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ABSTRACT

Numerical weather predictions have been widely used for weath-
er forecasting. Many large meteorological centers are producing
highly accurate ensemble forecasts routinely to provide effective
weather forecast services. However, biases frequently exist in fore-
cast products because of various reasons, such as the imperfection
of the weather forecast models. Failure to identify and neutralize
the biases would result in unreliable forecast products that might
mislead analysts; consequently, unreliable weather predictions are
produced. The analog method has been commonly used to over-
come the biases. Nevertheless, this method has some serious limi-
tations including the difficulty in finding effective similar past fore-
casts, the large search space for proper parameters and the lack of
support for interactive, real-time analysis. In this study, we develop
a visual analytics system based on a novel voting framework to cir-
cumvent the problems. The framework adopts the idea of majority
voting to combine judiciously the different variants of analog meth-
ods towards effective retrieval of the proper analogs for calibration.
The system seamlessly integrates the analog methods into an in-
teractive visualization pipeline with a set of coordinated views that
characterizes the different methods. Instant visual hints are provid-
ed in the views to guide users in finding and refining analogs. We
have worked closely with the domain experts in the meteorological
research to develop the system. The effectiveness of the system is
demonstrated using two case studies. An informal evaluation with
the experts proves the usability and usefulness of the system.

Keywords: Weather forecast, analog method, calibration, majority
voting, visual analytics.

Index Terms: Human-centered computing [Visualization]: Visu-
alization application domains—Geographic visualization;

1 INTRODUCTION

Numerical weather prediction (NWP) has been practiced opera-
tionally at many forecast centers since the middle of the 20th centu-
ry [17]. Multiple simulations of the future weather are created from
slightly perturbed initial states to simulate the uncertainty contribut-
ed by imperfections in the forecast model itself. Given the chaot-
ic nature of the atmosphere, even small initial differences increase
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rapidly with time; thus, probabilistic forecasts of future states are
more theoretically tenable than deterministic forecasts for domain
experts [2]. Despite the rapid progress in the development of NWP,
problems still exist. The forecasts may be systematically too warm
or too cold, too wet or too dry. Meanwhile, it is a common occur-
rence to have ensembles of forecasts that have too little spread, and
the true state lies outside the ensemble range. Calibration is then
the process to address the deficiencies to improve the forecasts.

Many meteorological groups are exploring the “post-processing”
methods for ensemble forecast. Of particular interest are the analog
methods, which have shown promising results [9]. The idea of the
method is to find past forecasts (i.e., analogs) in a geographically
limited region that resemble the current forecast. A probabilistic
estimate of the weather is then formed from the observed data at the
time of the past forecasts. However, different similarity measures
can be used to find the similar past forecasts and none is regarded
perfect [9]. Meanwhile, no effective solution has been proposed to
deal with the threshold problem in the analog methods.

Inspired by the majority voting method commonly used in ma-
chine learning, we propose a novel user-steered voting framework
to refine the analogs obtained using three widely used analog meth-
ods. The framework consists of three interactive, coordinated
views; each corresponds to one analog method. Through interac-
tions on the coordinated views, users cast their votes for analogs.
A two-step solution is proposed to address the threshold problem
of the analog methods as well as ensure the reliability of the final
forecasts. Based on the framework, we work closely with the do-
main experts to develop a visual analytics system that empowers
the experts to calibrate the forecasts effectively. Two case studies
and user evaluations demonstrate the usability of the system.

The main contributions of this paper are as follows:
• A characterization of the calibration problem in the opera-

tional weather forecasting.
• A novel voting framework that effectively combines different

analog-based methods using three coordinated visualizations.
• A visual analytics system based on the voting framework that

assists forecasters in the calibration using analog methods.

2 RELATED WORK

Meteorological Data Visualization Meteorological data vi-
sualization has become an important topic since tens of years a-
go [13, 29]. Many practical visualization tools have been devel-
oped to support domain research, such as Vis5D [12], Ferret [10]
and GRADS [1]. However, a gap still exists between the advanced
visualizations and domain work in climate research [28].

Several visual analytics systems have been developed through
close collaborations with meteorologists. Kehrer et al. [16] have
proposed a novel visualization pipeline to support hypothesis gener-
ation from large scale climate data. To visualize climate variability
changes, Janicke et al. [15] have used the wavelet analysis to per-
form the multi-scale visualization. Lundblad et al. [18] have devel-
oped an application to identify significant trends and patterns within



weather data using interactive information visualization techniques.
Doraiswamy et al. [3] have presented a framework for the identifi-
cation and tracking of cloud systems. These works assist the do-
main experts in understanding the atmospheric state and contribute
to many practical applications. However, there is little visualization
work which supports the weather forecast calibration.

Uncertainty Visualization for Meteorological Ensemble Da-
ta Many researchers have contributed to the issue of uncertainty
visualization for meteorological data. MacEachren et al. [19] have
provided a detailed introduction to the visualization of geo-spatial
information uncertainty. Pang et al. [20] have done a lot of research
on geo-spatial data visualization. To reveal the probabilistic nature
of the data, Potter et al. [24] have described a framework that vi-
sualizes the numerical weather ensemble data with linked views.
Sanyal et al. [26] have designed an informative ribbon and glyphs
to visualize the uncertainty in multiple numerical weather model.
Pöthkow et al. [23] measure the positional uncertainty of isocon-
tours with the isocontour density and the level crossing probability
field. Pfaffelmoser et al. [21] have provided a color mapping and
glyph based visualization solution for visualizing the variability of
gradients in 2D scalar fields. Using the Lagrangian-based distance
metric, Guo et al. [7] have evaluated and visualized the variation
that exists in ensemble runs. Poco et al. [22] have proposed an iter-
ative visual reconciliation solution for similarity spaces in climate
model research. Whitaker et al. [30] have introduced the contour
boxplots to visualize and explore the contours in ensemble fields.

However, most of the visualization work have not discussed
about the consistency between the forecast data and the observed
data, which is one of the domain experts’ main concerns in the
weather forecasting. Moreover, the previous methods cannot be
directly applied to visualize the large scale historical data.

Calibration in Meteorological Research The goal of the cal-
ibration is to detect and correct the potential errors in the weather
forecasts before publications. Glahn et al. [4] have used the lin-
ear regression, which is also known as ”Model Output Statistics”,
to calibrate the forecast. Raftery et al. [25] have used Bayesian
model averaging to calibrate forecast ensembles. Gneiting et al. [5]
have detailedly discussed the probabilistic forecast and the calibra-
tion. Although these methods have demonstrated usefulness, they
all lack interactive tools which can effectively integrate domain
knowledge into the statistical processes.

3 DOMAIN TASKS AND DATASET DESCRIPTION

This section briefly discusses the domain tasks and describes the
data used in our system.

3.1 Domain Tasks
Three main tasks in forecast calibration have been identified
through close collaboration with forecasters, observations on their
routine work, and detailed discussions about their working flow.

T1 Generating Initial Forecast An initial forecast is produced
using a post-processing method, such as the analog method.

T2 Detecting Regions of Interest (ROI) The initial forecast de-
rived after the post-processing step could have potential bias-
es. Thus, forecasters need to detect ROIs where biases exist.

T3 Applying Detailed Calibrations Calibrations are applied to
the detected ROIs statistically or manually according to the
professional knowledge of the experts.

3.2 Dataset Description
The reforecast data and the observed data are used in this study.

Reforecast Data The reforecasts are from the US NCEP Global
Ensemble Forecast System (GEFS). The GEFS reforecasts are grid
data with a resolution of ∼ 0.5◦. They comprise an 11-member
ensemble of forecasts which run every day. The reforecasts span

from 1985 to present. A variety of forecast variables are produced.
Detailed descriptions of the reforecasts can be found in [8].

Observed Data The observed data are the NCEP Climatology-
Calibrated Precipitation Analysis (CCPA) data. The CCPA data are
grid data with a resolution of 0.125◦. The data spans from 2002 to
present and covers the continental US. The analysis data are saved
every 6 hours. In practical usages, the analysis data are regarded
as the ground truth description of the real weather state. Detailed
descriptions of the CCPA data can be found in [14].

4 VISUAL VOTING FRAMEWORK

In this section, we introduce a set of analog methods, and present
the visual voting framework used to combine the methods and sup-
port the weather forecast calibration, which is the task of T3.

4.1 Analog Methods
The analog method has two successive main steps: the step of ana-
log retrieval and the step of probabilistic forecast generation. The
analog retrieval step is designed to find the past forecasts with simi-
lar data in the ROI. The difference between the current forecast and
the past one is defined as the root mean square (RMS) difference of
a variable or the weighted sum of the RMS differences (aggregat-
ed RMS differences) of several variables. Meanwhile, the mean of
the ensemble forecasts is used for the calculation of variable RMS
differences. Thereafter, N analogs with the smallest differences or
the analogs that satisfy a specified threshold constraint are selected.
The probability distribution of the observed data from the corre-
sponding dates of the analogs is used to provide an estimate of the
event probability. For example, the probability of the precipitation
exceeding 5 mm is 50% if the observed data of 10 out of 20 selected
dates exceed 5 mm. More details can be found in [9].

The analog method has many variants with different ROI sizes
and difference norms (a blend match of several forecast variables or
an independent variable). In our system, three widely used variants
are selected, including global to local similarity measurements.
C1 RMS Difference of Aggregated Variables in a Large Re-

gion: This measure is adopted to ensure that the selected dates
share a similar global atmospheric state of the meteorological
event with the current date.

C2 RMS Difference of Aggregated Variables in a Small Re-
gion: A small region is the smallest grid cell with four grid
points in the corners. This measure is one of the most straight-
forward measures and is mostly used in the practice.

C3 RMS Difference of Separate Variables in a Small Region:
This is a detailed measure. A particular variable could be
much more significant in some scenarios for the calibration.

The variants retrieve analogs from different meaningful perspec-
tives, but these may lead to rather diverse probabilistic forecasts
when employing different thresholds.

4.2 Visual Voting
Majority voting is one of the most fundamental and popular ensem-
ble methods for classification. Inspired by this method, we regard
each variant of the analog methods as a classifier for the past dates.
A past date can be classified as selected or unselected.

Although majority voting is a well-understood method, it is te-
dious and error prone to manually set thresholds for each of the
variants independently. Therefore, we need to provide suggestions
to guide the user in making decision for the thresholds. Wherein,
we design a two-step solution: iterative threshold searching for C1
and C2, followed by threshold suggestion and adjustment for C3,
as shown in Fig. 1. Among the three variants of the analog methods,
C1 and C2 provide global and local aggregated descriptions for the
similarity, respectively, and C3 is a detailed measure. The goal of
this design is to ensure that the selected dates are similar to the cur-
rent one both globally and locally. Then adjustments can be made
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Figure 1: Visual Voting Framework. The framework comprises two main steps. The first step is the iterative threshold searching for C1 and C2.
The second step is the threshold suggestion and adjustment for C3. After thresholds are set for all the three classifiers, majority voting is applied
in order to achieve more reliable forecasts. Visual feedback of the result is presented to assist threshold setting through the whole framework.
according to the detailed measure of C3. Meanwhile, suggestions
are provided for each of the measures. In the framework, the user
is expected to compare the suggestions with their expectations and
then determine the acceptable thresholds according to his expertise.

Among the three classifiers, the threshold for C1 is the most intu-
itive for the domain experts to set manually. Therefore, our solution
begins with the initial input for C1, as indicated in Fig. 1.

4.2.1 Iterative Threshold Searching for C1 and C2
This step aims to determine the proper thresholds for C1 and C2.
After the initial input is set, a classification result can be obtained
using C1. According to the suggestion from the domain experts, the
selected forecasts should be similar to the current one both globally
and locally. Therefore, the dates that selected using C2 should cov-
er a specific portion (namely, covering rate) of those selected using
C1. The covering rate for small region ri is defined as follows:

CRri =
1
T ∑

t∈Q
σ(ri, t,βi) (1)

where Q is the set of selected dates using C1, T is the number of
dates in Q, βi is the threshold for the small region, and σ(ri, t,βi) =
1 if date t is selected using C2 for ri, otherwise σ(ri, t,βi) = 0.
Given a covering rate (namely, CRri , from the user), the RMS d-
ifferences of the small region are sorted first. The threshold βi is
then the smallest threshold by which the selected dates of C2 cover
the specified rate of the ones from C1. In our system, we exper-
imentally use a covering rate range of 0.6 to 0.8 to maintain the
similar dates selected using C1 and leverage the variance between
the dates selected using C1 and C2. Moreover, a lower bound of 20
and a upper bound, which is the higher value between the suggested
threshold and the one used for the large region, are used to ensure
the effectiveness of the result from C2, as indicated by S1 in Fig. 1.

The user can then estimate the possible proper thresholds for C2
based on their expertise and the suggestion range. Subsequently,
the similarity SR,t of a date t for a large region R can be computed
using small regions, which choose t as one of the most similar dates.

SR,t = ∑
ri∈R

σ(ri, t,βi)

ni
(2)

where ri indicates a small region within R, βi is the selected thresh-
old for the small region, ni is the selected analog number for ri
under the threshold of βi, and σ(ri, t,βi) = 1 if date t is selected
using C2 for ri, otherwise σ(ri, t,βi) = 0. Thereafter, the similar-
ity is normalized and used as another meaningful cue for the date
selection in the large region. The suggested selected dates for the
large region are then those which satisfy the similarity with small-
est RMS differences among all the past dates, as indicated by S2 in
Fig. 1. In our system, we experimentally use the similarity of 0.6 to
ensure the similarity of the selected dates for the large region.

New thresholds can be set iteratively until good similarities from
C1, and satisfactory covering rates from C2 are obtained.

4.2.2 Suggestion and Adjustment for C3
The next step is to adjust the threshold for C3. In our implementa-
tion, we use the ratio of the variable RMS difference and the current
forecast variable value as the threshold. The ratio is a better mea-
sure compared with the absolute RMS difference. For example, the
RMS difference of 5 mm has different impacts under the precipita-
tion of 3 mm and 30 mm, but the ratio can handle it well.

The suggested threshold θ of the ratio values for C3 is then es-
timated by minimizing the bias between the selected dates by C3
and those by C1 and C2, as indicated by S3 in Fig. 1.

min∑
t

∑
ri∈R

abs(C3
ri
(t,θ)−C1

R(t))+abs(C3
ri
(t,θ)−C2

ri
(t)) (3)

where C3
ri
(t,θ) is the class label of C3 for the small region ri on

date t, C1
R(t) is the class label of C1, and C2

ri
(t) is the class label of

C2. The labels of the selected and unselected dates are set to 1 and
0, respectively. We sample the ratio value with a small step size to
achieve a set of bias values, and the ratio value with the minimum
bias (Formula 3) is used as the suggestion. Then the domain user
can leverage the suggested threshold and adjust the threshold for
C3 to filter past dates whose ratio values are out of scope. When
multiple variables are employed, the threshold suggestion and ad-
justment are conducted independently for each variable. As a result,
the selected dates for C3 are the dates selected by all the variables.

Through this voting framework, relatively proper thresholds for
each of the analog methods can be achieved through the user’s su-
pervisions and interactions. Combined with the majority voting, the
framework can produce more reliable results for domain usages.

5 SYSTEM AND VISUALIZATION DESIGN

In this section, we provide an overview of the system design and
then introduce the detailed visualization design in the system.

5.1 System Design
Our system is designed to assist the domain experts’ routine work.
Thus, a companion system workflow is designed according to their
calibration workflow, as illustrated in Fig. 2. According to the u-
tilities of different views and the goal of each task introduced in
Section 3.1, we divide our system workflow into five stages:

1.Data Overview: This stage helps domain experts obtain an
overview of the ensemble data.

2.Post-processing: This stage generates initial probabilistic
forecasts using predefined parameters and completes the task of T1.

3.ROI Detection: An RMS difference glyph is designed to assist
in detecting ROIs, where the initial probabilistic forecasts might
need refinements. Through this process, the task of T2 is supported.

4.Visual Calibration: Coordinated views are designed to sup-
port the visual voting framework. This stage provides support for
the task of T3, which is our main focus in this study.

5.Comparison and Event Analysis: The adapted forecasts gen-
erated after the visual calibration are compared with the initial ones
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Figure 2: Overview of the system workflow. (a) Overview of the numerical ensemble data. (b) Post processing using the analog method. (c)
Detect ROIs where calibrations may be required. (d) Visual calibration. (e) Forecast comparison and similar historical event analysis.
to show how the visual calibration works. Meanwhile, the most
similar historical events are presented to verify the forecast.

A calibration task can be completed through all the five stages
directed by a user guideline (Fig. 4(e)). We focus on the ROI De-
tection stage and the Visual Calibration stage in the following. The
usage of other stages are demonstrated in the case studies.

5.2 ROI Detection
(a) (b)

(c)

Figure 3: RMS Difference Glyph: (a) Overview of the whole map. (b)
Region of interest. (c) Glyph for a small region.

This RMS difference glyph view serves the stage of ROI detec-
tion (Fig. 3(a)). The aggregated RMS differences of the selected
analogs for a small region are conveyed through a circular glyph as
illustrated in Fig. 3(c). The angle is cut into N parts to visualize the
sorted RMS differences of the N selected analogs. Color is used to
encode the RMS difference. We choose the color sequence from
colorbrewer2.org [11] to ensure the linear expression of RMS dif-
ference values. The glyph is placed according to the position of the
small region on the map. A user can zoom in to obtain a detailed
view of the RMS differences or zoom out to achieve an overview
of the whole map (Fig. 3(b)). Furthermore, the user can brush a re-
gion for the subsequent analysis stages. With this view, a user can
efficiently locate ROIs where analogs with larger RMS differences
are selected, and further calibrations might be needed. In this de-
sign, the glyph is used for its rich applications in domain research.
Meanwhile, the view conforms to the information seeking mantra
of ”Overview first, zoom and filter, then details on demand” [27].

5.3 Visual Calibration
Coordinated views and interactions are designed to implement the
visual voting framework.

5.3.1 View Design
The calibration view comprises one geographical view (Fig. 4(a))
and three views that correspond to the three selected analog meth-
ods (Fig. 4(b) for (C1), Fig. 4(c) for C2 and Fig. 4(d) for C3).

Geographical View: The geographical view is the RMS differ-
ence glyph view laid on a geographical map (Fig. 4(a)). This view
presents the glyphs for the selected ROI from the previous stage.

Region RMS Difference View: The region RMS difference
view is used to visualize the large region RMS differences and sim-
ilarities of past dates (Fig. 4(b)) for C1. This view comprises a line
chart (Fig. 4(b1)) and a color bar (Fig. 4(b2)).

The line chart visualizes the sorted RMS differences of the large
region. The x axis of the chart conveys the sorted dates based on the
RMS differences, and the y axis presents the difference values. The
RMS differences provide visual cues for the threshold setting, and
the orange line shows the current selected RMS difference thresh-
old (selected analog number). The color bar is used to visualize

the similarity encoded using the selected dates from C2. The sort-
ed dates are separated into a series of bins. Each bin is encoded
with gray color to represent the average similarity value of the cor-
responding dates. The suggested threshold is then indicated by a
purple line as shown in Fig. 4(b1). In this view, the user is expected
to select a threshold smaller than the suggested value according to
the increasing trend of the line chart and colors from the color bar.

Small Region RMS Difference View: This view is a pixel bar
chart used to convey the aggregated RMS differences for the small
regions within the ROI (Fig. 4(c)). Each bar represents a small
region and the RMS differences of all the past dates are encoded
into the pixel color in the y axis direction (see Figure 7(a)). The
view is designed to support the threshold setting for C2 (Fig. 6(a))
and visualize the final voting results (Fig. 6(b) and 6(c)).

(a) (b)

(c) (d)
Figure 5: Sorting for the pixel bar chart: (a) Initial data visualization
without sorting. (b) Sorting according to the aggregated RMS differ-
ences for each small region. (c) Sorting according to the average
aggregated RMS differences for all the small regions. (d) A typical
threshold setting for the sorted pixel bar chart.

(a)

(b)

(c)

Figure 6: Different utilities of the pixel bar chart: (a) Supporting
threshold setting. (b) Visualizing the voting results. (c) Visualizing
the voting results by accumulating selected dates.

To support intuitive and efficient threshold setting for each small
region, sorting is adopted. First, we sort the aggregated RMS dif-
ferences for each small region (see Fig. 5(a)). In Fig. 5(b), the date
with the smallest RMS difference is placed at the bottom of each
bar, and the largest at the top. Then inspired by the common expe-
rience that the more unusual the prediction forecast is, the smaller N
value should be employed, we sort the bars horizontally according
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Suggestion
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Figure 4: Coordinated views for the calibration stage: (a) The geographical view. (b) The region RMS difference view. (c) The small region RMS
difference view (d) The small region variable RMS difference view. (e) The user guide.
to the average aggregated RMS differences of the small regions. In
Fig. 5(c), the average RMS differences of the bars increase from the
left to the right. A typical threshold selection for the small regions
can then be set, as shown in Fig. 5(d). Meanwhile, the suggestions
from the classification result of C1 should be presented to the user,
which are highlighted by two purple lines in Fig. 4(c).

To visualize the final voting results, the pixels that represent uns-
elected dates are hidden (Fig. 6(b)), and the remaining pixels can be
accumulated to provide a more intuitive impression of the number
of selected dates for the small regions (Fig. 6(c)). The suggested
lower bound for the threshold is also indicated by a purple line in
the view, which is a visual suggestion for the whole framework.

In this view, the pixel bar chart is selected because the chart is
intuitive and simple, and can visualize a large amount of data.

d1
d2
d3

d1 d2 d3
d2

d1
d3

Region One Region TwoRegion OneRegion Two

(a) (b) d1d2 d3

Figure 7: Two illustrative layouts of the bar charts, which contain
three selected dates for each of the two regions in (a) the RMS dif-
ference view and (b) the variable RMS difference view, respectively.

Small Region Variable RMS Difference View: This view is
designed to support the classification using C3 (Fig. 4(d)). It com-
prises a bar chart (Fig. 4(d1)) for visualizing the ratio values and a
line chart (Fig. 4(d2)) for the bias defined by Formula 3. The bar
chart shares the same axis with the pixel bar chart in the Small Re-
gion RMS Difference View. For each small region, bars that encode
ratio values of past dates are horizontally placed in the x axis with
the same order utilized by the y axis of the pixel bar chart, as illus-
trated in Fig. 7(b). In case of a majority voting of three variants,
only those dates that have been selected using C1 or C2 are pre-
sented. Through the bar chart visualization, outliers can be detect-
ed and filtered by adjusting the threshold for the ratio value more
easily, compared to the pixel bar chart. The line chart (Fig. 4(d2))
visualizes the biases between the dates selected using C3 and those
selected using C1 and C2 under different thresholds for C3. The
user can achieve a clear view of the bias distribution and estimate
the proper threshold while avoiding a huge bias. The suggestion is
indicated by a purple line in Fig. 4(d).

5.3.2 Interactions and View Coordination

The four small views are all linked. Double clicking and brushing
are supported to enable the setting of the thresholds for C1 and C2,
respectively. Suggestions are updated immediately after the user
input is completed. The iterative threshold searching for C1 and
C2 can be efficiently conducted through these interactions. When
adjusting the threshold for C3, the final results are also updated
in real time, as shown in Fig. 6(c). Therefore, the domain user
can achieve a clear view of the final voting results and leverage
the proper threshold. Highlights are also designed to enhance the
linking among views as indicated by the red arrows in Fig. 4, which
can effectively enhance the view coordination.

6 EVALUATION AND DISCUSSION

Two case studies are presented in this section to exhibit the usabili-
ty of our system. The first one demonstrates the common workflow
of our system to help calibrate a forecast. The second one demon-
strates the use of our system in detecting an unusual forecast and
providing supports for the verification based on historical data.

Experiments have been performed with domain experts to cali-
brate the probabilistic forecasts of the total accumulated precipita-
tion for 24 hours. Three forecast variables are adopted, namely, to-
tal accumulated precipitation (APCP), precipitable water (PREW),
and temperature at 2 m (T2M), which are provided by our domain
collaborators. Our system uses the data from 2002 to 2013, and
only those dates within a window size of 70 that center on the an-
alyzed day are adopted for each year. In addition, the weighted
summary of APCP and PREW is used as the aggregated variable
with the weights of 0.7 and 0.3, respectively, which is also used by
one of our collaborators in his domain research.

6.1 Case One
The data used are from April 27, 2013. After loading the data,
our system provides an overview of the data, as is illustrated in
Fig. 8(a). A heavy precipitation is recorded in the United States.
Post-processing is then performed with the aggregated variables,
and initial probabilistic forecasts are generated using the analog
method of C2. In the experiment, two results with different analog
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Figure 8: Case One: (a) The data overview stage provides a 2D plot view of the ensemble data. (b) The ROI detection stage helps users detect
the ROI, wherein further calibration is required. (c) The visual calibration stage applies the visual voting framework, and users are included
to manipulate the analog methods. (d) The forecast comparison stage supports the comparison between the initial forecasts from the post-
processing stage and the calibrated ones. The latter can better reflect the observed data in the probability distribution with a high probability in
the region with high precipitation, as indicated by the red arrow in (d3) and (d4).
numbers, namely, 50 and 70, are generated, as shown in Fig. 8(d1)
and Fig. 8(d2), respectively. The analog number 50 is suggested
by one of our domain collaborators based on his previous research.
Thereafter, an ROI with high RMS differences is brushed for the
further calibration, as illustrated in Fig. 8(b). In case of high RM-
S differences, biases may occur in the probabilistic forecast of the
region. The visual calibration stage begins with an estimation for
the threshold of C1. Given that the threshold does not necessari-
ly have to be accurate, and that it can be refined through succes-
sive iterations, an analog number of 50 is also set as the initial in-
put. Threshold searching iterations are then performed, as shown in
Fig. 8(c1) and Fig. 8(c2). For small regions with low RMS differ-
ences, high analog numbers are applied, as indicated by the brown
arrow in Fig. 8(c2). For the small regions indicated by the red ar-
row in Fig. 8(c2), RMS differences are mostly over 10 mm, which
are high for the current weather. Therefore, the thresholds for these
small regions are nearly at the suggested lower bound. In the color
bar which encodes the similarity of past dates in the large region, a
clear distribution of the similarity is presented, as shown in the red
borders in Fig. 8(c1). The threshold for C1 can then be set to ensure
that the selected dates all possess high similarity values. After the
refinement iterations, the thresholds are adjusted for the variables.
The bias distribution and the suggested threshold for APCP are ev-
ident, as indicated by the brown arrow in Fig. 8(c3). However, the
minimum bias for T2M is reached with a ratio of nearly 0, as in-
dicated by the red arrow in Fig. 8(c3). This finding indicates that
the most similar dates based on APCP and PREW differ significant-
ly from those based on T2M, which confirms the previous research
conclusion that precipitation forecast accuracy decreases by includ-
ing T2M when finding analog dates for the precipitation [9]. The
thresholds are then adjusted to filter dates that are clear outliers and
decrease the distance between the current threshold for APCP and
the suggested threshold, while ensuring that the remaining numbers
of selected dates for the small regions are mostly above the lower
bound, as shown in Fig. 8(c4). Thereafter, the calibrated proba-
bilistic forecast is generated, as shown in Fig. 8(d3). Meanwhile,
the observed map for the same day is shown in Fig. 8(d4). Through
these steps, the calibration for this region is completed by the prob-
abilistic forecast generation, and other kinds of forecasts can also
be achieved through the calibrated forecasts.

As indicated in the observed map, the precipitation in the re-
gion indicated by the red arrow is evidently heavier than that in the
region indicated by the brown arrow. Hence, the calibrated prob-
abilistic forecast generated using the visual voting framework can
reflect the precipitation distribution better than the initial forecast
when the probability is higher in the region indicated by the red
arrow than in the region indicated by the brown arrow.

6.2 Case Two
The data used are from August 25, 2013. A heavy precipitation
is recorded in Arizona, US (highlighted in the red rectangle in
Fig. 9(a)). However, the RMS differences in this region are high.
The ROI is then selected from the RMS difference glyph view as
illustrated in Fig. 9(b). During the visual calibration stage, the sug-
gested analog number for the large region continues to decrease
when we perform threshold searching iterations, as shown by the
red arrows in Fig. 9(c1) to 9(c3). The suggested analog number
only stops decreasing when the suggested range for the small re-
gions reaches the lower bound set in our system, as indicated by the
red arrow in Fig. 9(c4). By this time, the suggested analog number
for the large region is nearly below 10. Thus, the current forecast
can be regarded as a probable unusual forecast even in the long
history. Thereafter, the most similar analogs can be viewed, and
two of these analogs are shown in Fig. 9(d1) and Fig. 9(d2). For
each analog, the left part of the figure is the forecast of the analog,
whereas the right part is the corresponding observed data. Based on
the analogs, we can conclude that the forecast is mostly expected
to be higher than the observed weather in the region. This con-
clusion can also be achieved through the probabilistic forecast and
confirmed by the observed data for the same day, as shown in the
red borders in Fig. 9(d3) to 9(d4). The probability of the precipita-
tion is low in that region, but the forecast precipitation in Fig. 9(a)
is high. Moreover, the observed data shows a lower precipitation
than the forecast. Through these steps, the calibrated probabilistic
forecast can be published for public usages, and the forecasters can
make other customized forecasts accordingly.

6.3 Domain Expert Feedback
The proposed system is developed in close collaborations with the
meteorologists. A senior forecaster and an experienced meteorol-
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Figure 9: Case Two: This case shows the usability of our system in detecting an unusual forecast. In this case, the suggested analog number
for the large region continues to decrease, as indicated by the red arrows in (b). The small suggested analog number shows that the current
forecast is unusual even in the long history. Similar previous forecasts are then utilized to assist in further analysis.
ogist who has conducted extensive research on the analog method
are involved in the development process. Two meteorologists who
specialize in forecast verification then help evaluate our system. We
have collected their feedback about the system as well as other im-
portant topics, such as the accuracy and speed improvement.

System Evaluation The weather forecaster helps ensure that
the system workflow fits the domain experts’ routine workflow s-
moothly through the development. He appreciates the analog meth-
ods integrated into the interactive system the most. In terms of
visualization, the weather forecaster appreciates the pixel bar chart
and the brushing interaction the most. He believes that the view is
intuitive and expressive in conveying the RMS differences.

The meteorologist with extensive experiences in analog method
research appreciates the interactivity of the tool in supporting the
method the most. He said:“ The tool mimics the way a weather fore-
caster thinks about the weather prediction process. They typically
compare today’s weather forecasts to past forecasts, think about
what actually happened, and construct a mental model for today’s
forecast. The analog procedure you demonstrate is sort of like an
objective way for a forecaster to visualize what’s in his brain.”

The two meteorologists who specialize in verification are ex-
tremely interested in our system. Both meteorologists indicate that
the tool is highly useful for long-time forecast verification, which
covers years of data. The meteorologists appreciate the usability of
the method in verifying precipitation level. Meanwhile, they com-
ment that the analog method is ineffective in detecting the shape
and position biases of precipitation regions.

Accuracy Improvement The four domain experts all confir-
m that our system is the first interactive tool they have ever known
and used to assist the calibration using the analog method from a
long historical perspective. The system enables them to explore the
historical data and understand the forecast better, which is difficult
to achieve without our system. They agree that this can enhance
their justifications for the calibration and assist their routine work.

During the discussions with the domain experts, they point out
three typical scenarios under which our system might work well.
First, when the numerical prediction model is updated, the potential
bias patterns in the forecast might change. Second, novice forecast-
ers usually know little about the potential bias patterns existing in
the ensemble forecast. Through our system, they can quickly un-
derstand the data and conduct better forecast calibrations. Third,

when unusual events occur, forecasters can locate historical similar
events quickly with our system and conduct the further analysis. In
all these scenarios, forecasters might doubt about how to calibrate
the forecast, and our system can provide informative assistances.

Speed Improvement The senior forecaster points out that
what our system introduces is a new calibration process for him.
Whether our system will help speed up the entire calibration de-
pends on the complexity of the forecast and the forecasters’ experi-
ences. For example, an experienced forecaster can complete a fore-
cast calibration very efficiently. Our system might not help speed
up, but increase his confidence in the calibration. However, if the
bias patterns in the forecast are hard to justify through domain ex-
perts’ experiences, our system will help speed up the calibration.
He also mentions that, there is no way for him to calibrate the
forecast from a long historical perspective without our system. Al-
though the analog methods have been proved to be useful, it has still
not been widely used in the forecasters’ routine work. Among the
four domain experts, only one of them is using the method through
a console window, which is a text user interface.

6.4 Discussion
Although our system can effectively support the domain experts’
routine work, based on the case studies and domain expert feed-
back, several issues still require further discussions.

First, our framework extends the analog method through the ma-
jority voting. Since the analog methods have many variants, the
voting is a good choice to deal with the analog selection prob-
lem when we use several variants simultaneously. Meanwhile, we
have designed a thorough process to assist domain experts in set-
ting thresholds for the three selected variants. This can enhance the
step of the analog selection and the generation of the probabilistic
forecast. Therefore, the quality of the calibration can be improved.

Second, we have conducted an evaluation of the time that our
system might cost through experiments. Currently a typical anal-
ysis process for an ROI might cost about 5-8 minutes. The time
can be further reduced when the experts become familiar with the
system. We can further reduce the time by, for example, enhancing
the brushing interaction by selecting patches on a segmented map.

Third, the ROI in our system is a special case and we define
it as the region which selects analogs with high RMS differences
for generating the probabilistic forecast. It is different from the
ROI definitions in some previous research, such as regions with



high data uncertainty [26] and those with predictive error [6]. More
specifically, our ROI definition is to detect the region where errors
might exist in the generated initial probabilistic forecast.

Fourth, the final results might be different when the same fore-
cast is analyzed by various users. However, the suggestions provid-
ed by our system can work as a constraint and guide user interac-
tions to decrease the variances of the results.

7 CONCLUSION AND FUTURE WORK

In this study, the calibration problem is characterized and the ana-
log method is utilized to support it. A visual voting framework
is proposed to address problems in the existing analog methods.
Moreover, a visualization system based on the framework is pro-
vided to assist in calibrating weather forecasts. Coordinated views
and intuitive interactions are provided to support the involvement of
domain experts’ professional knowledge in the statistical method.
Therefore, the calibration can be better conducted. The system is
developed through close collaborations with the domain experts.
Case studies and feedback from the domain experts have exhibited
the promising usability of our system in supporting the calibration.

In the future, we will integrate our system into the domain sys-
tem that we are developing with the domain experts. We plan to
include additional statistical methods in the system to solve prob-
lems that cannot be addressed well by analog methods, such as con-
siderable position and shape biases of precipitation regions and the
continuous calibration for meteorological events that last for days.
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