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Abstract

We present a distillation algorithm which operates on a large, unstructured, and noisy collection of internet images
returned from an online object query. We introduce the notion of a distilled set, which is a clean, coherent, and
structured subset of inlier images. In addition, the object of interest is properly segmented out throughout the
distilled set. Our approach is unsupervised, built on a novel clustering scheme, and solves the distillation and
object segmentation problems simultaneously. In essence, instead of distilling the collection of images, we distill
a collection of loosely cutout foreground “shapes”, which may or may not contain the queried object. Our key
observation, which motivated our clustering scheme, is that outlier shapes are expected to be random in nature,
whereas, inlier shapes, which do tightly enclose the object of interest, tend to be well supported by similar shapes
captured in similar views. We analyze the commonalities among candidate foreground segments, without aiming to
analyze their semantics, but simply by clustering similar shapes and considering only the most significant clusters
representing non-trivial shapes. We show that when tuned conservatively, our distillation algorithm is able to
extract a near perfect subset of true inliers. Furthermore, we show that our technique scales well in the sense that
the precision rate remains high, as the collection grows. We demonstrate the utility of our distillation results with
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a number of interesting graphics applications.

1. Introduction

Billions of new images of all kinds of objects are uploaded
to the internet every single day. Text-based object queries
through search engines such as Google, Bing, and Flickr, al-
low combing through this sea of data and enable extracting
large topical but otherwise unstructured wild image collec-
tions. The vast visual knowledge encoded in such collections
has been previously tapped into to enable various applica-
tions, such as building 3D models of real places [SSS06],
sketch-based photo composition [CCT*09, EHBA(9], or
data-driven analysis and synthesis [LWQ*08,ZGW*13].

A major challenge when working with unstructured internet
image collections is, however, that the image-to-text associ-
ation is noisy, and, hence, the retrieved collections typically
contain many false positives: noise images that do not show
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the object of interest at all or only in insufficient quality due
to resolution or distortion; see Figure 1(a). Moreover, many
of the aforementioned applications require not just images
that contain the object of interest but also that the object is
extracted from its background.

The objective of our work is to generate a distilled image
collection from raw internet search results based on a tex-
tual object query. The distilled collection is a clean, coher-
ent, and consistent subset consisting only of inlier images,
i.e., images that do contain the queried object. Ultimately,
we would like the distilled set to be outlier-free. In addition,
the object of interest is cleanly segmented out from the back-
ground in all images in the distilled collection. Figure 1 pro-
vides an example where the search was for “elephant” and
Figure 1(c) shows the distilled collection.

Extracting only inliers from the noisy image collection and
object segmentation are inter-dependent problems. An effec-
tive solution to either problem would facilitate a solution to
the other. The challenge that both tasks face is that it would
seem inevitable that some high-level semantic analysis is
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Elephant “

Figure 1: (a) Unstructured image collections from text queries are noisy and typically contain many images that do not show
the object of interest (such outliers are marked with red borders). (b) Single-image segmentation is unreliable and produces
many erroneous shapes, which either do not contain the object, cut off parts of it, or include chunks of the background. (c) Our
distillation algorithm extracts only a subset of kernel of inlier shapes and organizes them into clusters (marked with colored

boundaries).

necessary to identify the object of interest in every image
and to measure the relevancy of each image to the object
query. This would call for object-specific prior knowledge
to be acquired and then learned to solve the problems.

In this paper, we take an unsupervised approach without re-
lying on any object-specific knowledge. Our approach not
only breaks the inter-dependence between the two problems
but also solves both of them simultaneously. In essence, in-
stead of distilling the collection of images, we distill a col-
lection of loosely cutout foreground “shapes” which may or
may not contain the queried object. Our key realization is
that outlier shapes (e.g., wrong object or poor segmentations
that include background or miss parts of the foreground)
should be expected to be random in nature. On the other
hand, inlier shapes, i.e., regions that do tightly enclose the
object of interest (perhaps in varying views), tend to be well
supported by similar shapes (corresponding to similar object
views) from other images. Such supports are expected to be
significant if the raw image collection is sufficiently large.

We use this idea to develop an image collection distillation
algorithm that does not rely on understanding the semantics
of images or their parts. Its core component is a novel unsu-
pervised constructive shape clustering algorithm. Since the
object of interest exhibits large variation in size and appear-
ance over the image collection, we use closed contours as the
main clustering feature in this algorithm, as they tend to be
robust against such changes. We obtain object contour candi-
dates using a standard single-image segmentation technique,
which by itself is unreliable in the sense that it produces a
large fraction of bad segmentations (Figure 1b). However,
our algorithm is able to filter these outliers as they do not
form tight clusters.

Our algorithm is tuned to aggressively prune a raw image
collection and conservatively extract only true inliers, at the
expense of leaving out some false negatives, i.e., images that
do contain the object of interest but our algorithm has not
gained sufficient confidence in.

‘We show that conventional object co-segmentation methods
do not perform well in this context. Nearly all techniques,
except the most recent ones, are designed for homogeneous
datasets and assume the object of interest is present in ev-
ery input image. They are, thus, bound to fail with outlier
images. More recent techniques are specifically designed to
handle noise [RJKL13], however, as any co-segmentation
method, they try to correctly label every pixel in every im-
age. This, however, is extremely challenging for images that
have a less common appearance in the dataset, even if they
are inliers. Hence, their method still produces a relatively
large fraction of erroneous segmentations and is ultimately
not reliable enough for graphics applications.

Our distilled image collections support a variety of 3D and
2D applications, such as image-based viewpoint selection,
upright orientation detection, color design, sketch2photo,
Captcha and, in general, data-driven applications. Prior to
describing some of these applications, we elaborate on a
novel application of generating an abstract 3D model from
the distilled collection. Since the distilled images are ob-
tained from different instances in a variety of articulations
and the view directions are unknown, this type of modelling
is an extremely difficult problem. We demonstrate how the
distilled set alleviates the process, and facilitates the quick
construction of a 3D abstract model.
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2. Related work

Image co-segmentation

Given multiple images with shared content, the goal of im-
age co-segmentation is to simultaneously segment a specific
object that appears in the entire collection. Early work in
image co-segmentation focuses on extracting the same ob-
ject from a pair of images [RMBKO06,MSD09,HS09]. These
techniques were recently extended to handle a large num-
ber of images and/or object classes (e.g., [JBP12, KX12]).
The ClassCut [ADF10] technique, for example, aims at co-
segmenting a set of images capturing object instances of an
unknown class. Their method alternates between segment-
ing object instances and learning a class model. Our im-
age segmentation method bears some similarity to the object
co-segmentation technique [VRK11] which incorporates the
notion of objectness into the co-segmentation framework to
ensure the foreground segment is an object. However, their
work is supervised and requires ground truth segmentation
of pairs of images depicting similar objects to define the
classifier.

Co-segmentation in noisy collections is addressed in the re-
cent work of Rubinstein et al. [RIKL13]. They proposed an
algorithm that automatically discovers and segments out a
common object. Every pixel in the image is labelled as fore-
ground or background, and outlier images can be identified
as those images containing only background labelling. Chen
et al. [CSG14] improved these numbers by using automati-
cally learned visual priors. The average success rate is still
not high enough to enable various applications we are inter-
ested in. We therefore designed our method to only label a
subset of the collection, but at a significantly higher success
rate.

Unsupervised object discovery

Unsupervised discovery of visual categories in a collec-
tion of images is a fundamental problem in computer vi-
sion and many solutions have been proposed [TLBB10].
It is usually approached by clustering the image collec-
tion into meaningful groups of shared visual properties.
Contour-based methods which discover the common object
shapes in an unlabelled multi-category collection of images
(e.g., [LGO9, PT10]) are most closely related to our work.
However, we focus on discovering multiple shape variations
of one object category. Furthermore, we experiment with a
noisy internet image collection, in contrast to benchmark
datasets that contain only images belonging to the specified
categories.

2.1. Image Classification and Annotation

Image classification and annotation algorithms are important
for scene understanding [LSFF09]. Many approaches to im-
ages classification design image features [OTO1, VFJZ01,
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LFF07], and apply either discriminative [CWO04,ZZ06] or
generative models [CFF07, LFF07]. A recent breakthrough
work [KSH12] outperforms previous state-of-the-art meth-
ods on large image collections and with a large number
of classes using a deep convolutional neural network. Sev-
eral new deep learning methods [SVZ13,JSD*14] were later
proposed, which further improve the classification accuracy.
Our distillation technique can be added as a post-processing
step to image classification methods. Furthermore, our ob-
ject segmentation provides a prior which can improve the
classification accuracy [RLYFF12].

For image annotation, generative methods [BDF*03,JLMO03,
DBAFF02] attempt to learn the relationships between images
and annotation terms with probabilistic models, while dis-
criminative methods [YDH06, CCMVO07] train classifiers
for image labeling. In order to annotate large-scale image
collection, Westo et al. [WBU10] propose to learn genera-
tive model with a method which learns to rank. Since an-
notations and classification can support each other, Wang et
al. [WBLO9] propose a probabilistic model for jointly mod-
eling the image, its class label, and its annotations.

Supervised filtering methods

Our conservative distillation method bears some conceptual
similarity to the aggressive filtering used in the Sketch2Photo
system [CCT*09]. In their work, all shown results includ-
ing the numeric evaluations are filtered with a user pro-
vided silhouette sketch. Furthermore, their method contains
application-driven filtering stages, for example, pruning im-
ages with complex backgrounds. In this work, we are in-
terested in an unsupervised technique that avoids such pre-
filtering, while obtaining a lower false positive rate.

3. Overview

Our goal in this work is to automatically extract and segment
a common object of interest from an unstructured image col-
lection obtained using internet search engines.

This objective poses significant challenges: First, internet
image collections are noisy. Typically, a significant fraction
of images does not contain the object of interest at all or
only depicts a portion of it. The remaining images, that show
the full object, still vary considerably in pose, appearance,
resolution, noise characteristics, etc. Moreover, the images
depict different instances, and the object might be inher-
ently deformable. This precludes using feature matching ap-
proaches, e.g., as common in Structure-from-Motion tech-
niques, since they rely on non-deforming rigid scenes.

The distillation task is broken into two steps. First, we
perform single-image segmentation to generate candidate
shapes (Section 4). Then, the distilled inlier sets are formed
by a constructive algorithm that considers the outer segment
contours as the compared features and is thus robust against



Averbuch-Elor et al. / Distilled Collections from Textual Image Queries

Figure 2: Identifying hot spot candidates with a mutual kNN graph. Each shape forms a node in the kNN graph. Two nodes are
connected if and only if they are both among each other’s k-nearest neighbors in terms of their inter-contour distance. The hot
spots are a subset of the connected components that contain at least three nodes.

appearance changes (Section 5). The algorithm is construc-
tive in the sense that it additively collects good segments
rather than subtractively filtering outliers. The key idea in
this operation is that tight clusters of non-trivial shapes are
a strong indication of being inliers, because erroneous seg-
ments usually have non-repeated defects and thus do not ex-
hibit strong commonality. Assembling a small clean distilled
subset comes at the expense of removing a fraction of inliers,
however, we show that the distilled sets preserve sufficient
variety to enable many applications (Section 7).

4. Generating Candidate Segments

We use standard internet search engines and automatic query
expansion to construct the initial unstructured image col-
lection [RJKL13]. Our distillation algorithm requires a set
of candidate image segmentations as input. These can be
generated either using existing object co-segmentation tech-
niques or using a simple single-image segmentation al-
gorithm. For simplicity, we use a single-image segmenta-
tion algorithm, which yields smaller distilled collections
but comparable precision and recall values, and rely on the
distillation algorithm to perform the co-analysis. In Sec-
tion 6, we compare the results obtained by either bootstrap-
ping with single-image segmentation or state-of-the-art co-
segmentation techniques and demonstrate that all techniques
benefit from the distillation algorithm.

We obtain one candidate segment from every image using
the following procedure. First, we detect the bounding box
of the main objects using the objectness detector [ADF12],
keeping only the highest scoring box. Next, we use Grab-
Cut [RKB04] to extract the detected object from the back-
ground. In our GrabCut implementation we use the response
from a modern contour detector [DZ13] as the smoothness
term. Note that all the ingredients mentioned above have
publically available implementations, so this algorithm is
easily reproducible.

5. Collection Distillation

At this point, we have a set of segmented candidate object
shapes either obtained from co-segmentation or the algo-
rithm described in the previous section. Some of the shapes
are true contours of the query object but there are also
many outliers and bad segmentations, as each of the previ-
ous stages (internet search, object detection, segmentation)
can introduce outliers and errors.

5.1. Distance Measure

Our clustering algorithm requires a distance measure that is
robust to slight articulation and deformations, so that objects
captured from similar viewpoints induce small distances. We
measure distances between outer contours. First, we normal-
ize each contour by translating its center of mass to the origin
and scale it so it has unit average distance to the origin.

Given two contours ¢ and ¢y we define their distance as
d(c1,c2) =dg(cy,c2) +Adp(cy,c2) (1

where the d; and d terms incorporate local and global fea-
tures, described below. A = 1.5 is a balancing coefficient.

For the local term, dy, we start by sampling and matching
the contours using inner-distance shape context [LJ07]. This
technique extends shape context [BMPO02] by replacing Eu-
clidean distances with inner-distances. It computes descrip-
tors for each sampled point on the contours that are robust
against articulation. We set dy. to the average spatial distance
between a point on ¢ and its most similar point (in descrip-
tor space) on ¢;.

The global term, dg, is defined as the sum of differences of
two global attributes,

dg(ci,¢2) = ||[wy —wa|| +|a; —az], (@)

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.



Averbuch-Elor et al. / Distilled Collections from Textual Image Queries

where w; are the principal directions of the contours (unit
vectors computed using PCA) and g; are the aspect ratios of
their bounding boxes.

Hot Spots Identification

Now we are ready to describe the core of our distilling al-
gorithm. When distilling a collection, we are not interested
in all clusters but only the most significant ones, i.e., the hot
spots, which likely contain contours capturing similar ob-
jects from similar viewpoints.

To extract the hot spots, we identify and select clusters that
pass two tests: they are (1) visually informative (contain non-
trivial shapes, see below), and (2) tight (small distance be-
tween all members). Just considering tightness is not suffi-
cient, because clusters that contain frivial shapes (e.g., rect-
angular, circular, or, in general, low entropy shapes) are of-
ten tight, too; however, these shapes often result from seg-
mentation errors. On the other hand, erroneous non-trivial
shapes are unlikely to form tight clusters, because usually
each has inconsistent defects. We describe the exact defini-
tion of these two tests in the following subsections.

We generate cluster candidates using the Mutual kNN tech-
nique [MHVLO7]. This algorithm is commonly used when
the goal is not necessarily to cluster all nodes but rather the
most significant ones. The clusters are generated by extract-
ing the connected components of the mutual kNN graph.
This graph has a node for every contour, and an edge be-
tween two nodes if and only if both corresponding contours
are part of each other’s k-nearest neighbors according to the
distance measure defined in Section 5.1. We set k = 2 to be
conservative and only consider clusters that contain at least
three members. This conservative choice of parameters may
result in different clusters that contain similar shapes. In-
creasing the minimum cluster size threshold will yield more
distinct clusters but will also result in a smaller distilled col-
lection, as the smaller clusters will be thrown out. Varying k
yields a similar trade-off. See Figure 2 for an illustration of
the sparse kNN graph.

Visually Informative Clusters

We are interested in clusters composed of non-trivial shapes
that are significant in their respective images. To quantify
significance, we check if at least three cluster members pass
two simple self-saliency tests [WSZ02]: the shape center of
gravity is less than 25% away from the image center and the
shape area is greater than 5% of the image area.

We are also interested in clusters that contain non-trivial
shapes. To quantify this we check whether they are com-
posed mostly of shapes that have low contour entropy or are
nearly rectangular. If either condition is true, the cluster is
discarded at this stage.

We first compute the contour entropy of each shape as de-
scribed by Page et al. [PKS*03]: quantize the contour direc-
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tions, compute the probability p; of each curvature direction,
and compute the entropy — Y'; p;log p;. Next, we define the
entropy / of each cluster as the average entropy of its mem-
bers, and compute the mean entropy (;, and standard devia-
tion oy, of all clusters. Finally, we regard all clusters whose
entropy is below U, — oy as containing trivial shapes and
discard them.

We check whether a shape is near-rectangular by comput-
ing the ratio of its area and the area of its bounding box. We
prune clusters whose average ratio exceeds 0.75. The rea-
son for including this test in addition to the entropy check
lies in the fact that many outlier segmentations are near-
rectangular, but non-trivial entropy-wise.

Tight Clusters

We are only interested in tight clusters, i.e., those with small
distances between their members (measured as the distance
between the cluster’s medoid and its most distant member).
However, we observe that complex shapes are inherently
more variable than simple ones. Thus, it is necessary to de-
fine an adaptive tightness threshold and prune low-entropy
shapes more aggressively. We compute the mean tightness
U and standard deviation o; of all the visually informative
clusters and only keep those whose tightness is below the
threshold

T(h) = { (1—a)- (1 — o)+ o puy, hl<ﬂh’ 3)
Uy, else,

where £ is the cluster entropy and o = %’]76”) is the
weight balancing coefficient. This equation describes a ramp
that is clipped at the mean cluster tightness value (dashed
line in Figure 3). For clusters that fail the test above, we re-
move the member farthest from the medoid and iterate the
test until the threshold is satisfied or the cluster contains less
than three members.

6. Evaluation

We performed quantitative and qualitative evaluations to
analyze the performance of our distillation method. We
conducted a quantitative evaluation on ground truth im-
ages and compared against three recent state-of-the-art co-
segmentation methods [RJKL13, FI13, WHG13]. We per-
formed the evaluation on three publicly available datasets
provided by Rubinstein et al. [RIKL13] (Figure 4). A ran-
dom subset of their images has manually annotated fore-
ground segmentations, which are considered “ground truth”.
As in previous work, we report the precision P (percentage
of correctly labelled pixels) and Jaccard similarity J (inter-
section over union of result and ground truth segmentations).

In addition to the internet datasets provided by [RJKL13],
we generated twelve datasets containing diverse categories
that span a wide range of objects (man-made to natural,
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Figure 5: Results for the queries “Rocking Chair”,
from the input images and distilled results.

“Elephant”, and “Headphone”. For each set we show random samples

but smaller distilled collection. In what follows, we elabo-
rate on each of these experiments.

small to large, many variants to almost all similar, etc.). Fur-
thermore, we collected human labels for all the images be-
longing to the visually informative clusters in four of our
sets to perform a quantitative evaluation on these additional
sets. The labels were all manually inspected and refined. A
qualitative evaluation on these datasets is provided as well.

Boosting co-segmentation scores

We performed our distillation technique on the segmenta-

We demonstrate how our technique yields a more reliable
subset for three state-of-the-art co-segmentation methods.
We further show that the distilled collection size depends
on the initial segmentations, and that the method scales with
the input collection size. Lastly, we examine the behaviour
of our method as a function of the tightness threshold, and
we show that a more conservative setting will yield a cleaner

tions obtained using both our standard single-image fore-
ground extraction method and the segmentations obtained
using the three mentioned co-segmentation techniques. As
Figure 4 demonstrates, our distillation process consistently
and dramatically improves the scores. These results further
imply that the distillation process is not dependent on a spe-
cific segmentation technique, but rather can be added as a
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Airplane Car Horse  Average
Wang 2013] 3.69 5.78 9.7 6.39
Rubinstein 2013] 11.59 6.49 8.68 8.92
Faktor 2013] 7.49 12.35 11.7 10.51
ingle image 3.47 1.19 1.66 2.11

Table 1: Recall scores (in percentage) of the distilled col-
lections on the available datasets. These scores complement
the P and J scores that are reported in Figure 4 by the blue
bars.

post-process step to any co-segmentation pipeline, to extract
a subset of highly confident inlier images. In Table 1, we
report our recall numbers for different datasets and segmen-
tation methods. As our method only extracts a subset of the
inliers, the recall rates are generally low.

The number of distilled images depends on the segmentation
technique. Starting from one of the co-segmentation tech-
niques yields 4-8 times more distilled images. For example,
starting from [RJKL13] yields 6.2 times more distilled im-
ages on average (the breakdown for the different datasets
is 4.2, 8.1, 8.3 times more images). Therefore, if the extra
complexity is acceptable, it is indeed desirable to use one
of these techniques for initialization rather than the naive
single-image segmentation approach.

Scaling to large distilled collections

We conducted experiments to analyze the scaling behaviour
of our algorithm. Starting with the internet datasets provided
by Rubinstein et al. [RIKL13], we successively reduced their
size by removing random images. After each reduction step
we ran our algorithm and examined the accuracy and number

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

of distilled images as a function of the input size. We found
that the number of distilled images is roughly proportional to
the number of input images, while the two accuracy scores
remain nearly constant (see Figure 6). This analysis suggests
that a large distilled set could be obtained if one starts with
a larger input collection of similar characteristics.

Additional datasets

Twelve datasets that span a wide range of objects were gen-
erated similarly to [RJKLI13] to further evaluate our tech-
nique. In Figure 5 we show uniform random samples from
the input collection and our distilled set. In addition, we pro-
vide thumbnails for the full distilled sets for all categories
in the supplementary material. Please refer to these results
for assessing the high quality of our results. Recall that we
can increase the size and richness of our distilled sets by 4-8
times by starting from co-segmentation rather than single-
image segmentation.

Size vs. quality of the distilled collections

To demonstrate the trade-off between the distilled set size
and the obtained P and J scores, we collected ground-
truth annotations for all the images belonging to the visu-
ally informative clusters in our Elephant, Full-Body, Hippo,
and Rubber-Duck sets. We examined the aggressiveness of
our algorithm by adding different constants, in the range
[-20¢,207], to Equation 3. See Figure 7 for an illustration
of the trade-off between the size and the scores. As the fig-
ure illustrates, both P and J scores drop mildly as the set size
increases. We can tune the conservativeness of our algorithm
in this manner.

7. Applications

We demonstrate our results in the context of several appli-
cations. The commonality between these applications is that
they all rely on outlier-free input, and, so, only our distil-
lation algorithm enables running them in an unsupervised
manner. We first present a novel method for reconstruct-
ing an abstract 3D shape from the distilled contours (Sec-
tion 7.1) and then show a variety of smaller 2D and 3D ap-
plications (Section 7.2).

7.1. Abstract 3D Modeling

The problem of reconstructing 3D shapes from images is
gaining attention. To attempt this challenging problem, Vin-
cente et al. [VCAB13] rely on selected images that all con-
tain the object of interest and manually created segmenta-
tion masks and corresponding landmarks. In what follows,
we present a fully-unsupervised approach that utilizes our
distilled collections, where the user can optionally refine the
result. Yet, all the results shown in the paper were generated
automatically.
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perfect, but smaller, distilled collection.

Shape-from-Silhouettes is a well-known approach for recon-
structing a 3D model from multiple 2D contours. However,
it is extremely difficult to generate 3D models from noisy in-
ternet collections or even from our distilled collections, be-
cause (1) the 2D shapes are the projections of different in-
stances, (2) these instances might be articulated differently,
and (3) the projection parameters used for each contour are
unknown.

To alleviate these challenges, we assume that there are at
least two orthogonal views among the distilled collection
and then generate the 3D model from these views [RDI10].
However, identifying the two orthogonal views remains a
non-trivial task [HOO5]. We simplify this problem by as-
suming that our objects have at least one bilateral symme-
try axis (i.e., reflection symmetry). This assumption is rea-
sonable for nearly all natural and man-made objects [TB98].
Given a symmetric view and an orthogonal view we build a
3D shape by computing the visual hull surface [Lau94]. The
smoothed surface yields an abstract 3D representation of the
common object in the distilled images (Figure 8).

Since each distilled cluster contains similar shapes we only
consider each cluster’s medoid as a representative in the fol-
lowing computations. We first find the symmetric view by
computing the contour distances between each shape and its
mirror shapes along both vertical and horizontal axes and
choosing the most symmetric one. We then consider all other
shapes and select the farthest one as the orthogonal view.
Since the direct contour distance measure in Equation 1 is
unreliable for measuring large view changes we instead con-
sider the furthest shape in diffusion distance. For more de-
tails on the diffusion distance, please refer to [CLO6].

Since we cannot guarantee that the above method always
finds good orthogonal views, a user could optionally assist
and refine the process by selecting other views. See Fig-
ure 8 for some representative abstract 3D models along with
the corresponding diffusion maps and selected orthogonal
views.

(© 2015 The Author(s)
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Diffusion maps Selected orthogonal views

Reconstructed abstract 3D shapes

Figure 8: Reconstructing abstract 3D shapes from a distilled collection. We select two orthogonal views (middle) using the
diffusion maps (left). The visual hull of the two yields an abstract 3D representation of the queried object.

7.2. Other applications

In the following we present several smaller applications that
are enabled by having distilled sets.

Viewpoint selection:

The problem of selecting good viewpoints for presenting a
rendered 3D model has recently become an active area of
research in computer graphics [FSG09, SLF*11], however,
these methods are fairly complex. Our distilled segments
can offer a simple alternative. We consider the silhouettes
of the 3D object rendered from all directions and compare
against our distilled countours. After filtering similar views
we can sort the projections by their contour distance to de-
termine the most representative views of the 3D model. Fig-
ure 9 illustrates the top three views for a given headphone
model and the corresponding closest distilled images. Note
that these three views reveal almost all part structures of the
headphone.

Upright orientation detection:

This application is similar in spirit to the previous one. The
majority of the top views are assumed to be captured with
an upright orientation. This assumption is reasonable since
images are usually associated with an upright orientation.
Nevertheless, some objects, like airplanes in the sky, are not
necessarily captured with an upright orientation.

(© 2015 The Author(s)
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Figure 9: The selected three viewpoints for a 3D headphone
model. The bottom row shows the selected three views while
the above row shows the corresponding matched image for
each view.

Color design:

Finding harmoneous color themes is a difficult but crucial
task in graphic design. There has been recent work that
tries to extract color themes (usually consisting of 5-color
palettes) from whole images [OAH11, LH13]. Using whole
images does not lead to satisfactory results, however, if the
goal is to design a color theme for an object, because back-
ground colors creep into the color theme, such as green grass
color in Figure 10a. Using standard segmentation to extract
colors only from the “foreground” in each image does not
fully alleviate this problem because due to different errors
invalid colors might still make it into the theme (e.g. the pink
in Figure 10b). Extracting a color theme from our distilled
set yields better results because they are clean, coherent, and
avoid poor segmentations.



Averbuch-Elor et al. / Distilled Collections from Textual Image Queries

Figure 11: Image-based Captcha. Subsets of our distilled Hippo and Elephant sets form a classification puzzle that is easy for
humans and difficult for bots to solve, turning it into an effective automatic Captcha device.

(a) Top Google (b) Top Google (c) Distilled
whole images segmented

Figure 10: Extracting color themes for the query “ele-
phant”: (a) extracting from whole images causes back-
ground colors (grass, sky) to dominate the color theme; (b)
using foreground segmentation helps but there are still noise
colors (pink) from outlier images; (c) our distilled sets lead
to a clean color theme that does not contain any irrelevant
colors.

—&

s

Figure 12: An example of Sketch2Photo. Left: The input
sketch, Right: the retrieved image candidates from our dis-
tilled collections.

N—,
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Captcha:

Our distilled collections can also serve as training data for
various supervised applications, such as Captcha [VABHLO03],
image classification [CHV99], and object detection [VJO1].
Figure 11 demonstrates an example for an image-based
Captcha, where a set of images form a puzzle and the task
is to classify the set into two classes. Such task is extremely
hard for an algorithm but easy for a human, turning it into an
effective Turing test (i.e., a means to tell humans and robots
apart). To generate such puzzles automatically the input set
of images should be outlier-free.

Sketch2Photo:

A distilled collection can be used for sketch-based image
retrieval in a sketch2photo application [CCT*09]. Given a
simple freehand sketch, we obtain the distilled shape with
the smallest contour distance to the drawn sketch. Figure 12
provides a few examples, where sketches of an elephant, a
giraffe and an airplane are matched to reasonable images.
Using a distilled set dramatically improves the chance that
the retrieved images are cleanly segmented inlier images.

8. Discussion, Limitation, and Future Work

We have introduced the novel notion of a distilled image set,
which may originate from a source set that is highly unstruc-
tured, noisy, and outlier-ridden. We have developed a distil-
lation algorithm that is applicable to a large, raw collection
of internet images returned from an object query. Our ap-
proach is unsupervised, built on a novel clustering scheme,
and returns a structured set of inliers — the distilled set. This
implicitly suggests that one can potentially learn the essence
of an object from vast amount of raw image query results
without any object-specific knowledge or semantic analysis.
We have shown, through several examples, the applicative
potential of distilled image collections.

Our approach relies on the idea that outlier shapes are ran-
dom in nature, and therefore, outliers do not tightly couple
and persist into our distilled set. While mostly true, this re-
alization is not impermeable in the sense that sometimes
certain outlier shapes do appear multiple times in such a
dense collection. For example, in our Motorcycle set, there
were quite a few images capturing a motorcycle vest, a
semantically-related object but certainly not a motorcycle.
Consequently, our distilled set contains a cluster of images
capturing different motorcycle vests. We have tried to show
that with a more conservative setting, we can somewhat
overcome this limitation. However, it comes at the expense
of a smaller distilled collection.

Having said that, we should stress that there is yet more la-
tent information in the clusters of a distiled set, i.e., knowl-
edge about view directions, which we have not utilized. Af-
ter forming the clusters, we may consider the inter-relations
among the clusters, assuming that they are related to view
direction, to re-enforce inlier clusters. Considering such re-
lations among clusters, we may learn that a motorcycle vest
is a relevant object, but not a motorcycle.

An important and intriguing question that we encountered
is “what is an interesting shape”. In Section 3, we have de-
veloped a criterion to define when a contour is interesting.
Although this criterion usually removes the outlier shapes,
it can also remove a significant portion of inliers, especially
if the object has a trivial shape. If the queried object is a
match box, for example, most shapes will be removed due to
their low entropy or nearly rectangular shapes. We believe
that this is an interesting research problem in its own right.
There has been much research on “saliency”, especially in
the context of image analysis. Here we ask a related ques-
tion, while posing it on shapes or geometry in general.

(© 2015 The Author(s)
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We plan to further extend the value of our distilled col-
lection. We would like to enhance our 3D modeling tech-
nique and ultimately allow for a Shape-from-Text operator,
a method to convert a noun into a 3D shape. Our vision is
to do this without any supervision and starting from just a
textual image query. In our 3D modeling application, we
learned that in many cases, finding two orthogonal views
provides a strong basis towards recovering an abstract 3D
shape. As a by-product of this work, we developed means to
identify such orthogonal views assuming the object is bilat-
erally symmetric. Analyzing the view directions of an arbi-
trary shape is a problem we would like to investigate more.
In general, we believe that now, with the ever increasing
number of internet images, unsupervised learning tasks of
a large collection of images belonging to some family will
gain much more attention.
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