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In this paper, we present an interactive approach for shape co-segmentation via label propagation. Our
intuitive approach is able to produce error-free results and is very effective at handling out-of-sample
data. Specifically, we start by over-segmenting a set of shapes into primitive patches. Then, we allow the
users to assign labels to some patches and propagate the label information from these patches to the
unlabeled ones. We iterate the last two steps until the error-free consistent segmentations are obtained.
Additionally, we provide an inductive extension of our framework, which effectively addresses the out-
of-sample data. The experimental results demonstrate the effectiveness of our approach.

© 2013 Published by Elsevier Ltd.

1. Introduction

In recent years, there have been increasing interests in shape
co-analysis, i.e., simultaneously analyzing a set of shapes. One of
the most fundamental problems in this field is co-segmentation.
Different from the traditional segmentation tools which treat
shapes individually, co-segmentation approaches process shapes
from an input set in a batch, and generate segmentations carrying
consistent semantics across the shapes. The consistent segmenta-
tion has demonstrated great utility in modeling [1,2], shape
retrieval [3,4], texturing [5], etc.

Previous attempts for solving this problem can be classified into
three categories as supervised, semi-supervised and unsupervised.
The supervised ones [5,6] take advantages of manually labeled
training sets to generate consistent segmentation results. However,
the accuracy of the results relies on the training sets, and not
surprisingly, the training process is tedious and time consuming.
The unsupervised methods [7,8] generally build their approaches on
the patch-level. These methods have superior performance, but the
results hinge upon the in-sample data.

Recently, Wang et al. [9] presented a semi-supervised learning
method with the aid of constrained clustering, where the user can
actively assist in the co-segmentation process by assigning pair-
wise constraints like must-link and cannot-link. This approach can
generate error-free results with a sparse set of constraints. How-
ever, as some authors [10] mentioned, pairwise constraints are not
expressive to the users. In addition, their approach is a transduc-
tive algorithm which does not handle with the out-of-sample data,
i.e,, given a new datum, it needs performing the algorithm over the
whole pipeline, which is ineffective.

In this paper, we address the above issues by introducing an
interactive shape co-segmentation method. Our motivation drives
from label propagation which propagates labels through the

0097-8493/$ - see front matter © 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.cag.2013.11.009

dataset along high density areas defined by unlabeled data. Our
method allows the users to participate in the co-segmentation
procedure, and is built upon the patch-level, which guarantees the
high speed. Specifically, starting from over-segmenting a set of
shapes into primitive patches, we allow the users to assign labels
to some patches, and then propagate the labels from these patches
to the unlabeled ones. We iterate the last two steps until the error-
free consistent segmentations are obtained.

In addition, as mentioned previously, when building their appro-
aches on the patch-level, state-of-the-art methods [7-9] are effective
in dealing with in-sample dataset in their respective problem
domains, but all these methods have not explored the out-of-sample
data. We investigate the out-of-sample issue by introducing an
inductive extension of our pipeline, where the new datum can be
labeled effectively.

Comparing with the state-of-the-art algorithms, our approach
is featured as follows:

® [ntuitive: We provide an intuitive user interface. For the users to
directly assign labels is more expressive than the pairwise
constraints.

® [nductive: We introduce an inductive extension of our algo-
rithm to deal with out-of-sample data.

® Error-free: We can achieve error-free results depending on the
input dataset and the labels given by the users.

® FEfficient: Our approach is graph-based, but requires no extra
eigen-decomposition, which is different from the unsupervised
methods [7,8].

The remainder of this paper is organized as follows. We review
the related work in Section 2. We present the details of the
proposed algorithm in Section 3. We show some experimental
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results on benchmark datasets in Section 4, followed by conclu-
sions and future work in Section 5.

2. Related work

In this section, we provide a brief review of the existing work
on shape co-segmentation, interactive segmentation and label
propagation.

Shape co-segmentation: Shape co-segmentation refers to simul-
taneously segmenting a set of shapes into meaningful parts and
building their correspondence. The existing co-segmentation
methods can be classified into three categories: the unsupervised,
the supervised and the semi-supervised.

In the unsupervised setting, the early work reported by
Golovinskiy and Funkhouser [11] builds reliable correspondences
across segments of shapes using rigid shape alignment. However,
their approach cannot handle shapes with large variations.
Xu et al. [12] factor out the scale variation in the shape segments
by clustering the shapes into different styles, depending on the
scales of the shape parts. Still, their approaches are limited to the
shapes that can be properly aligned.

To overcome this limitation, Huang et al. [13] introduce an
optimization strategy for simultaneously optimizing the saliency of
each segmentation as well as consistency between segmentations.
However, due to the computational complexity, this approach does
not scale well for large datasets. Sidi et al. [7] present a descriptor-
based method that employs multiple feature descriptors to measure
the similarities of the segments and poses co-segmentation as a
clustering problem in a concatenated descriptor space. Because the
descriptors are independent of the pose and location of the shapes,
this method can handle shapes with rich variations in part composi-
tion and geometry. Instead of concatenating the different feature
descriptors into one vector, Hu et al. [8] propose a feature fusion
method to co-segment a set of shapes via subspace clustering.
However, these unsupervised techniques hinge upon the in-sample
data.

Kalogerakis et al. [5] present a supervised learning method to
simultaneously segment and label shapes. Their approach needs
prior knowledge learned from the training dataset, and has
demonstrated a labeling high accuracy on a broad class of shapes.
van Kaick et al. [6] optimize the previous method by incorporating
the prior knowledge to train a classifier. However, the above
supervised methods require a substantial number of manually
labeled training shapes, and the training set has a large impact on
the segmentation performance.

Very recently, Wang et al. [9] propose a semi-supervised method
where the user can actively assist in the learning process by
interactively providing inputs. The input consists of a sparse set of
pairwise constraints, which are marked as must-link and cannot-link
constraints. The authors show that a sparse set of constraints can
quickly converge toward an error-free result. However, the pairwise
constraints are not clearly expressed to the users. In addition, their
approach is a transductive algorithm that is ineffective at handling
out-of-sample data.

Interactive segmentation: Interactive shape segmentation appro-
aches are simple and intuitively help users express their intentions.
Consequently, they have received significant attention [14].

Many interactive techniques have been proposed. Some of them
require the user to specify a few points on the desired cutting contour
and then employ the geometric snake [15], scissoring [16,17], graph
cut [18] or some other method [19] to find the final cutting
boundaries. These methods are called boundary-based approaches.
In the last few years, a series of region-based approaches [20-22] have
been proposed, which take regional information as the input and

require a much smaller amount of user effort to complete the labeling
process for all of the unlabeled faces of a shape.

In this paper, rather than segmenting an individual shape, we
present an interactive region-based technique to simultaneously
segment a set of shapes in a consistent manner.

Label propagation: Label propagation was first introduced by Zhu
and Ghahramani [23]. This technique propagates the labels through
dense unlabeled regions and locates data with properties that are
similar to those of the labeled data. Their approach is graph-based,
which can be constructed straightforwardly by computing pairwise
similarities among all of the data. Due to its simplicity and robustness,
it has been used in processes such as patch labeling [24], image
segmentation [25], and image annotation [26].

Some authors [27,28] have tried to optimize the original label
propagation. Among them, Wang and Zhang [29] propose approx-
imating the graph with a set of overlapped linear neighborhood
patches (LNPs) and computing the edge weights in each patch using
the neighborhood linear projection. Our work is directly inspired by
the LNP. We apply this algorithm to our interactive shape co-
segmentation setting.

3. Algorithm
3.1. Overview

Define a set of shapes S = {s1, 5>, ..., Sy}, Where s; represents the
i-th shape and N is the total number of shapes. Our algorithm
simultaneously produces segments of the set of shapes S and
builds their correspondences across these segments.

The pipeline of our approach is illustrated in Fig. 2. First, the
algorithm pre-processes the set of shapes by partitioning the
dataset into primitive patches and building a graph that represents
the geometric similarities across them. Then, the user interactively
labels some patches, which are used as initial seeds that guide the
iterative propagation to find labels for the others.

Our algorithm is an iterative approach. Each iteration includes two
steps: user interaction and label propagation based on the user input.
These steps repeat until satisfactory results are obtained. Additionally,
we apply an extension to the pipeline to handle out-of-sample data.

We discuss the preprocessing step in the next section, the label
propagation in Section 3.3, and the inductive extension in Section 3.4.

3.2. Preprocessing

In this step, we start by over-segmenting the input shapes, where
normalized cuts [30] are employed to decompose each shape s; into
primitive patches. In our settings, the number of patches per shape is
set to 30. Let P = {p;,p,, ...,y } be the set of patches from all of the
shapes; it is clear that M=30 N. Fig. 1 gives an example of our over-
segmentation results.

Our approach associates the representation of relations between
the patches with graphs. We represent this graph in matrix form, i.e.,
by constructing an affinity matrix W whose entries w;; carry the
similarities of p; and p; Thus, to measure the similarities among
patches, we first choose five robust and discriminative shape descrip-
tors to extract extrinsic geometric information about the patches;
shapes can be informatively represented based on these data. These
widely recognized descriptors are the Shape Diameter Function (SDF)
[31], the Conformal Factor (CF) [32], the Shape Contexts (SCs) [33,34],
the Average Geodesic Distance (AGD) [35], and the geodesic distance
to the base of the shape (GB) [7]. The descriptors are all defined on the
mesh faces, so no additional conversions are required to make them
mutually representationally compatible. Then, to describe the patches
using the descriptors of the faces within them, we incorporate
histograms. Specifically, for patch p;, we first build for each descriptor
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Fig. 1. The co-segmentation results of our algorithm for a set of images of lamps. The left figure shows the labels assigned by the users to the primitive patches of the given
set of shapes. The right figure shows the co-segmentation results after label propagation.
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Fig. 2. The pipeline of the proposed method. Given a set of shapes, we first over-segment them to primitive patches, and based on which we construct the neighborhood
graph. Then, the users are required to label some patches in the light of their intention. Finally, we propagate the label information of the labeled patches to the unlabeled
ones, and obtain the co-segmentation results. The user can iterate the last two steps until satisfactory results have been achieved. We also provide an inductive extension of

our approach to handle the out-of-sample data.

d. the histogram hy;, counting the distribution of data from the faces

f € p;. Then, we concatenate the histograms of all of descriptors into a

sequence, that is, h; = {hy;, hyj, ..., hg;}. In our case, K=5. The joined
histograms h; embed the discriminative geometric information that
we want for the patches; we can use the histograms to evaluate the
patch affinities.

After computing the measurement for each patch, we use the
neighborhood information of each patch to construct the affinity
matrix W. This process is based on the assumption that the local
similarities are more reliable than the distant ones, which has
been widely accepted in many research communities [36].

According to [36,29], we use the linear neighborhoods to
reconstruct each point from its neighbors, which can be formu-
lated using the following objective function:

2

wih;|l (1

‘hi_ >

hj e (hy)

where Q(h;) represents the neighborhood set of h; and w;; is the
linear weight of h; to h; which constitutes the elements of W. We
add two additional constraints, i.e., »;w;j=1 and w;; >0, to
normalize the weights of each point. This objective function is a
standard locally linear embedding (LLE), and can be easily resolved
through an eigen-decomposition problem [36].

3.3. Labeling and propagation

Our algorithm allows the user to actively assign some labels to
a small subset of patches as the seeds for propagation. In this
section, we discuss the iterative process, which repeatedly asks the
user to specify some seeding labels and provides the user with the
segmentation results via label propagation until satisfactory
results are achieved. For convenience, we denote the labeled
patches as X; =P and the unlabeled ones as X,. We also define
L=1{l},l5,....Ic} as the label set and y; e L as the label of p;.

The goal of this step is to propagate the labeled set X; to the
unlabeled set X, based on the affinity matrix W. Let F be the M x C
labeling matrix that associates each patching p;, i <M with each
label [;, j < C, of which the element f;; e F denotes the probability
that p; corresponds to the j-th label. After propagation, each

unlabeled patch has a probability of belonging to each label. We
assign to y; the label that is the maximum in the set
fir.fiz> - fich ie, y; = arg max; < cfi;.

We use an iterative convergence method to propagate labels to the
unlabeled patches. In each iteration, the patches both absorb the label
information from their neighbors and retain some fractions of their
own initial label stations. This procedure repeats until none of the
patches' labels changes. Let t be a time stamp and F* be the labeling
function at time t. The label propagation can be written as

Fi+! = aWF +(1 —a)F°, 2)

where ae(0,1) is the weight, based on the label information
inherited from the neighbors and the initial possibilities. F° is
constructed according to X; and X,; that is, fg- =1 if p; is labeled as [;
by the results of a previous iteration or assignments from a user which
can overwrite the former if applicable, otherwise f?J- =0. Our algo-
rithm iterates Eq. (2) until convergence. Let F* be the limit of F. Finally,
we output the labels Y with y; = arg max;f TJ for the unlabeled patches.
This procedure is summarized as Algorithm 1. Figs. 3 and 4 illustrate
the label propagation process.

The convergence analysis of the label propagation algorithm is
presented in Appendix A, where we refer to the LNP [29].

3.4. Inductive extension

To enhance the scalability of our algorithm and handle out-of-
sample computations, we propose an inductive extension. Given a
new input shape, we first preprocess it using the method men-
tioned in Section 3.2, obtaining small patches with the corre-
sponding histograms. Denoting h; as the histogram of patch pj of
the new shape, we then assign the weights to its linear neighbor-
hoods by minimizing the following objective function:

2

arg miny,
Wi i

he— X

h; e Q(hy)

s

wiih;

where Q(hy) denotes the linear neighborhoods of hy. After com-
puting the weights, we can directly calculate y, through the
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Fig. 3. The labeling results on the Gaussian dataset. (a) The original dataset. (b) Two data points are labeled. (c) Label propagation is performed on the dataset. (d) Different

choices of labeling points.
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Fig. 4. This figure illustrates the label propagation process on the Two-moon dataset with different time statuses. (a) t=0, (b) t=5, (c) t=15, and (d) t=30.

following interpolation:

C
Ye=argmax Y ¥ wifi; 3)
Jj<C ihieQhyj=1

here y, is the final label for py.
Algorithm 1. Label propagation algorithm.

Input: The set of over-segmented patches P; The set of labels
L={l1,l,...,Ic}; X; = P, where patches are assigned to labels
in L and X, = P—X;; The balancing parameter a e (0, 1).
Output: The labels of patches Y ={y;,¥5,...,¥u}-

1. Employ descriptors to measure the patch and then
construct the linear neighborhood graph W by solving
Eq. (1) based on the histograms of the patches.

2. Construct the labeling matrix F° based on the label
assignment of X.

3. Iterate Eq. (2) until convergence. Let F* be the limit of F'.
Output the labels Y with y; = arg minjffj for the unlabeled
patch X; = P.

4. Iterate Steps 2 and 3 by interactively assigning labels to the
patches until satisfactory results are obtained.

4. Experimental results

We evaluate our approach on the shape co-segmentation
benchmark (COSEG) [9]. We set a=0.5 in all our experi-
ments. Fig. 5 shows the visual results of our approach, which
show that we can obtain close to error-free results with the help of
user interaction and label propagation. More specifically, we use
the 7, 15, 6, 12, 10, 21, 12 label assignments on the Lamps,
Candelabra, Goblets, Irons, Guitars, Vases and Chairs sets of COSEG
to generate the results. Note that other alternative assignments
may produce the same results; the user can add as many
constraints as desired to refine the results, depending on the
user's intention.

It would be challenging for our algorithm to label large datasets
because a small modification of the labeling patches may

substantially change the final results. In our experiments, we
asked three users to label these large datasets until satisfactory
results were gained. After obtaining these results, we choose the
results with minimal labeling effort for each set. In our results, we
have taken 113 assignments, 63 assignments and 97 assignments
for the Large chairs, the Large vases and the Large tele-aliens sets,
respectively. We note that it is a good choice to divide the large set
into several smaller sets and then label these sets separately.
Taking the large tele-aliens as an example, we divided the set into
four groups; each group has 50 shapes. Then, we performed our
algorithm to obtain the error-free results for each group. As a
result, we produced 17, 19, 25, and 16 assignments, and the total
number of assignments is 92, which is more effective than
considering the large set as a whole.

Fig. 6 illustrates some co-segmentation results of the unsuper-
vised approaches [7,8] on the COSEG. These results contain many
mislabeled patches because the geometry alone cannot fully
convey the semantics of parts. Instead, by incorporating the user's
guidance, our approach can effectively alleviate this problem.

We also demonstrate the effectiveness of label propagation in
Figs. 3 and 4. Given a dataset, by assigning some labels on some
points, our approach propagates the label information from the
labeled points to the unlabeled points. The labeling status of the
whole dataset highly depends on the initial labeling assignments.

User study: We conducted a user study to compare our method
and the method of Wang et al. [9]. Ten participants were invited
to perform the experiments on several small datasets (Candelabra,
Irons) and large datasets (Large vases, Large tele-aliens) from the
COSEG. We required the participants to use the two interfaces of
these semi-supervised leaning approaches for each dataset, where
some fixed numbers for the constraints are given. Then, we
measured the accuracy of co-segmentation results for each
method under the given constraints. The method with a higher
accuracy was considered to be more effective. In our setting, we
used the average accuracy as the final score of a dataset for each
method, and the users were given four numbers (5, 10, 15, 20) for
the small datasets and four numbers (20, 40, 60, 80) for the large
datasets. Finally, because the users wanted to achieve satisfying
results easily and quickly, we also required the users to judge
which method is more intuitive.
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Fig. 5. The results of our co-segmentation on the COSEG dataset [9]. Corresponding segments are shown in the same color. (a) Candelabra (15 assignments), (b) Goblets (6
assignments), (¢) Irons (12 assignments), (d) Guitars (10 assignments), (e) Vases (21 assignments), (f) Chairs (12 assignments), (g) Large chairs (113 assignments), (h) Large
vases (63 assignments), and (i) Large tele-aliens (97 assignments). (For interpretation of the references to color in this figure caption, the reader is referred to the web version

of this paper.)

Fig. 6. This figure shows some co-segmentation results for the COSEG dataset [9] by applying the unsupervised approaches [7,8]. (a) Sidi et al. [7], (b) Hu et al. [8], and (c) Hu

et al. [8].

We used the ground truth segmentation in [9] and their
accuracy measure as our quality measure:

Accuracy(l, t) = Ya;0(; = t;)/ Ya;, “
i i

where q; is the area of the face i, I is the label computed by the co-
segmentation, t is the ground-truth labeling, and 6(x=y) is 1 if
and only if x equals y. We average the accuracies for all of the
shapes in the set as the accuracy of the co-segmentation method.

Fig. 7 shows the average co-segmentation accuracies achieved
by the participants in our experiments. We can see that our system
helps the users to perform better than the other method [9].
In addition, we provide much faster feedback when updating the
constraints, which we discuss later. As for the survey results,

7 users thought that our interface was more intuitive, while the
other 3 users stated that our method was inconvenient due to the
lack of active learning.

Inductive evaluation: We tested the inductive extension of our
algorithm on the Large chair dataset, where we randomly selected
200 shapes as in-sample data and used the remaining samples as
out-of-sample data. After we obtained the error-free results of the
in-sample data, the inductive extension was conducted to predict
the labels of the out-of-sample data. Fig. 8 shows an example
where a new datum has been pre-processed and labeled. As a
result, we achieved an average of 88.7% accuracy for the out-of-
sample shapes, which is associated with O(n) time complexity
(less than 1s for each shape in our case). In comparison, the
method of Wang et al. [9] requires O(n?) (20 min). This result
demonstrates the effectiveness of our inductive algorithm.

10.1016/j.cag.2013.11.009
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Fig. 7. The accuracies of the co-segmentation results and their corresponding number of label assignments. (a) User study on some small datasets, where about 7 s is needed
for one update of the labels in these cases. (b) User study on some large datasets, where about 8 min is needed for one update of the labels in these cases.

Fig. 8. Given an out-of-sample data, we can fast obtain its labels through interpolation of the inductive extension of our algorithm.

Performance: We implemented our approach in C++ and
MATLAB and evaluated the performance on a 2.83 GHz Intel
Core™ 2 Quad processor with 4 GB of RAM.

The pre-processing of our pipeline requires considerable time,
particularly the computation of geodesic distance and shape
context. The label propagation is very fast; the time complexity
is O(n?), where n is the total number of patches. Consider a small
dataset that contains 20 shapes, where each shape is decomposed
into 30 patches. Therefore, the linear neighborhood matrix W has
the dimension of 600 x 600, and our algorithm needs approxi-
mately 100 iterations to converge, which takes approximately 7 s
for one update of its labels. For a large dataset, we need
approximately 8 min to complete an update.

5. Conclusions

We presented a novel algorithm to interactively co-segment a
set of shapes via label propagation. Given a set of shapes with a
small number of user-defined labels on the over-segmented
patches, our method automatically propagates those labels to the
remaining unlabeled patches through an iterative procedure. More-
over, we provide an out-of-sample extension of our approach. The
experiments demonstrated the effectiveness of the proposed
approach.

Limitations and future work: There are many limitations in our
algorithm, which suggests many avenues for future work. First, our
approach suffers from a lack of suggestions when labeling samples

10.1016/j.cag.2013.11.009

Please cite this article as: Wu Z, et al. Interactive shape co-segmentation via label propagation. Comput Graph (2013), http://dx.doi.org/

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
1m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


http://dx.doi.org/10.1016/j.cag.2013.11.009
http://dx.doi.org/10.1016/j.cag.2013.11.009
http://dx.doi.org/10.1016/j.cag.2013.11.009
http://dx.doi.org/10.1016/j.cag.2013.11.009

OO UL DA WN =

USSR DD DN DN NDWWWWWWWWWWNDNDNDNDNDNDDNDNDNDN = = = e e = e
\IO\U'I-lkWN@—‘O@OO\ICDU‘I.&\MN»—‘OLOOO\IO\U‘IJ;UJNv—*OLOOO\]CDU‘I.bUJN»—‘OkDOO\]O}U‘ILWN'—‘O
=

Z. Wu et al. /| Computers & Graphics B (AEER) ERE-REE 7

to improve the co-segmentation results with less effort. In the
future, we plan to integrate our labeling process with the active
learning setting [38]. Second, our approach is graph-based. How to
better measure the similarities preserved in the graph plays an
important role in the following steps. A more rigorous treatment
of this problem is appreciated. Finally, our approach builds upon
the patch-level, so the final co-segmentation cuts are relying on
the initial over-segmentation boundaries, which encourages us to
exploit a more robust over-segmentation method to refine the
cutting boundaries for the applications.
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Appendix A. Convergence analysis

In this section, we present the convergence analysis of Algo-
rithm 1. We can see from the Algorithm 1 that our approach needs
to iterate Eq. (2) until it converges with the given input a, W and
F°. By substituting variable F' in Eq. (2), we have

F*l = @W)'F'+(1-a) Zijo((xW)"Fo. (5)

Because we have constrained Y;w;; =1 and w;; > 0, according
to the theorem of Perron-Frobenius [37], we can conclude that the
spectral radius of W is no larger than one. In addition, 0 <a < 1.
We have

tlim (@aW)t =0 and

t
lim Y (@W)'=d—aW) !,
t—o0 n=0
where [ is the identity matrix. From these, Eq. (2) will converge to
F*= tlimFt =1-a)I—aWw) 'F°. (6)
In other words, we can predict the labeling results in one step.
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