV for different resolutions;
it shows that the computational time increases non-linearly with the
domain resolution. Considering these two results, we recommend
500×500 as the default resolution for our density fields.

(ii) Number of nearest neighbors (k). Next, we attempted to empiri-
cally find a proper value of k for constructing the anisotropic density
fields; see Figures 4 and 10 for results on two typical datasets. From
the analysis, we found that similar k tends to produce similar aspect
ratios, but if k is too large, it might lead to obscuration of interesting
patterns; see Figure 10 (d). Therefore, we set the default k as five and
use this value to produce all the results shown in the paper.

Initially, we attempted to perform an analysis with the deviation mea-
sure to explore imgRV and isoRV for different k, similar to the previous
experiments. However, k affects the density fields and so are imgRV
and isoRV, so both methods produce similar aspect ratios for varying
k. However, since imgRV allows interactive exploration, users may
adjust k to explore the plot like multi-scale banking. Indeed, k is data-
dependent; in the future, we plan to investigate ways to automatically
decide proper values of k in terms of the data characteristics.

6.4 Revisiting the Study of Fink’s Method
In the last experiment, we revisited the study in [16] to show that our
method yields results that are quite close to the ones produced by the
best two criteria in [16], but also consistent with the user preferences.
Fink et al. [16] studied various geometric criteria to select aspect ratios,
and found that the criteria of minimizing the total length and minimiz-
ing the mean uncompactness yielded the best results, so we compared



Fig. 11. Comparison between imgRV and two methods of Fink et al. [16]: (i) minimizing uncompactness, and (ii) minimizing total length, over the five
synthesized datasets. Comparing the result, we can see that our results are close to the ones produced by minimizing uncompactness.

our method mainly with these two criteria. Since neither the imple-
mentation nor the user study result of [16] is available, we applied our
method only to the available data shown in the paper [16].

Five test datasets from [16]. The effectiveness of [16] was demon-
strated using five synthesized datasets, among which three had varying
number of clusters and two had different data trends. Note that we
obtained the datasets from the authors of [16]. By applying imgRV to
the datasets, we obtained the results shown in Figure 11, showing that
our results are quite close to the ones generated by the “minimizing
the mean uncompactness” criteria, where all clusters and trends are
clearly visible. In this sense, the results from our method and [16] are
comparable. We compared the performance by running our method on
the similar machine. For the set with four mixed clusters, their method
required around 5 sec. while our method only took 0.2 sec.

Fig. 12. Comparing the aspect ratios selected by our method (c, f) and
the method of Fink et al. [16] (b, e) to user preferences (a, d): function
y = xsinx used in [16] (top) and a data plot extracted from [37] (bottom).

User selection. Next, we further revisited the user study in [16] to
learn how well our selected aspect ratios match the user preferences.
However, the user study result in [16] is unavailable, so we took only
the user study result in the paper [16] for comparison; see the top row

Fig. 13. ROI banking on the Satimage dataset [10]. Our method can
take user-specified ROIs (red and blue boxes in (a)) as inputs and select
aspect ratios (b, c) that focus on revealing patterns inside the ROIs.

in Figure 12, which has clearly shown that our result is closer to the
user preferred one.

In [16], a data plot shown in a Nature article [37] was taken as
an input to see whether the method [16] produced a similar aspect
ratio. Assuming that the authors of [37] have carefully adjusted the
aspect ratio for producing the plot, we took the same plot as input and
applied our method to select an aspect ratio, which was also found to
be closer to the original aspect ratio; see the bottom row in Figure 12.
In the future, we plan to perform a large-scale user study to confirm the
findings.

7 EXTENSIONS

In this section, we present three extensions that utilize the capability of
our image-based methods for a proper aspect ratio selection.

Region-of-interest (ROI) banking. Our image-based approach op-
erates directly on the density field, so it inherently allows the user to
select an ROI and then banks the diagram for the data patterns in the
ROI. Figure 13 shows an example dataset that has two major patterns:
an upward trend with sparse data points on top and a dense cluster
at the bottom. By specifying an ROI (red and blue boxes shown in
Figure 13 (a)), a user is able to highlight patterns in the ROI, since our
method adapts the aspect ratio accordingly (see Figure 13 (b, c)).

Multi-scale banking. For line charts, a single aspect ratio might not
show all patterns of interest. Therefore, Heer and Agrawala [19] pro-
posed the idea of multi-scale banking, which combines spectral analysis
with the banking to 45◦ principle to automatically select multiple aspect



Fig. 14. Multi-scale banking on the Balance Scale dataset [10]. Three
aspect ratios are picked to show patterns of interest at different scales.

Fig. 15. Selecting a good aspect ratio for an image from the Internet [3]:
(a) crop a relevant image part; (b) density field converted from the
cropped image; and (c) result plotted with our selected aspect ratio.

ratios and to show patterns of interest at different scales.
Our image-based approach can also be extended to support multi-

scale banking. For this, we build a Gaussian pyramid on the input
density field and apply our imgRV method to compute the optimal
aspect ratio for each image in the Gaussian pyramid. Once we obtain
the aspect ratios, we follow [19] to ignore similar aspect ratios, i.e.,
aspect ratios that are less than 1.25 times of the previous (larger scale)
ratio. Figure 14 shows a result with three selected aspect ratios for
highlighting patterns of interests at different scales.

General image data. Our image-based approach can also handle
general image data, simply by converting input images into scalar
density fields, e.g., by using color2gray [18] (for color images) to
obtain grey scale images, and then applying a Gaussian filter to smooth
them.

Figure 15 shows an example image collected from the Internet [3].
After cropping the relevant part of the image in Figure 15 (a), we con-
verted it to a density field (b) and then applied our approach to finding
a better aspect ratio. The image scaled by applying our selected aspect
ratio in Figure 15 clearly shows the Gaussian envelope of the weather
variation, which is obscured in the original input. Figure 16 shows
another example for a density function plot (or continuous scatterplot),
which is from a CT facial deformity dataset [41]. Our image-based
method enables us to directly compute a good aspect ratio from the
density field for showing the arch structure more prominently in the
density-based image data.

8 CONCLUSION AND FUTURE WORK

In this paper, we introduced a generic image-based approach for select-
ing a good aspect ratio for 2D diagrams, which allows to find similarly
good aspect ratios as existing methods in less time. Derived from
Federer’s co-area formula, we are able to generalize any previous as-
pect ratio selection method based on a line integral representation to
an image-based method. To more faithfully characterize the data pat-
terns, we adopted anisotropic kernel density estimation to construct the

Fig. 16. Our approach can compute an aspect ratio directly from a
density function plot. (a) The input dataset is a continuous scatterplot
of the CT facial deformity data [41]. (b) Rescaled using α selected by
imgRV.

necessary density fields. A comprehensive quantitative comparison to
previous isoline-based methods shows that our image-based resultant
vector (imgRV) method is faster and more robust than existing methods.
In addition, we revisited the evaluation of Fink et al. [16], and showed
that our approach is able to perform similarly to the best method of
Fink et al. for the tested data, while our selected aspect ratios better
match the user preferences. Finally, we presented three extensions
for our approach: region-of-interest banking, multi-scale banking, and
selecting aspect ratios for general image data.

For future work, we plan to conduct a large-scale user study to find
out to what extent the aspect ratio selected by our approach is able to
reveal different patterns in the visualizations. Furthermore, we want to
spotlight some fundamental topics that have so far been neglected. For
example, we see a need to better examine the perceptual foundations of
aspect ratio optimization, i.e., there is a need for more refined models
that might go beyond banking to 45◦. As recognized by Talbot et
al. [35], the assumption that a line with a 45◦ angle is optimal for
perception is disputable, since in our opinion it cannot differentiate
between ±45◦. It would also be interesting to study the perceptual
implications of dealing with data clusters in scatter plots, i.e., whether
circles are in fact optimal in this scenario. Lastly, it would also be
interesting to explore the selection of k for anisotropic KDE by using
the scagnostic approach from [42] in order to characterize the data
more accurately.
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