
Structure-aware Fisheye Views for
Efficient Large Graph Exploration

Yunhai Wang, Yanyan Wang, Haifeng Zhang, Yinqi Sun,
Chi-Wing Fu, Michael Sedlmair, Baoquan Chen and Oliver Deussen

(c) (d)(a) (b)

Fig. 1. Magnifying a node-link diagram (a) with 11 clusters around a user-specified location (indicated by the cursor) using different
fisheye lenses: (b) graphical fisheye; (c) hyperbolic fisheye; and (d) our structure-aware fisheye, which aims to maintain the shapes of
almost all clusters and to minimize their distortions, such as in (b,c).

Abstract—Traditional fisheye views for exploring large graphs introduce substantial distortions that often lead to a decreased readability
of paths and other interesting structures. To overcome these problems, we propose a framework for structure-aware fisheye views.
Using edge orientations as constraints for graph layout optimization allows us not only to reduce spatial and temporal distortions during
fisheye zooms, but also to improve the readability of the graph structure. Furthermore, the framework enables us to optimize fisheye
lenses towards specific tasks and design a family of new lenses: polyfocal, cluster, and path lenses. A GPU implementation lets us
process large graphs with up to 15,000 nodes at interactive rates. A comprehensive evaluation, a user study, and two case studies
demonstrate that our structure-aware fisheye views improve layout readability and user performance.

Index Terms—Graph Visualization, Focus+Context Technique, Structure-aware Zoom, Graph Layout Technique

1 INTRODUCTION

Graphs are very general representations for describing relationships
among entities. They are widely used in most fields of science and
model, e.g., social and biological networks, mental processes, road
systems, or document and citation networks. Most commonly, they are
visualized as node-link diagrams. While many automatic algorithms
for creating the layout of such node-link diagrams exist [25], complex
graphs with large number of nodes and edges often lead to excessive
visual clutter, thereby disguising prominent structures in the graph.

A common approach to mitigate this scalability problem is to use
interaction. Pan-and-Zoom, for instance, allows users to explore re-
gions of interest in greater detail, but at the cost of losing the global
context of the graph. Hence, pan-and-zoom are often used together with

• Y.H. Wang, Y.Y. Wang, H. Zhang and Y. Sun are with Shandong University.
Email: {cloudseawang, yanyanwang93, hiphone.zhang,sunyinqi0508}
@gmail.com.

• B. Chen is with Peking University. E-mail: baoquan.chen@gmail.com.
• C.-W. Fu is with the Chinese University of Hong Kong. E-mail:

cwfu@cse.cuhk.edu.hk.
• M. Sedlmair is with VISUS, University of Stuttgart, Germany. E-mail:

michael.sedlmair@visus.uni-stuttgart.de.
• O. Deussen is with Konstanz University, Germany and Shenzhen VisuCA

Key Lab, SIAT, China. E-mail: oliver.deussen@uni-konstanz.de.
• Y.H. Wang and Y.Y. Wang are joint first authors and H. Zhang and Y. Sun

contribute equally to this work.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

overview+detail techniques [27], where an extra map view is provided
for overviewing the entire data. Using such a map view, users can
associate and locate the local zoom region in the overall data domain.
Although the method is easy to implement and allows users to see
the necessary details, using two separated views might break interest-
ing structures, e.g., long paths, clusters, or other mid-scale structures.
Furthermore, an additional view consumes precious screen space.

An alternative family of techniques is focus+context methods [33],
which aim at showing the focal details with the global context in a single
view. This is often achieved by using fisheye views, which magnify
a local region of higher interest, while compacting other regions of
lower importance. Hence, fisheye techniques not only address the issue
of losing the spatial continuity but also offer smooth data exploration
through pan-and-zoom.

Traditional fisheye methods, however, come with a number of limita-
tions, which restrict their applications to large-scale graph exploration.
Geometry-based fisheye techniques, e.g., the graphical fisheye [42]
or the hyperbolic browser [37], ignore the structure of a graph while
zooming, thereby bringing substantial distortions; see Figures 1(b) and
(c) for examples, where the global shape of a graph is heavily distorted.
Topological fisheyes [1, 23] seek to overcome this problem by pre-
serving the graph structure based on a hierarchy of coarsened graphs.
Such a hierarchy, however, may not be available for general graphs.
Furthermore, most existing methods do not attempt to improve the read-
ability [11] of a graph layout during the magnification, e.g., by avoiding
node overlaps [14], this would show a graph more clearly to the user.
EdgeLens [55] and its successors [36, 48] improve the readability of
edges around the focal points by pushing away their neighbor edges.
They do not support magnification, though, and thus the improvement
on readability is limited. Lastly, methods like hyperbolic views and

iSphere [10, 37] render links as curves. This, however, might hamper
graph exploration, especially for tasks such as path tracing [10, 56].

In this paper, we present a unified optimization framework to produce
structure-aware fisheye views for efficient exploration of large graphs.
The framework is based on three requirements for good focus+context
visualization design, identified by Cohé et al. [8]: (i) minimizing the
distortion of the structure of a diagram; (ii) improving the readability
of nodes of interest; and (iii) maintaining a coherent layout during the
interaction. These requirements are also supported by recent empirical
evaluations of graph exploration techniques [10, 15, 56]. As far as
we know, these requirements, so far, have not been adopted in any
fisheye technique for exploring node-link diagrams, though some are
met in the force-based overview+detail interface by Dwyer et al. [15].
SchemeLens [8] also fits these requirements well, but only deals with
vector-based network diagrams (with only horizontal and vertical lines)
rather than general node-link diagrams, and provides only a simple,
axis-aligned structural focus.

Our key approach is to formulate the fisheye zoom as an optimization
problem, with a goal of delivering an interactive, smooth, and structure-
aware zoom by preserving the edge orientations in the graph layout.
By including constraints for edge orientations into the optimization,
we are able to model various types of layout constraints for the zoom,
including structural and temporal constraints, for an efficient layout
production. With our new formulation, we can effectively minimize the
distortions of local structures and better maintain the spatial continuity;
see Figure 1(d) for one of our results. Moreover, we can also improve
the readability of a graph layout by imposing aesthetic constraints such
as minimizing the node overlap, similar to constraint-based layouts [14,
54]. In addition, our new formulation allows users to interactively
specify structures to be preserved during the fisheye interaction, e.g.,
sketching a circle or a hierarchy, while maintaining the overview of the
graph, which itself could be large and highly complex.

On the other hand, we are able to design various task-oriented fisheye
lenses in our framework according to a task taxonomy [34] for graph
visualization: (i) a polyfocal lens for highlighting structures around
multiple focus points, (ii) a cluster lens for maintaining a substructure,
and (iii) a path lens for focusing on and preserving a user-defined path.
These lenses together can be used for exploring multiple structures of
interest at the same time.

We develop an efficient GPU-based implementation, enabling an
interactive exploration of large graphs with up to 15K nodes and various
structures to be preserved. We quantitatively compare our method to
previous approaches by measuring the change of structures by using a
number of evaluations and studies to demonstrate the effectiveness and
applicability of our fisheye lens for exploring graphs.

In summary, the main contributions of this paper are:
• we formulate a unified framework to generate structure-aware

fisheye views for exploring large graphs;
• we devise a family of task-oriented fisheye lenses for different

graph visualization tasks; and
• we develop an interactive GPU-based implementation, and

demonstrate the effectiveness of our method through a compre-
hensive evaluation, a user study, and two case studies.

2 RELATED WORK

2.1 Graph Exploration Techniques
Various interaction techniques [53] have been designed to support
essential tasks in graph exploration. Lee et al. [34] summarize a list
of tasks, among which attribute-based and topology-based tasks are
two major categories. Attribute-based tasks refer to finding nodes or
links with certain labels, and are often accomplished by extracting and
visualizing the related sub-graphs based on a search query [5, 40, 50].
Topology-based tasks include examining the adjacency between nodes
and finding the shortest path between them, as well as identifying
clusters, which are essential for navigating graph structures. In this
paper, we focus on interaction techniques for topology-based tasks,
which can be further categorized into four classes [26]: pan-and-zoom,
fisheye views, semantic zooming, and dynamic layouts.

Pan-and-zoom is the most commonly used interaction technique, it
allows users to select and zoom into a region of interest. Among the
existing zoomable interfaces [39, 51], several are used for graph explo-
ration [47, 52]. This interaction approach, however, has some inherent
limitations such as insufficient navigation patterns and disorientation
of the user [27]. Hence, zoomable interfaces are often used with an
additional overview that shows the entire data.

For graph exploration, such interfaces [17, 43, 49] typically have
two separate views: an overview window and a detailed view for small
sub-graphs of interest. In most cases, node-link diagrams are shown
in both views using the same layout technique, thus the readability of
the graph structures in both views are almost the same. To improve
the readability of the detailed view, Dwyer et al. [15] generate high-
quality layouts by incorporating graph drawing aesthetics. Likewise,
our approach attempts to improve the readability of the focal regions
using aesthetic constraints in the form of edge orientations. Moreover,
our method can support interactive exploration of large graphs with
15K nodes, whereas the best current state-of-the-art system can only
handle graphs of some hundred nodes due to the need for a complex
optimization [16].

Fisheye views [20] are well-known examples of focus+context tech-
niques that seamlessly incorporate detailed focus regions within a
global context via space distortion. Several graph-specific fisheye tech-
niques have been proposed, such as graphical fisheye [42], hyperbolic
display [37], and iSphere [10]. A graphical fisheye directly transforms
the graph’s 2D layout, while the latter two map the 2D layout into a
non-Euclidean geometry space (hyperbolic surface or Riemann Sphere)
and then project it back to the original 2D space. Although these meth-
ods distort the space with different geometric transformations, both
distort nodes simply based on the node’s distance to the focus. Doing
so, the structure defined by the graph’s edges is completely ignored,
and thus, large distortions to the shape of the graph might occur. For
simplicity, we refer to these methods as geometric fisheyes.

To preserve a given structure, topological fisheye techniques [23]
employ a pre-computed hierarchy of coarsened graphs to guide distor-
tion. Constructing such a hierarchy, however, is nontrivial for general
graphs, where structure preserving operations are required. In contrast,
our approach provides an efficient formulation based on edge orien-
tations of the input layout to maintain graph structures; by this new
means we are able to preserve structures with better quality and per-
formance than previous methods. It should be noted that Ti et al. [46]
also constrain the geometric magnification with the constraints of edge
orientations. However, the method treats the horizontal and vertical
axes separately in the maps, whereas our method can directly handle
arbitrary directions in general graphs and formulates the optimization
as a linear system.

Semantic zooming [21] is commonly used for exploring hierarchical
graphs [1, 18], where the input layout is hierarchically clustered into
different levels of abstraction. By default, it shows the coarsest level;
then users can zoom in and explore next levels at will. In other words,
the navigation is restricted by the displayed size of the graph. To
address the issue, topological fisheye views [23] leverage hybrid graphs,
generated by merging detailed regions from the original graph with
other regions from coarser representations, to which a geometric fisheye
view can be applied. Our approach can be seen as a combination of
semantic zoom and geometric fisheye, where the structure is preserved
but the distortion is based on a geometric transformation.

Dynamic layout aims at improving the readability of regions of inter-
est by optimizing the graph layout. EdgeLens [55] interactively dis-
places the edges away from the focal point in order to reveal the region
around the focal nodes and edges. LocalEdge lens and BringNeighbors
lens [48] are variations of EdgeLens that filter edges between nodes
within a focus region and bring neighboring nodes closer to the nodes
of interest. MoleView lens [29] introduces continuous bundling to show
the structure of edges of interest at different levels. Our approach is to
interactively improve the graph’s readability through an optimization,
where aesthetic constraints can also be integrated efficiently.

2.2 High-quality Graph Layout Techniques
A wide variety of automatic graph layout algorithms have been de-
veloped for graph visualization [45], among which stress-based meth-
ods [32] are very popular. These methods produce good layouts by
adjusting node positions to optimize the distances between nodes. Only
optimizing the distance constraints, however, does not allow for effects
such as avoiding edge overlaps or preserving structures.

To address these issues, constrained graph layout methods [6] in-
corporate geometric constraints into the optimization. Early attempts
focus on directional constraints [24,30,44]; however, the corresponding
optimization problems are usually NP-hard. Thus, existing heuristic
solving procedures might not produce satisfying layouts, especially
for large graphs. Dwyer et al. [13] propose Dig-CoLa that efficiently
solves the optimization of constraint layouts by integrating constraints
into stress majorization [22]. Later, they extend stress majorization to
satisfy separation constraints [14] as well as non-linear constraints [12].
More recently, Wang et al. [54] reformulate stress majorization in a
vector form, so that various constraint types can be defined by edge
orientations and used in the optimization. We follow this stream of
research but formulate a new optimization model with structural, read-
ability, and temporal constraints for producing the fisheye views, and
solve for these constraints with quadratic time complexity.

3 BACKGROUND

Given a graph {V,E} with nodes V and edges E, such that each node
has a position xi ∈ R2 and X = {x1, · · · ,xn} denotes the set of all
positions. Using these notations, we first briefly describe some relevant
state-of-the-art geometric fisheye methods and then introduce the edge-
vector formulation of stress majorization [54], which inspired us to
develop our framework for structure-aware fisheye views.

Fig. 2. Graphical fisheye: (a) each node xi is moved away from the
focal point c toward its boundary point bi along a line that joins them; (b)
distortion function (m = 3) for the distance ratio βi; see Eq. (1) for details.

3.1 Geometric Fisheye Views
Common geometric fisheye methods include the graphical fisheye [42],
hyperbolic fisheye [37], and iSphere [10]. The graphical fisheye directly
applies the geometric transformation in the planar domain, while the hy-
perbolic fisheye and iSphere first map the graph layout to a hyperboloid
and Riemann sphere, respectively, and then project the result back onto
the Poincaré disk and a plane, respectively. Below, we briefly review
the graphical fisheye, which is to be extended to form the task-driven
lens (Section 5) for graph exploration.

Graphical fisheye. Given a graph layout X and a focal point c, a
graphical fisheye magnifies the graph by displacing each xi away from c.
The method first locates point bi on the domain boundary by extending
a line from c through xi (see Figure 2(a)) and then displaces xi to x′i
along the line toward bi by the following equation:

x′i = c+(bi− c)β ′i , where β
′
i =

(m+1)βi

mβi +1
, βi =

||xi− c||
||bi− c||

, (1)

m≥ 0 is the magnification factor in the fisheye zoom. Note that βi is a
distance ratio to be increased nonlinearly to β ′i (see Figure 2(b)); then,
the method takes β ′i to create the new position x′i.

All these three fisheye views apply the geometric transformation
solely to the node positions, while completely ignoring the edge con-
nections. Hence, the magnification could heavily distort the graph
structure; see again Figures 1 (b) and (c). Through our new formula-
tion, we can effectively magnify a graph layout with a fisheye zoom,
while maintaining its structures in the context; see Figure 1(d).

3.2 Edge Vector-based Stress Majorization
Recently, Wang et al. [54] reformulated stress majorization as an opti-
mization in vector form that allows users to explicitly control not only
the edge lengths but also the edge orientations in graph layouts. The
optimization is formulated in the following form:

argmin
X ∑

i< j
wi j(xi−x j− ei jdi j)

2 , (2)

where wi j is a normalization weight, and ei j and di j are the target
orientation (expressed as a unit vector) and length, respectively, for the
edge between nodes xi and x j. Using this model, users can specify
various types of constraints in terms of edge lengths and orientations in
order to alter the graph layout; please refer to [54] for details.

Inspired by the reformulated model, we aim at producing structure-
aware and smooth fisheye views at interactive rates by modifying edge
orientations and lengths and by formulating various types of constraints
(structure-based, readability-based, and temporal) for supporting the
fisheye zooms (Section 4). In addition, we also design a family of
special fisheye lenses for different exploration tasks (Section 5).

4 STRUCTURE-AWARE FISHEYE

Based on the three requirements described in the introduction (structure
preservation, readability, and layout coherency), we formulate our
structure-aware fisheye lens as an optimization problem to solve for
Zt (which is the set of node positions in the t-th iteration, so Z0 = X)
using the following three-fold objective:

argmin
Zt ∑

(i, j)∈E
ω

s
i j||zt

i− zt
j− es

i jd
s
i j||2

+ ∑
(i, j)∈Ω

ω
r
i j||zt

i− zt
j− er

i jd
r
i j||2

+ ∑
i∈{1..n}

ω
t
i ||zt

i− zt−1
i ||

2 , (3)

where ωs
i j, ωr

i j and ωt
i are the normalization weights (default value is

one), Ω is the set of edges inside the focal area around c. The parameters
es

i j and ds
i j provide the structural constraints, er

i j and dr
i j provide the

readability constraints, and zt
i ∈ Zt denotes the position of the i-th node

in the t-th iteration during the fisheye zoom. Our optimization model
consists of three terms (see Eq. (3)), each corresponding to one of the
three constraints (i.e., structure preservation, readability, and layout
coherency): the first term aims to maintain the structures by preserving
the edge orientations and lengths for all the edges E of the graph; the
second term implements the readability criterion for edges in Ω; and
the last term enforces the temporal coherency, where the nodes are
desired to move stably over the iterations during the zoom.

Please note that the set Ω is not just a subset of E, but also contains
additional, invisible edges between all the node pairs of the focal area.
We need this strategy to enhance the readability, since we need to push
nodes away from one another, including also the nodes that are not
explicitly connected in the graph. For more details about these virtual
edges and their handling, please refer to [14]. The typical focal area for
a fisheye is defined as a circular region around c with a radius of 20% of
the screen size. Except for the constraint of temporal coherence, both
the definitions of structure-based constraints and readability constraints
are based on the geometric magnification; see Sections 4.1 and 4.2.

4.1 Structure-based Constraints
Unlike previous works on graph exploration, the preservation of struc-
ture is a tricky part of our problem, since a fisheye lens distorts the

Fig. 3. Structure-based constraints: (a) input layout; (b) result produced by the graphical fisheye; (c) result produced by our method using only the
edge orientation constraints; and (d) result produced by our method further using the shape constraints with the edge orientation constraints.

layout non-linearly. To magnify a layout, we have to vary the edge
lengths to a large extent and to push the spatial context towards the
domain boundary; see Figures 1(a) and (d). Hence, we cannot simply
force the edge lengths and orientations in the target layout Zt to follow
the original layout X for preserving its structures. Instead, our idea is
to encourage the edge orientations in Zt to follow the original layout
X and the edge lengths in Zt to follow the target layout X′ estimat-
ed by the fisheye, so that the edge lengths in Zt can be adjusted to
accommodate the zoom. Hence, we set es

i j and ds
i j in Eq. (3) as follows:

es
i j =

xi−x j

||xi−x j||
and ds

i j = ||x′i−x′j|| . (4)

Shape constraints. Using the above constraints allows us to produce a
fisheye view with a better preservation of its structure. However, these
constraints are only local in their nature, thus larger-scale structures
may still be distorted; compare the blue loops in Figures 3 (a) to (c).

To enhance the preservation of such structures, we let users provide a
connected set of edges, say Es, in the graph (e.g., one of the blue loops
in Figure 3(c)) for us to collectively estimate better ds

i j for the edges.
We observe that during a zoom some edges in larger-scale structures
could become relatively longer while others could become relatively
shorter. Hence, if we can balance the changes of the edge lengths from
the original layout X to the target layout Zt , the edge orientation es

i j
should be able to preserve such structures through the optimization.

Denoting di, j as the length of edge (i, j) in the original layout X and
d′i, j as the length of the same edge in X′, we first look for the average
length distortion ratio ρ through the following minimization:

min
ρ

∑
(i, j)∈Es

(
ρdi, j−d′i, j

)2
, (5)

which can be solved analytically by:

ρ = ∑
(i, j)∈Es

di, j

∑(i, j)∈Es
di, j

∑(i, j)∈Es
di, jd′i, j

∑(i, j)∈Es
d2

i, j
. (6)

This allows us to define the edge length, i.e., ds
i, j, by using ρ and di, j,

instead of setting it using Eq. (4):

ds
i, j = ρ di, j. (7)

In addition, we also increase ωs
i j (empirically as 10) for the edges in Es

to strengthen the structure preservation; see Figure 3(d) for a result.

4.2 Readability-based Constraints
A few graph drawing readability metrics have been developed and some
have been incorporated to create graph layouts [11, 12]. However, none
of them has been integrated into the fisheye views, where a clear graph
structure is expected in the region of interest. In the context of this
work, we consider two kinds of readability constraints:

Non-overlapping Nodes. Rather than zero-sized points, nodes in
graph drawings are typically represented by dots or little squares with

Fig. 4. Readability-based constraints: (a) result produced after pushing
the two overlapped nodes in Figure 3(d) away from each other; and (b)
result produced after further maximizing the edge crossing angle.

a given size, some nodes may even carry text labels; see Figure 12 for
an example. Hence, we should consider node sizes and avoid node
overlap, particularly in the focal area.

Concerning this, we detect overlapping node pairs (say xi and x j)
in the focal area after we applied the structure-based constraints to the
layout (see Figure 3(d)) and set an edge length constraint between these
node pairs using the readability term in Eq. (3):

dr
i j = ri + r j + ε and er

i j = es
i j , (8)

where ri denotes the radius of the bounding circle of node i in screen
space and ε is a node separation parameter heuristically set as 1% of
the screen size. See Figure 4(a) for a result produced after imposing
the node-overlapping constraint to the graph shown in Figure 3(d).

If no visible edge between xi and x j exists in the graph, we add
a virtual edge between the node pair and set its length according to
Eq. (8). This is done for all overlapping node pairs in the layout.

Maximizing edge crossing angle. Purchase’s seminal graph read-
ability study [41] suggested that edge crossings have great impact on
human’s understanding of graphs. However, completely resolving edge
crossings is impossible [30], especially for large graphs. On the other
hand, a recent study [28] showed that maximizing the crossing angle
can improve the performance of path tracing tasks. Following this
finding, we maximize edge crossing angles by the following procedure.

Again, we detect edge crossings inside the focal area (say edge (i, j)
and edge (l,k)) after we applied all the structure-based constraints to
the layout (see Figure 3(d)) and set the directions for (i, j) and (l,k)
using the readability term in Eq. (3):

er
i j = es

i j⊕
π−α

2
and er

lk = es
lk	

π−α

2
, (9)

where α is the angle between er
i j and er

lk, while ⊕ denotes a clockwise
and 	 a counter-clockwise rotation. The edge lengths in this case will
not be altered.

4.3 Solving the Optimization
To obtain Zt , we differentiate Eq. (3) with respect to Zt and set the
derivative to zero, thereby resulting a linear system. We solve this linear
system by using a conjugate gradient solver that iteratively finds the

(a) (b) (c) (d)
Fig. 5. Convergence of our method, where we perform our fisheye zoom at the focal point marked by a cursor using our structure-based,
readability-based, and temporal constraints. (a) Input layout, and (b)-(d) results after 10, 20, and 30 iterations, respectively.

solution. Figure 5 shows the fast convergence of this process, where
the result of the 20-th iteration already satisfies most of the constraints.
To allow an interactive exploration, we adapted the GPU solver in [54]
to incorporate the different constraints in Eq. (3). This enables us to
handle large graphs with up to 15K nodes.

5 TASK-DRIVEN FISHEYE LENSES

Existing fisheye views for graph exploration mostly support only a
single focus, which is efficient for examining the local neighborhood
around a focal node. However, this interaction model is too restrictive
and fails to support general graph exploration tasks, e.g., exploring the
common neighbors of two given nodes, following a path of interest,
and exploring clusters. Such tasks involve multiple focal nodes and
edges. To this end, we propose a family of task-driven fisheye lenses to
support a wider variety of graph exploration tasks. Below, we present
the lenses at a high level, and provide their implementation details in
the supplemental material.

Polyfocal Lens. To generalize the single focus fisheye from Section 4
to support multiple focal centers, we apply the polyfocal projection [31]
to the current layout and then define the edge direction and length
information in terms of Eq. (4). Figures 11(b) and (c) compare the
results generated by the original polyfocal lens and our polyfocal lens,
where we can see that our result better preserves the cluster structure.

Cluster Lens. A desired lens for exploring a cluster of interest should
magnify the cluster, while providing the context of the entire graph.
Previous fisheye views are based on one or multiple focal centers.
Applying them, however, does not guarantee that all the nodes in the
cluster are properly magnified. Therefore, we develop the cluster lens
to allow users to specify a convex focal area and then magnify the
region (and the cluster) linearly in the fisheye view, while compressing
the outside context using the fisheye distortion model.

Path Lens. Path exploration tasks, such as exploring a path’s neighbor-
ing nodes and checking their degrees, require a magnification subject
to a path of interest. Yet, we are not aware of any fisheye technique
that can support such nontrivial zooms. For this reason, we formulate a
path lens in our framework for supporting such tasks.

To create a path lens, a user simply picks two nodes in the graph.
Our method then automatically finds and locates the shortest path that
connects the two nodes, and defines the focal area around the path.
Note that the focal area has a radius of σ measured from the path. We
empirically set σ as

√
m/28 times the screen size, so that the focal area

can adaptively increase with the magnification factor m.

6 RESULTS AND EVALUATION

We implemented our method in C++ and tested it on a computer with an
Intel Core i7 processor with 16GB memory. Moreover, we developed a
GPU implementation in CUDA that runs on an NVidia GTX1080 graph-
ics card with 8GB video memory. We performed three experiments
to evaluate our structure-aware fisheye views. First, we quantitatively

compared it with the state-of-the-art fisheye views (Section 6.1) in
terms of structure preservation and readability. Second, we conducted
a lab study to compare our method with other state-of-the-art fisheye
views on the task of path tracing (Section 6.2). Last, we qualitatively
demonstrated its usefulness by two case studies with real-world datasets
and by combining the use of different lenses (Section 6.3).

6.1 Quantitative Comparison
We compare our approach with three state-of-the-art graph fisheye
views: graphical fisheye (GF) [42], hyperbolic fisheye (HF) [37], and
iSphere [10]. To illustrate how our approach overcomes their short-
comings, we consider three factors: (i) edge orientation preservation,
(ii) node overlapping, and (iii) shape preservation. For a fair compar-
ison, our method only enforces the edge orientation and node non-
overlapping constraints. Since the original hyperbolic fisheye views are
not developed for exploring general 2D node-link diagrams, we follow
the implementation of Du et al. [10], which achieves the pan-and-zoom
based on a Möbius transformation [4] and uses the Poincaré metric [3].
Since iSphere projects the layout on a sphere, some of the nodes are
lost after the magnification and we cannot obtain all the node and edge
information. Hence, we can only compare iSphere on shape preser-
vation but not on the other two factors in the quantitative comparison.
However, we may still apply it with our method to produce layouts.

Therefore, taking GF, HF and iSphere as the geometry transforma-
tion to find the target layout X′ (see Section 4), there are six methods
altogether: GF, HF and iSphere, as well as Ours+GF, Ours+HF, and
Ours+iSphere. Note that GF, HF and iSphere are all based on analytical
transformations, whereas our methods (the last three combinations)
require solving an optimization; see Eq. (3).

We employed five real datasets with varying numbers of nodes
and edges; see Table 1 for a summary. For each dataset, we randomly
selected 100 focus centers (see the examples in Figure 1) and 20 random
magnification factors ranged from 0.1 to 20 for each focus center. To
avoid bias due to randomness, we ran the three methods, i.e., Ours+GF,
Ours+HF, and Ours+iSphere, 100 times. We found that the running
time is almost the same for different focus centers configured with the
same magnification factor. The last column in Table 1 reports the range
of computing time for solving the optimization (GPU implementation),
showing that our fisheye views can be rendered interactively.

Table 1. Datasets used in our quantitative comparison experiment and
the range of computing time on each dataset.

Dataset #Nodes #Edges Time in sec.
SANDI AUTHORS 90 125 0.03± 0.002

BCSPWR1454 1454 1923 0.05± 0.002
FACEBOOK4039 4039 88234 0.14 ± 0.001

BCSPWR10 5300 8271 0.24 ± 0.001
PSSE1 14318 57366 0.91 ± 0.01

Preservation of edge orientations. To specifically measure to what
degree the various methods preserve the edge orientations, we define a

Fig. 6. Comparison of layouts generated by our method and existing
fisheye views in terms of (a) edge orientation offset (EOO) and (b)
number of overlapped node pairs.

metric called the Edge Orientation Offset (EOO):

EOO(Z) = 1− 1
|E| ∑

(i, j)∈E
‖<

xi−x j

‖ xi−x j ‖
,

zi− z j

‖ zi− z j ‖
>‖, (10)

which measures the sum of absolute inner products between the edge
vectors in the original layout and the magnified layout (1 - cosine
similarity). A small EOO(Z) indicates that most edge orientations are
preserved, while a larger value indicates larger changes in the graph
structure. Compared with the objective function (Eq. (3)), EOO only
measures the changes in edge directions without also involving the edge
lengths, so it focuses on revealing the degree of structure preservation.
We also do not use the objective function (Eq. (3)) here; as it is used in
the design of our methods and hence might bias the study.

Figure 6(a) shows the EOO values for the layouts of five different
datasets generated by GF, HF and three versions of our method. All
three versions perform significantly better than GF and HF and produce
low EOO(Z), i.e., <0.07 for the five datasets, except SANDI AUTHORS,
whose initial layouts already have heavy visual clutter. Among the three
versions of our method, Ours+HF is the best, Ours+iSphere is the worst,
and Ours+GF is in-between the two.

Node overlapping. To study how our node non-overlapping constraint
improves the readability, we count the number of overlapped node pairs
for the input layout and all magnified layouts. Figure 6(b) shows the
results, where the counts of our methods are mostly lower than those by
HF and GF. For the first three datasets, the number of overlapped node
pairs in the best version of our method is even close to the ones in the
input layout, indicating that our fisheye not only magnifies the structure
of interest but also improves the readability of the results. Figure 1
shows the BCSPWR1454 dataset, where the number of overlapped node
pairs generated by GF and Ours+GF are 398 and 128, respectively.

Shape preservation. To measure how the shape structure is preserved
by our methods, we use the shape-based metrics proposed by Eades et
al. [19] to compare the shape changes before and after the zoom. Given
a graph of nodes, these metrics compute a so-called shape graph that
consists of the k-nearest neighbors for each node. The shape graphs of
the input graph and magnified graph are computed and then compared
using the mean Jaccard similarity between the two shape graphs, where
a larger value indicates better preservation on the shape structure. Note
that for iSphere, we can only compare with it in 2D by considering the
xy coordinates of the nodes in its generated layouts.

Figure 7 shows the result using two different k values. We can see
that our methods preserve the global shape better than the other meth-
ods, and iSphere works well for the BCSPWR1454 and BCSPWR10
datasets, especially for small k. After carefully looking at the iSphere
results, we found that iSphere can better preserve the local shape than
the global shape, while our methods work well in both aspects.

Figure 8 shows a comparison of the different approaches, where
the input layout is generated by integrating a few shape constraints

Fig. 7. Comparison of layouts generated by our method and existing
fisheye methods in terms of the k-nearest neighbor graph based shape
similarity. A high value indicates better preservation on the shape struc-
ture. We also try the experiment with two different k values.

and cluster non-overlap constraints into the stress model [54]. In the
upper row, we show the input layout (a), the application of a graphical
fisheye (b), a hyperbolic fisheye (c) and an iSphere (d). In the bottom
row, we show a linear magnification (e) and then the results of our
approach, where a graphical fisheye (f), a hyperbolic fisheye (g), and
an iSphere (h) are used to compute the target layout in our method,
respectively. We can see that our results well preserve the shapes of
the square, the pentagon and the right angles with less overlaps, while
Ours+HF performs the worst among the three versions of our method.

6.2 Lab Study
The aim of the lab study is to learn if our structure-aware fisheye views
would improve the efficiency of graph exploration. We thus set up
a human-subject experiment in which the following five methods are
considered: Pan-and-Zoom (P&Z), Graphical Fisheye (GF), Hyperbol-
ic Fisheye (HF), iSphere, and one version of our method. Since the
quality of Ours+GF is between the other two versions in the quantita-
tive study (Section 6.1), we choose Ours+GF in the lab study. Further,
we do not test our task-driven lens, because traditional methods nei-
ther inherently support specific graph exploration tasks nor consider
the readability-based constraints. Hence, we only impose the edge
orientation constraints in our method for a fair comparison.

6.2.1 Experiment

Task. Du et al. [10] conducted a comprehensive evaluation of three
state-of-the-art techniques (Pan-and-Zoom, Hyperbolic and iSphere)
with three tasks that focused on exploring nodes, links, and paths. Since
our fisheye views explicitly attempt to preserve the edge orientations,
they are supposed to perform better for exploring nodes and links, as
verified by our pilot studies. In contrast, tracing a path between nodes
raises the necessity to explore a larger context and it is uncertain that
our general method, without a customized lens, works better for the task.
We thus conducted this study with one of the path tracing tasks designed
by Xu et al. [56], which asked the participants to find the length of the
shortest path between two randomly-chosen nodes. In a pilot study, we
found that the task difficulty increases exponentially with the length of
the shortest path. To control the difficulty, we generated random node
pairs whose shortest path lengths range from three to five.

Dataset. Graph size and cluster structures are two main factors that
influence user performance during the path exploration [10,56]. Cluster
structures can be measured by the modularity measure [38]. A large
modularity means that the graph has clear cluster structures. Du et
al. [10] found that the user performance for the three methods P&Z, HF
and iSphere shows no significant difference for small graphs. However,
iSphere performs better than the others for graphs with low and high
modularity, while HF performs significantly worse than the others for
exploring large graphs. Based on these findings, we generated a high

(a) (d)

(h)(e)

(c)(b)

(f) (g)

Original
Graph GF HF iSphere

P&Z Ours + GF Ours + HF
Ours +
iSphere

Fig. 8. Visual comparison of various fisheye methods: (a) the original graph; (b) graphical fisheye (GF); (c) hyperbolic fisheye (HF); (d) iSphere; (e)
linear magnification; (f) our method with graphical fisheye; (g) our method with hyperbolic fisheye; and (h) our method with iSphere.

Fig. 9. (a) The graph employed in the lab study; and (b)-(f) the zoom
effects of different methods.

modularity graph following Du et al. [10], where the graph has 1024
nodes with the modularity of 0.6. Since the number of possible paths
between two nodes grows exponentially with node degrees [7], we
chose three as the average node degree to ensure a feasible difficulty
level for the participants. Given this graph, we use stress majoriza-
tion [22] to produce an initial layout, which is taken as the input for all
five techniques. In addition, we pre-computed 725 node pairs, among
which 90% had shortest edge lengths of five.

System implementation. Our system interface in the study supports
picking and selection mechanisms to assist the user exploration. In
particular, when a user clicked a node with the right mouse button, the
node and its adjacent links were highlighted in orange. The highlighting
persisted until the user made the next click.

Participants and apparatus. We recruited 40 volunteers (24 males
and 16 females), aged from 22 to 29 (average 24). The experiment was
conducted on a desktop computer equipped with a mouse, a keyboard,
and a 24-inch display with 1920×1080 resolution and 144Hz refresh

rate. The node-link diagrams were displayed in a window with a white
background, where each node was rendered as a black dot and each
edge as a black line. Following Du et al.’s advice [10], we used a
window size of 150mm×150mm in our experiments. Figures 9(b)-(f)
show the results of applying the five techniques to the input graph.

Procedure. When the experiment starts, we introduced the five tech-
niques to each participant and demonstrated how they work. Then, the
participant was required to perform two practice trials using each of
the five techniques. The task was the same as in the actual test: finding
the shortest path between a pair of randomly chosen nodes.

In the actual test, each participant was required to perform three
trials with each technique, yielding a total number of 15 trials for each
participant. We randomized the order of trials for each technique and
also the order of the five techniques to avoid bias. Each trial had a 60-
second limit, and each participant spent around 15 minutes. Participants
could take a break after completing the trials for each technique. After
the tasks were completed, we conducted a short interview with the
participants, in which we asked them to rate the five methods and
explain the reasons behind their ratings.

Hypotheses. Based on the abilities of our structure-aware fisheye, we
had the following hypotheses before conducting the study:

• H1: techniques rendered with straight lines (GF, P&Z, and
Ours+GF) are more effective than methods rendered with curves
(HF, iSphere);

• H2: fisheye techniques (GF, HF, iSphere, and Ours+GF) are more
effective than methods that leave out the context (P&Z); and

• H3: techniques with a lower distortion or without distortion
(Ours+GF and P&Z) are more effective than the methods with
strong distortions (GF, HF, and iSphere).

Analysis. For each trial, we recorded the task completion time and
error, where the error is defined as the absolute difference between
the user input path length and the correct path length. Since each par-
ticipant is required to repeat three trials per technique, we computed
the averaged time and error for each technique. In addition, we fol-
lowed the recommended practices for statistical analysis, and analyzed
the results using an estimation-based approach with 95% confidence
intervals (CI) [2, 9].

Fig. 11. Exploration on the EGO-NETWORK dataset [35]. (a) Input graph layout. (b) Result generated by the polyfocal projection, where the cluster
structures are seriously distorted. (c) Result generated by our polyfocal magnification lens. The two center nodes are highlighted with a red halo, and
the edges to their neighbors are shown in yellow. (d) Results generated by our cluster magnification lens. The red focus cluster is highlighted with a
gray background, while the shapes of the other clusters are preserved.

Fig. 10. (a) Mean and 95% CIs of the completion time. (b) Mean and
95% Cls of errors between the true shortest path length and the user
input). For both, lower values are better.

6.2.2 Results

The results of our quantitative time and error measures are summarized
in Figure 10. Lower values are better for both measured variables. For
complete time, Ours+GF is better than all the other methods, especially
HF, iSphere (IS) and GF, as shown in Figure 10(a). This supports our
hypothesis of H1 and H3, but only partially of H2 because Ours+GF and
P&Z have large overlapping confidence intervals. The error measure
shows large confidence intervals as shown in Figure 10(b), indicating a
less clear result. Nevertheless, the average error is still the lowest for
our method – errors were in general small for all methods.

6.2.3 Discussion

Hyperbolic vs. Pan&Zoom. The performances of HF and P&Z are
as expected and consistent with the user feedback collected by Du
et al. [10]. Almost all our users said something along the lines of
“Hyperbolic fisheye results in a cluttered and strongly distorted layout
where some edges have large curvatures,” while “Pan-and-Zoom keeps
a stable layout that is intuitive for path tracing, although it loses part
of the context.”

iSphere. Du et al. [10] assumed that iSphere performs well for path-
tracing related tasks. Our results, however, show that iSphere (IS)
performs slightly better than hyperbolic fisheye (HF) but worse than
the other three techniques. One user said that “When zooming into the
details of one node in iSphere, the other far-way node is often lost.”
This is true because iSphere only renders the nodes shown on the south
hemisphere of the displayed ball. To address this issue, the user is often
required to do more interactions in order to find and explore the missing
nodes. On the other hand, most users are not aware of the distortions
produced by iSphere. One user said “the interaction of iSphere looks
like a rotation of a sphere, which is as intuitive as pan-and-zoom.”

Graphical fisheye. Compared to HF and iSphere, GF still uses the
straight edges, thus it took longer time to complete the tasks. However,
its deformation completely destroys the global structure, so its error
is the largest. One user said that “the interaction with the graphical
fisheye is not as intuitive as iSphere and hyperbolic fisheye and the
deformations of the graphical fisheye are the most unfamiliar ones.”

Our fisheye. Although our method is based on the geometric transfor-
mation of a graphical fisheye, the user performance was found to be
the best. Most users said that “Our structure-aware fisheye combines
the advantages of hyperbolic fisheye and pan-and-zoom in a sense
that the straight line is helpful for path tracing while the deformation
remains small.” Some users also mentioned that “the user interaction
of our structure-aware fisheye is faster than for the other methods,
since clicking a node allows to magnify the structure of interest without
pan-and-zoom .”

6.3 Case Studies
We demonstrate the usefulness of our task lens using two real-world
datasets: a Facebook social network and a US city network.

Exploration of Ego-network. We employ the EGO-FACEBOOK
dataset [35] with 4039 Facebook users (nodes) and 88234 relation-
ships between users (edges). Since the network has been grouped into
16 communities, we generate the initial layout by enforcing the cluster
non-overlap constraints into the constrained stress model [54], so that
different communities are well separated. However, the edges and
nodes are still very dense in some areas, making it hard to compare the
nodes that are far away from one another. Although simply applying
the polyfocal projection can better reveal the local structures around the
focal nodes, the structures of different communities might be seriously
distorted as shown in Figure 11(b). Here, our polyfocal magnification
lens can help. Figure 11(c) shows an example in which two nodes from
the inside of two different clusters were selected. We can see that these
two nodes both have a few connections to their own cluster but also
closely contact with the red and pink clusters.

In an un-magnified layout such as Figure 11(a), it is also hard to
figure out the relationships between the nodes. Consider for instance
the red cluster at the top, which is separated by some cyan nodes. While
it is impossible to see what is going on in an un-magnified view, using
our cluster magnification lens on this cluster reveals some interesting
structures. From Figure 11(d), we can see that the outlier cyan nodes not
only strongly link to the other nodes of this red cluster, but additionally
connect to a lot of red nodes. This clearly reveals the relationship
between red and cyan clusters in the node-link diagram.

Exploration of major cities in the United States. This dataset [42]

Fig. 12. Exploration of a graph of major cities in the United States [42]. Edges represent the distances or driving time between associated pairs
of neighboring cities. (a) Input graph layout. (b) Result generated by our cluster magnification lens, where the focus region is on the light blue
background. (c) Result generated by our path magnification lens, where the path from Washington D.C. to Kansas is highlight in red, the child edges
of the path in blue, and the edges that are less than σ away from the path in blue.

comprises 134 nodes that represent the major cities in the United States
and 338 edges that represent the connections between the neighboring
cities. The nodes are presented as squares that contain the correspond-
ing city names. The font size of the node labels is adjusted to the
distortion factor of the node as suggested by the graphical fisheye [42].
Figure 12(a) shows the input layout. To investigate the dense areas and
connections along the east coast, the user applies the cluster magnifi-
cation lens to this region, resulting in Figure 12(b), where all the node
labels can be more clearly shown without overlap.

To find the shortest path from Washington D.C. in the East to Kansas
in Midwest, the path magnification lens can be used. To apply the path
magnification lens, the user simply selects the two nodes; our interface
can automatically generate the layout result shown in Figure 12(c).
We can immediately see from the result that there are only two cities
between Washington D.C. and Kansas. In addition, it is also much
easier to learn the connections around the cities. St. Louis, for instance,
has the highest degree among the cities along the path.

Remark. In addition, it should be noted that the structure constraints,
readability constraints, and temporal coherence constraints in our ap-
proach (see Section 4) are incorporated in both case studies. Further-
more, for the effectiveness of the temporal coherency constraints, please
watch our supplemental video for the animated results, since we can
only present static images in the paper.

7 CONCLUSIONS AND FUTURE WORK

We present a structure-aware fisheye technique for graphs. It is based
on an optimization objective whose terms correspond to the constraints
of structure, readability, and temporal coherence. A number of fisheye
lenses are defined for supporting complex graph exploration tasks such
as magnifying multiple locations, paths, and whole cluster areas. We
evaluated these methods quantitatively by measuring edge orientations
and node overlap. In addition, we performed a lab study where the
participants explored and searched for shortest paths. Our system
outperformed the existing systems in terms of the task completion
time and based on the participant interviews, where they preferred the
involved interactions above the other methods.

Although most constraints are defined on graph edges, our model is
done in the screen coordinate system rather than directly in the graph
structure. Doing so, some graph sub-structures related to the focal
nodes might not be clearly shown, especially when the related nodes
have large Euclidean distances from the focal area. On the one hand,
we plan to combine our model with the stress model, so that the graph
structures are further enhanced. On the other hand, we would like
to extend our method for a wider variety of data sets, such as maps,
complex trees and 3D meshes/volumes, by investigating additional
constraints.

ACKNOWLEDGMENTS

This work is supported by the grants of the National Key Research &
Development Plan of China (2016YFB1001404), NSFC (61772315),
NSFC-Guangdong Joint Fund (U1501255), Leading Talents of Guang-
dong Program (00201509), Shandong Provincial Natural Science Foun-
dation (ZR2016FM12), the Open Research Fund of Beijing Key Labo-
ratory of Big Data Technology for Food Safety, Beijing Technology and
Business University, and the Fundamental Research Funds of Shandong
University.

REFERENCES

[1] J. Abello, S. G. Kobourov, and R. Yusufov. Visualizing large graphs with
compound-fisheye views and treemaps. In International Symposium on
Graph Drawing, pp. 431–441, 2004. doi: 10.1007/978-3-540-31843-9 44

[2] American Psychological Association. Publication manual of the Amer-
ican psychological association (6th edition). American Psychological
Association Washington, 2010. doi: 10.24839/1089-4136.jn14.4.133

[3] D. N. Arnold and J. Rogness. Möbius transformations revealed (short
film). https://www.youtube.com/watch?v=lJ5c75k7DP0, 2008.

[4] A. F. Beardon and C. Pommerenke. The poincaré metric of plane domains.
Journal of the London Mathematical Society, 2(3):475–483, 1978. doi: 10.
1112/jlms/s2-18.3.475

[5] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J.-D. Fekete.
Graphdice: A system for exploring multivariate social networks. Computer
Graphics Forum, 29(3):863–872, 2010. doi: 10.1111/j.1467-8659.2009.
01687.x

[6] K.-F. Böhringer and F. N. Paulisch. Using constraints to achieve stability
in automatic graph layout algorithms. In Proc. SIGCHI conference on
Human Factors in Computing Systems, pp. 43–51, 1990. doi: 10.1145/
97243.97250

[7] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer networks,
33(1-6):309–320, 2000. doi: 10.1016/S1389-1286(00)00083-9

[8] A. Cohé, B. Liutkus, G. Bailly, J. Eagan, and E. Lecolinet. Schemelens: A
content-aware vector-based fisheye technique for navigating large systems
diagrams. IEEE Trans. Vis. & Comp. Graphics, 22(1):330–338, 2016. doi:
10.1109/tvcg.2015.2467035

[9] G. Cumming. Understanding the new statistics: Effect sizes, confidence
intervals, and meta-analysis. Routledge, 2013. doi: 10.1111/j.1751-5823.
2012.00187 26.x

[10] F. Du, N. Cao, Y.-R. Lin, P. Xu, and H. Tong. isphere: Focus+ contex-
t sphere visualization for interactive large graph exploration. In Proc.
SIGCHI conference on Human Factors in Computing Systems, pp. 2916–
2927, 2017. doi: 10.1145/3025453.3025628

[11] C. Dunne and B. Shneiderman. Improving graph drawing readability by
incorporating readability metrics: A software tool for network analysts.
University of Maryland, HCIL Tech Report HCIL-2009-13, 2009.

https://www.youtube.com/watch?v=lJ5c75k7DP0

[12] T. Dwyer. Scalable, versatile and simple constrained graph layout. Com-
puter Graphics Forum, 28(3):991–998, 2009. doi: 10.1111/j.1467-8659.
2009.01449.x

[13] T. Dwyer and Y. Koren. Dig-CoLa: directed graph layout through con-
strained energy minimization. In Proc. IEEE Information Visualization
Symposium, pp. 65–72, 2005. doi: 10.1109/INFVIS.2005.1532130

[14] T. Dwyer, Y. Koren, and K. Marriott. IPSep-CoLa: An incremental
procedure for separation constraint layout of graphs. IEEE Trans. Vis. &
Comp. Graphics, 12(5):821–828, 2006. doi: 10.1109/tvcg.2006.156

[15] T. Dwyer, K. Marriott, F. Schreiber, P. Stuckey, M. Woodward, and
M. Wybrow. Exploration of networks using overview+detail with
constraint-based cooperative layout. IEEE Trans. Vis. & Comp. Graphics,
14(6):1293–1300, 2008. doi: 10.1109/tvcg.2008.130

[16] T. Dwyer, K. Marriott, and M. Wybrow. Topology preserving constrained
graph layout. In International Symposium on Graph Drawing, pp. 230–
241, 2008. doi: 10.1007/978-3-642-00219-9 22

[17] P. Eades, R. F. Cohen, and M. L. Huang. Online animated graph drawing
for web navigation. In International Symposium on Graph Drawing, pp.
330–335, 1997. doi: 10.1007/3-540-63938-1 77

[18] P. Eades and Q.-W. Feng. Multilevel visualization of clustered graphs. In
International Symposium on Graph Drawing, pp. 101–112, 1996. doi: 10.
1007/3-540-62495-3 41

[19] P. Eades, S.-H. Hong, K. Klein, and A. Nguyen. Shape-based quality
metrics for large graph visualization. In International Symposium on
Graph Drawing and Network Visualization, pp. 502–514, 2015. doi: 10.
1007/978-3-319-27261-0 41

[20] G. W. Furnas. Generalized fisheye views. ACM SIGCHI Bulletin, 17(4),
1986. doi: 10.1145/22339.22342

[21] G. W. Furnas and B. B. Bederson. Space-scale diagrams: Understanding
multiscale interfaces. In Proc. SIGCHI conference on Human Factors in
Computing Systems, pp. 234–241, 1995. doi: 10.1145/223904.223934

[22] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majoriza-
tion. In International Symposium on Graph Drawing, pp. 239–250, 2004.
doi: 10.1007/978-3-540-31843-9 25

[23] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE Trans. Vis. & Comp. Graphics, 11(4):457–
468, 2005. doi: 10.1109/tvcg.2005.66

[24] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Trans. on Software Engineering, 19(3):214–
230, 1993. doi: 10.1109/32.221135

[25] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional graph
layout techniques for information visualisation. Information visualization,
12(3-4):324–357, 2013. doi: 10.1177/1473871612455749

[26] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Trans. Vis. &
Comp. Graphics, 6(1):24–43, 2000. doi: 10.1109/2945.841119

[27] K. Hornbæk, B. B. Bederson, and C. Plaisant. Navigation patterns and
usability of zoomable user interfaces with and without an overview. ACM
Transactions on Computer-Human Interaction (TOCHI), 9(4):362–389,
2002. doi: 10.1145/586081.586086

[28] W. Huang, S.-H. Hong, and P. Eades. Effects of crossing angles. In
Proc. IEEE Pacific Visualization Symposium, pp. 41–46, 2008. doi: 10.
1109/pacificvis.2008.4475457

[29] C. Hurter, A. Telea, and O. Ersoy. Moleview: An attribute and structure-
based semantic lens for large element-based plots. IEEE Trans. Vis. &
Comp. Graphics, 17(12):2600–2609, 2011. doi: 10.1109/tvcg.2011.223

[30] M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer
straightline crossing minimization. In International Symposium on Graph
Drawing, pp. 337–348, 1995. doi: 10.1007/BFb0021817

[31] N. Kadmon and E. Shlomi. A polyfocal projection for statistical surfaces.
The Cartographic Journal, 15(1):36–41, 1978. doi: 10.1179/caj.1978.15.
1.36

[32] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information processing letters, 31(1):7–15, 1989. doi: 10.1016/
0020-0190(89)90102-6

[33] J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In Proc. SIGCHI
conference on Human Factors in Computing Systems, pp. 401–408, 1995.
doi: 10.1145/223904.223956

[34] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proc. Beyond time and errors: novel evaluation
methods for information visualization, pp. 82–86, 2006. doi: 10.1145/
1168149.1168168

[35] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and
graph-mining library. ACM Trans. on Intelligent Systems and Technology,
8(1):1, 2016. doi: 10.1145/2898361

[36] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete.
Topology-aware navigation in large networks. In Proc. SIGCHI con-
ference on Human Factors in Computing Systems, pp. 2319–2328, 2009.
doi: 10.1145/1518701.1519056

[37] T. Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Com-
puter Graphics and Applications, 18(4):18–23, 1998. doi: 10.1109/38.
689657

[38] M. E. Newman. Modularity and community structure in networks. Pro-
ceedings of the National Acad. of Sciences, 103(23):8577–8582, 2006. doi:
10.1073/pnas.0601602103

[39] K. Perlin and D. Fox. Pad: an alternative approach to the computer
interface. In Proc. SIGGRAPH, pp. 57–64, 1993. doi: 10.1145/166117.
166125

[40] J. Pretorius, H. C. Purchase, and J. T. Stasko. Tasks for multivariate
network analysis. In Multivariate Network Visualization, pp. 77–95. 2014.
doi: 10.1007/978-3-319-06793-3 5

[41] H. Purchase. Which aesthetic has the greatest effect on human under-
standing? In International Symposium on Graph Drawing, pp. 248–261.
Springer, 1997. doi: 10.1007/3-540-63938-1 67

[42] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proc.
SIGCHI conference on Human Factors in Computing Systems, pp. 83–91,
1992. doi: 10.1145/142750.142763

[43] M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker. Cy-
toscape 2.8: new features for data integration and network visualization.
Bioinformatics, 27(3):431–432, 2011. doi: 10.1093/bioinformatics/btq675

[44] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. on Systems, Man, and
Cybernetics, 11(2):109–125, 1981. doi: 10.1109/TSMC.1981.4308636

[45] R. Tamassia. Handbook of graph drawing and visualization. CRC press,
2013. doi: 10.1201/b15385

[46] P. Ti, Z. Li, Z. Xu, and H. Jia. Optimizing the balance between area
and orientation distortions for variable-scale maps. ISPRS Journal of
Photogrammetry and Remote Sensing, 117:237–242, 2016. doi: 10.1016/j.
isprsjprs.2016.03.013

[47] C. Tominski, J. Abello, and H. Schumann. CGV-An interactive graph
visualization system. Computers & Graphics, 33(6):660–678, 2009. doi:
10.31144/bncc.cs.2542-1972.2014.n37.p163-180

[48] C. Tominski, J. Abello, F. Van Ham, and H. Schumann. Fisheye tree
views and lenses for graph visualization. In International Conference on
Information Visualization, pp. 17–24, 2006. doi: 10.1109/IV.2006.54

[49] Touchgraph Navigator. TouchGraph, LLC, 2009. www.touchgraph.com.
[50] F. Van Ham and A. Perer. Search, show context, expand on demand:

supporting large graph exploration with degree-of-interest. IEEE Trans.
Vis. & Comp. Graphics, 15(6), 2009. doi: 10.1109/tvcg.2009.108

[51] J. J. Van Wijk and W. A. Nuij. A model for smooth viewing and navigation
of large 2D information spaces. IEEE Trans. Vis. & Comp. Graphics,
10(4):447–458, 2004. doi: 10.1109/tvcg.2004.1

[52] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon.
Manyeyes: a site for visualization at internet scale. IEEE Trans. Vis. &
Comp. Graphics, 13(6), 2007. doi: 10.1109/tvcg.2007.70577

[53] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
state-of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011. doi: 10.1111/j.1467-8659.2011.01898.x

[54] Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C.-W. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a unified
framework for interactive constrained graph visualization. IEEE Trans.
Vis. & Comp. Graphics, 24(1):489–499, 2018. doi: 10.1109/tvcg.2017.
2745919

[55] N. Wong, S. Carpendale, and S. Greenberg. Edgelens: An interactive
method for managing edge congestion in graphs. In Proc. IEEE Informa-
tion Visualization Symposium, pp. 51–58, 2003. doi: 10.1109/infvis.2003.
1249008

[56] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and P. H. Nguyen. A user
study on curved edges in graph visualization. IEEE Trans. Vis. & Comp.
Graphics, 18(12):2449–2456, 2012. doi: 10.1109/tvcg.2012.189

www.touchgraph.com

	Introduction
	Related Work
	Graph Exploration Techniques
	High-quality Graph Layout Techniques

	Background
	Geometric Fisheye Views
	Edge Vector-based Stress Majorization

	Structure-Aware Fisheye
	Structure-based Constraints
	Readability-based Constraints
	black Solving the Optimization

	Task-driven Fisheye Lenses
	Results and Evaluation
	Quantitative Comparison
	Lab Study
	Experiment
	Results
	Discussion

	Case Studies

	Conclusions and Future Work

