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Abstract
Precipitation forecast verification is essential to the quality of a forecast. The Gaussian Mixture Model can be used
to approximate the precipitation of several rain bands and provide a concise view of the data, which is especially
useful for comparing forecast and observation data. The robustness of such comparison mainly depends on the
consistency of and the correspondence between the extracted rain bands in the forecast and observation data. We
propose a novel co-estimation approach based on Gaussian Mixture Model in which forecast and observation data
are analyzed simultaneously. This appoach natually increases the consistency of and correspondence between the
extracted rain bands by exploiting the similarity between both forecast and observation data. Moreover, a novel
visualization and exploration framework is implemented to help the meteorologists gain insight from the forecast.
The proposed approach was applied to the forecast and observation data provided by the China Meteorological
Administration. The results are evaluated by meteorologists and novel insight has been gained.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Weather Visualization
—Verification

1. Introduction

Precipitation is one of the most important atmospheric
variables that directly affects human activities and daily life.
Precipitation forecasts play a key role in decision making
where the occurrence of precipitation is sensitive, such as the
issuing of flood warnings, the management of water sources,
the design of agricultural policies and so on. Meteorologists
are particularly interested in the shape and size of the rain
bands: clouds and precipitation structures associated with
areas of rainfall [CWS∗08]. Verification of precipitation
forecasts is a critical component of the development and
application of a forecasting systems. It not only monitors the
quality of forecasts but also provides useful feedback to the
meteorologists to improve their forecasts.

The traditional and widely used verification approach
is a side-by-side pointwise comparison after matching the
forecast grid to the observation grid or a set of observation
points [SWB89]. Although this kind of comparison provides
some statistics to monitor forecast quality, it does not

provide specific information regarding how a forecast went
wrong or did well. As the spatial and temporal resolutions of
forecasts from numerical weather prediction models grow,
the need for spatial and temporal verification approaches
increases greatly. Although many new strategies [CWS∗08]
have been proposed including the feature-based approaches
and the scale-decomposition approaches, these techniques
mainly focus on small precipitation areas.

The Gaussian mixture model (GMM) approach [LK10]
provides a high level view of the data and facilitates
convenient verification of the simulation. It consists of
three stages. Firstly, rain bands represented by Gaussian
distributions are extracted from the forecast and observation
data individually by maximizing the likelihood of the
GMM. Then, the correspondences between rain bands
in the forecast and the observation data are determined
by a comparison of their associated Gaussians. Finally,
differences can be calculated using the parameters of the
Gaussians for the matched pairs of rain bands. However, this
approach faces several challenges when applied to complex
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forecast and observation data over a long time period on a
vast region such as North America or mainland China. In the
rain band extraction stage, the number of rain bands varies
with time. Hence a mechanism to automatically determine
the number of rain bands is desirable. The robustness of
the optimization algorithm for rain bands extraction is also
important. If the extraction of rain bands is performed
independently on the forecast and observation data, local
maximums for the two data sets may lead to inconsistencies
of the rain bands between them, which poses difficulties
in determining the correspondence between forecast and
observation rain bands.

In this paper, we propose a novel co-estimation
scheme which integrates the rain bands extraction and
correspondence determination. Exploiting the similarity
in the forecast and observation data, the co-estimation
provides a mechanism to extract rain bands from both data
simultaneously. Therefore the correspondences between rain
bands are naturally derived from the analysis, avoiding a
subsequent step to determine correspondence. As a result,
the issue of inconsistency that exists in methods such
as [LK10] is alleviated while false rain bands and missing
rain bands can also be identified in the process. In addition,
we adopt the Bayesian Information Criterion (BIC) type
model selector to automatically determine the number of
rain bands rather than fixing it empirically [LK10].

To help meteorologists analyze the performance of
forecasts in a given period of time, we present a novel
framework for exploring the spatial-temporal trend of
the forecast. The data we used lack temporal coherency
because both the forecast and observation data are
sampled on a daily interval. Therefore, we decide to
extract rain bands for forecast and observation data at
each time step independently. Several error indicators
are introduced to measure the forecast performance. A
multi-view visualization framework is implemented for
exploring the results. With the ThemeRiver [HHWN02]
view, the values of different errors in a time range can be
easily compared. With a time series curve view, the temporal
trend of these errors is revealed. A linked side-by-side
comparison view enables the meteorologists to explore the
geospatial rainfall distribution in key frames. A blending
view shows the rain bands from forecast and observation
in a single map. This framework was used to compare
the forecasts covering continental China during June -
August 2008 and the observations provided by the China
meteorological administration. The meteorologists found the
tool useful in understanding the differences of the geospatial
distributions between forecast and observation and finding
when, where and why the forecasts went wrong.

In summary, the main contributions of this paper include:

• We propose a new co-estimation scheme which facilitates
not only natural matching of rain bands but also false
rain bands and missing rain bands identification through

simultaneous analysis of the forecast and the observation
data;

• We applied a set of effective visualization methods
including the ThemeRiver view, the time series curve
view, side-by-side view, and the blending view to visually
verify the rain band forecast. Our evaluation showed that
meteorologists gained new insight from the forecast with
our visualization system.

2. Related Work

Previous work related to our work is divided into three
different categories: verification of precipitation forecasts,
comparative visualization, and Gaussian mixture model.

2.1. Verification of Precipitation Forecasts

Verification of precipitation forecasts is one of the most
important topics in meteorology [Wil95]. The widely used
approaches focus on the calculation of verification scores
over a forecast-observation data set based on pointwise
comparison. These approaches ignore the spatial distribution
of precipitation. To overcome this drawback, many new
spatial verification methods have been proposed. A complete
review of these methods is beyond the scope of this article,
we refer the reader to Casati et al. [CWS∗08]. We restrict
our discussion to the feature-based verification methods,
which first identify features in the forecast and observation
field and then compare the attributes associated with each
pair of features. Ebert and McBride were among the first to
explore the verification of rainfall using labeled contiguous
rainfall areas (CRA). The CRA is the union of observed
and forecast rainfall areas on which the rainfall exceeds a
user-specified threshold. To obtain more contiguous areas,
Davis et al. [DBB06] defined features in both forecasts
and observations based on a convolution and thresholding
procedure. To measure the errors between each paired area,
they then associated the forecast and observed objects with
geometric shapes. Lakshmanan and Kain proposed a GMM
based forecast verification method [LK10], where Gaussians
are employed to represent rain bands. Similar to these
methods, the feature in our approach is also defined by a
contiguous rain area. The difference is that we considered
precipitation verification based on a long time period over
a vast region. A novel co-estimation algorithm is proposed
and other necessary improvements are made.

2.2. Comparative Visualization

Comparative visualization is a very instructive method for
verification. According to the starting point of comparison,
it can be classified into three levels [SP98]: image level,
data level and feature level. The most common comparison
approach is image level comparison which compares images
(e.g., output of visualization algorithms) using a variety
of methods [GAW∗11], such as side-by-side, overlay, and
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difference images. Side-by-side relies on user’s memory
to compare images which are shown separately, while
overlay shows multiple images on the same space and
thus sometimes suffers from visual clutter. Compared to
these side-by-side and overlay methods, difference images
explicitly represent the difference between objects. In most
of visualization systems, these methods are mixed together.
Starting from the raw data, data level comparison [PP97]
can compare the data sets using a variety of intermediate
representations derived from the raw data. The widely
used method of verification scores [Wil95] in precipitation
forecasts is an example. The main drawback of this approach
is that the resulting comparison systems may become
application dependent.

Unlike image level and data level comparisons, feature
level comparisons at a higher level, incorporating application
specific knowledge, are of great interest to users. The
features are derived according to application characteristics.
In this paper, we extract the rain bands as features and
then compare forecasts and observations based on them.
To facilitate visual analysis of precipitation distribution,
we provide a coordinated view to compare the differences
between pairs of rain bands.

2.3. Gaussian Mixture Model

Gaussian Mixture Model (GMM) [Bil98] is a mature
clustering method. It models each cluster as a Gaussian,
with its mean somewhere in the middle of the cluster, and
a standard deviation that measures the spread of that cluster.
It has been used in the visualization community [CCM09,
WCZ∗11]. The most relevant work is [LK10] which also
uses GMM for precipitation verification. Our GMM is
applied in the context of feature level comparison, where
the correspondences between the features extracted from the
two data sets have to be established. Rather than defining
some metrics to match the individual extracted features,
we propose a new GMM based estimation algorithm:
co-estimation, which can simultaneously identify features
and build feature correspondences.

3. Data Description

While our verification approach can be applied to a
variety of forecast and observation data, the present
application considers precipitation forecast from the
Global and Regional Assimilation Prediction System
(GRAPES) [XL07]. This model is used to generate
precipitation forecast every 3 hours for China and the
surrounding area. Then, it averages 8 ensemble simulation
results to get daily forecast 24 hours ahead of the
observation. It uses a 500 × 330 grid with a resolution
of 0.15◦ longitude/latitude, which covers the region from
latitude 15.0◦N to 64.5◦N, longitude 70.0◦E to 145.0◦E. We
plot the map of the China in a longitude/latitude coordinate
system used by our meteorologists, as shown in Figure 2.

Figure 1: Satellite image of the strong precipitation process
over China on 2008-06-14 08:00:00 GMT+8 [Chi08].

We chose the observation data provided by the
ground-based meteorological observation network of China
Meteorological Administration as verification data. In each
ground observatory, the amount of rainfall is measured
using rain gauges. After obtaining the daily reported
rainfalls from 2,400 ground observatories, the Barnes
interpolation [Bar64] scheme is used to interpolate this set
of observation points into the same grid of the forecast
system. All of the ground observatories are located within
China. For comparison, we only consider the forecast result
within mainland China and Hong Kong. Rainfall intensity is
classified by the rainfall amount in 24 hours as [Chi07]:

• light rain − when the rainfall amount is less than 10
mm;
•moderate rain−when the rainfall amount is between 10

to 25 mm;
• heavy rain − when the rainfall amount is between 25 to

50 mm;
• violent rain − when the rainfall amount is larger than

50 mm.
Usually the rainfall amount is between 0 and 25 mm.

To demonstrate the effectiveness of our verification
approach, we use the forecast produced by GRAPES during
June - August, 2008, because the summer average rainfall
in 2008 is the highest recorded rainfall in recent decades
and it is spatially uneven [Wu10]. The rainfall in some parts
of northern China was only 30 percent to 80 percent of
the normal amount, while the rainfall in Shandong province
and parts of southern China increased by 30-100 percent
from the normal amount. Moreover, there were several
strong precipitation processes [Wu10] that caused extensive
damage and great economic loss. Figure 1 shows a visible
satellite image of a strong precipitation process influencing
a large region in China on June 14, 2008. This precipitation
process is characterized by two severe frontal rain bands.
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4. Rain Bands Exploration

The Gaussian Mixture Model approach [LK10]
approximates the distribution of the rainfall using several
rain bands, each represented as an elongated ellipse
determined by a Gaussian. The parameters of the Gaussians
are optimized by maximizing the likelihood and the number
of Gaussians is determined by balancing between fidelity
and complexity. In this section, we discuss the differences
between our algorithm and the algorithm of [LK10] in these
two aspects.

4.1. Extraction of Rain Bands

Consider the data as a set of samples:
{(x1,h(x1)),(x2,h(x2)) · · · ,(xn,h(xn))} where xi is a
2D vector of latitude and longitude in latitude/longitude grid
and h(xi) is the rainfall amount at the location of xi. Using
the GMM approach [LK10], the probability of a sample x
being generated by a rain band is:

g(x|µ,Σ) = 1
2π|Σ|1/2

e−
1
2 (x−µ)T

Σ
−1(x−µ),

where µ is the center vector of the Gaussian of the rain band
and Σ is the 2× 2 covariance matrix. Hence, the rainfall
amount at the location of x is represented as the mixture of
several rain band distributions:

ĥ(x|θ) =
k

∑
j=1

p jg j(x|µ j,Σ j), (1)

where θ = (θ1, · · · ,θk) = ((p1,µ1,Σ1), · · · ,(pk,µk,Σk))
contains the parameter set of the k Gaussians, g j is the
probability of x being generated by a particular rain band j.
Since each Gaussian function integrates to one, the mixing
probability pi must satisfy the following condition:

k

∑
j=1

p j = 1 and p j ≥ 0.

This density estimation problem can be defined as
specifying the rain bands from which the samples
{(x1,h(x1)),(x2,h(x2)) · · · ,(xn,h(xn))} are most likely to
be generated to determine θ. Assuming independence
between the samples, the maximum likelihood estimation of
θ is

θ̂ = argmax
θ

n

∏
i=1

ĥ(xi|θ) = argmax
θ

n

∑
i=1

log ĥ(xi|θ).

The expectation-maximization (EM) algorithm [Bil98] is
a proven method for parameter estimation. It iteratively
improves the estimation of θ. Starting with an initial
parameter set θ, it iteratively performs the following two
steps until converging on a maximum of the likelihood
function:

• E Step:

P( j|xi) =
p jg(xi|µ j,Σ j)

∑
k
j=1 p jg(xi|µ j,Σ j)

•M Step:

p j =
1
n

n

∑
i=1

P( j|xi) µ j =
∑

n
i=1 P( j|xi)xi

∑
n
i=1 P( j|xi)

Σ j =
∑

n
i=1 P( j|xi)(xi−µ j)(xi−µ j)

T

∑
n
i=1 P( j|xi)

,

where P( j|xi) is the probability of the sample xi belonging
to the jth rain band.

Here, we use the greedy EM algorithm [VVK03], which
does not require the user to specify the initial parameters.
Instead of starting with a configuration of all Gaussian
components and improving upon this configuration with
EM, it builds the Gaussian mixture adaptively. Starting with
a single component whose parameters are easily computed,
inserting a new component and updating the complete
Gaussian mixture using EM algorithm are alternatively
performed. Figure 2 shows the extracted rain bands from the
forecast data on August 2, 2008 using this greedy algorithm.
Compared to Figure 2(a), a small rain band located in North
China is extracted in Figure 2(b), while Figure 2(c) shows
a thin rain band located in Tibet which does not appear in
Figure 2(b).

4.2. Estimation of the number of Rain Bands

In the greedy EM algorithm, the maximum number of
components needs to be specified by the user. Usually the
meteorologists have some idea about the maximum number
of rain bands over a region. However, it is difficult for
them to find the appropriate number of rain bands each day
because it varies with time.

In [LK10], a BIC type model selection procedure,
Minimum Description Length (MDL) [RHRP98] to be
precise, is introduced to determine the number of rain
bands. As they mentioned, the optimal number of rain bands
produced by this model is usually in the order of hundreds.
However, their solution fixes the number of rain bands to
three.

A fundamental objective in MDL is to balance model
fit versus model complexity. Hence, the description length
consists of two parts: the fit of the model to the data and the
complexity of the model. For GMM, the former is the log
likelihood of the data under the model, while the latter is
the number of free parameters. Thus, the estimation of k in
Equation 1 is based on the minimization of the expression:

MDL(k,θ) =−
n

∑
i=1

log ĥ(xi|θ)+
1
2

λL log(2n). (2)

In our case of a k-component 2D GMM, the number of
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Figure 2: Using the greedy EM algorithm to extract rain bands with different number of Gaussians and selecting the optimal
number of rain bands with weighted MDL for the forecast data on August 2, 2008. (a) 3 rain bands; (b) 4 rain bands; (c) 5 rain
bands; (d) the minimal description lengths of 8 mixtures.

free parameters is k−1 for prior probabilities, 2k for means
and 3k for covariance due to the symmetry of Σ, therefore
L = 6k− 1. λ is the weight between the model fidelity and
complexity. With a small λ, there could be hundreds of
Gaussians to approximate the distribution and co-estimation
would be far more complex. Empirically, much fewer large
components (more than three however) are required for
forecast verification. This observation is also confirmed
by [LK10]. To balance the two needs, we set λ to 350 which
results in the number of components between 2 and 6.

With a pre-specified maximum number of rain bands, the
greedy EM algorithm sequentially calculates a description
length for each trained mixture. Then, the mixture with the
minimal MDL is selected. Figure 2(d) shows the minimal
description lengths of 8 different mixtures extracted from
the forecast data on August 2, 2008. It can be seen that the
four rain bands approximation is the optimal as shown in
Figure 2(b). This example also demonstrates that the MDL
is able to effectively determine the number of rain bands
automatically in practice.

4.3. Visualization of Rain Bands

Following the standard of the China Meteorological
Administration on the classification of rain gauges [Chi07],
we apply the color map provided by meteorologists to the
rainfall data (Figure 2). Other choices of the color map (for
example ColorBrewer [HB03]) can be easily implemented.
For intuitive rain bands exploration, we encode each rain
band’s associated Gaussian with an ellipse. The center of
the ellipse is the mean value µ, and other parameters can
be computed by applying the singular value decomposition
algorithm to the symmetric matrix Σ

−1:

Σ
−1 =

[
a b
b c

]
=

[
−cos(φ) sin(φ)

sin(φ) cos(φ)

][
σ1 0
0 σ2

][
cos(φ) −sin(φ)
sin(φ) cos(φ)

]T

where 1√
σ1

and 1√
σ2

are the radii along the major and
minor axes, and φ is the angle which rotates the coordinate

axes to the major axis, obtained from the major eigenvector
orientation. In other words, φ represents the orientation of
the rain band. Due to its importance in the analysis of
precipitation, we use the white line to highlight the major
axis. The color of the ellipse contour is determined by the
average rainfall amount in its covered range:

ω =
1
N ∑

i
h(xi),

where h(xi) is the rainfall amount of the point xi located in
the ellipse and N is the number of points in the ellipse. Then
the color of the ellipse contour can be obtained by mapping
this average intensity to the color map.

5. Co-estimation of Rain Bands

Inspired by the co-segmentation based correspondence
determination [ČMP09], we propose a co-estimation
algorithm which simultaneously extracts rain bands and
builds correspondences between them. Figure 3 shows the
pipeline of this algorithm.

5.1. GMM-based Co-Estimation

The GMM-based co-estimation consists of three stages.
First, the forecast and observation data are merged together
by taking their average. Then rain bands are extracted from
the averaged data. Through this operation, similar portions
of these data are emphasized and bias toward each other is
introduced. The resulting extracted rain bands include the
ones shared by both and the ones that belong to just one of
the data, as illustrated in Figure 3(c). Then, the common and
distinctive rain bands are distinguished for each data using
again a model fidelity and complexity check. For example, as
illustrated in Figure 3(c) and Figure 3(d), the rain band at the
northern east China does not contribute to the model fidelity
and thus removing it will only reduce the complexity. Hence
it is identified as a false rain band. Finally, the remaining
rain bands for each data are refined using the EM algorithm
to maximize the likelihood, illustrated in Figure 3(f) and
Figure 3(g).
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Figure 3: The pipeline of our co-estimation algorithm illustrated on the forecast and observation data on August 5, 2008. (a,b)
The rainfall distribution of the forecast and observation, respectively; (c) the averaged distribution of forecast and observation
and its corresponding rain bands; (d,e) the initial rain bands for the forecast and the observation, respectively; (f,g) the refined
rain bands of the forecast and observation, respectively. The white major axes indicate matched rain bands and gray unmatched.

Average GMM To guarantee all rain bands in the forecast
{h f

1 , · · · ,h
f
m} and observation {ho

1, · · · ,h
o
m}, where m is the

number of grid points, can be extracted, we first combine
them into one data set {ha

1, · · · ,h
a
m} using the average

operator:

ha
i =

h f
i +ho

i
2

,

and then extract several rain bands from this data in the form
of the GMM {θa

1, · · · ,θ
a
k}:

ĥa(x|θa) =
k

∑
j=1

pa
j g j(x|µa

j ,Σ
a
j). (3)

We name this GMM the average GMM. Figure 3(c) shows
the extracted rain bands.

Initial GMM With this average GMM, the initial GMM
for each data can be obtained by checking whether the rain
band represented by the jth Gaussian in the average GMM
appears in this data. After calculating the description length
MDL(k,θa) with the average GMM for this data, we then
define a new model with parameters θ j = {θa

i }k
i 6= j. With this

new model, we calculate a new description length for this
data MDL(k− 1,θ j). If MDL(k− 1,θ j) < MDL(k,θa), we
assume the jth Gaussian does not appear in the data, because
its contribution to the term of log likelihood is smaller than
the model complexity. Otherwise, this Gaussian is valid.
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After testing each Gaussian for forecast and observation
data, we obtain the initial Gaussians θ

o and θ
f for them:

h̄o(x|θo) = ∑
j∈So

pa
j g j(x|µa

j ,Σ
a
j),

h̄ f (x|θ f ) = ∑
j∈S f

pa
j g j(x|µa

j ,Σ
a
j), (4)

where So and S f consist of the indices of the Gaussians
whose corresponding rain bands appear in the observation or
forecast, respectively. Since both So and S f are subsets of the
original indices, the correspondences between the rain bands
in the forecast and observation are naturally established. In
order to distinguish between the matched and unmatched
rain bands, the major axis of the matched rain band is
colored in white and the unmatched in gray. Figure 3(d,e)
show an example, where the rain band in northeast China is
removed in Figure 3(d) and the rain band in eastern China is
removed in Figure 3(e).

Refined GMM By individually refining the initial GMM
of either forecast or observation data with the EM algorithm,
a refined GMM can be obtained which maximizes the
likelihood separation of different rain bands:

ĥo(x|θo) =
ko

∑
j=1

po
j g j(x|µo

j ,Σ
o
j)

ĥ f (x|θ f ) =
k f

∑
j=1

p f
j g j(x|µ f

j ,Σ
f
j ), (5)

where ko and k f are the numbers of rain bands in the
observation and forecast, respectively. With this refinement,
the rain band in South China is enlarged in Figure 3(f) and
narrowed in Figure 3(g).

Since the meteorologist is interested in the rain bands
which may bring heavy rains, we remove any Gaussian
whose average rainfall amount is less than a specified
threshold. We also remove the Gaussian ellipses whose
covered areas are smaller than a threshold, because the
meteorologist assumes the corresponding rain band is caused
by local precipitation in these cases and not useful for the
analysis of the overall distribution of the rainfall. Due to
these two conditions, the small rain band in Figure 3(d) is
removed in Figure 3(f).

5.2. Verification of Rain Bands

To quantitatively measure the differences between rain
bands, the matched and unmatched rain bands are
compared in different ways. Since the parameters that
the meteorologists mainly concern about are the centroid,
average intensity, and orientation of the rain band, we denote
them as r = {µ,ω,φ}. For k matched rain bands with
parameters r f = {µ f

i ,ω
f
i ,φ

f
i }

k
i=1 and ro = {µo

i ,ω
o
i ,φ

o
i }k

i=1,
we calculate the errors between the parameters of each pair

of rain bands in the forecast and observation:

e(µix) = µ f
ix −µo

ix ,

e(µiy) = µ f
iy −µo

iy , (6)

e(ωi) = max(ω f
i /ω

o
i ,ω

f
i /ω

o
i )−1,

e(φi) = min(φ f
i −φ

o
i ,180−φ

f
i +φ

o
i ).

where µx and µy are defined by latitude and longitude,
respectively. These errors measure the deviation between a
pair of rain bands.

To give an overall error for a pair of matched rain bands,
we weight each error with the constants in [LK10] and sum
the absolute values of them as:

e(r f
i ,r

o
i ) = 0.3∗min(

e(µix)

100
,1)+0.3∗min(

e(µiy)

100
,1)

+0.5∗ e(ωi)+0.2∗ e(φi)/90. (7)

The overall forecast error of k matched rain bands is
computed as the average of all rain band errors weighted by
the area of the corresponding rain band in the observation.

If an unmatched rain band appears in the forecast, it
corresponds to a false alarm; if it appears in the observation,
it corresponds to a missing event. The rain band based false
alarm rate is defined as the ratio between the number of valid
points in the unmatched rain bands and all the valid points,

FAR =
Nu f

N f
, (8)

where Nu f is the number of valid points covered by the
unmatched rain bands in the forecast and N f is the number
of all valid points covered by the extracted rain bands in
the forecast. Here "valid" means a point is located in the
rain band and the rainfall amount at the point is larger
than a specified threshold. Similarly, the missing rate can be
defined as,

MR =
Nuo

No
, (9)

where Nuo is the number of valid points covered by the
unmatched rain bands in the observation and No is the
number of all valid points covered by the extracted rain
bands in the observation.

6. Spatial-Temporal Exploration of Forecast
Performance

With the co-estimation, several error indicators are
calculated such as the errors between matched rain bands,
the false alarm ratio (FAR), and the missing ratio (MR) for
a time sequence of forecast and observation data. These
indicators can help the user to quantitatively evaluate the
forecasts and find abnormal ones to investigate further. We
provide a novel framework for visualization and exploration
of these indicators.
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Figure 4: The user interface of our system. The comparison view is outlined in yellow, the ThemeRiver view in purple, the time
series curve view in red, the statistical view in green, and the parameters control area in blue. The verification result of June
16, 2008 in the comparison view is indicated by a pink selection bar in the time series view.

6.1. User Interface

The proposed rain band based verification facilitates an
informative overview as seen in Figure 4: a side-by-side
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Figure 5: The side-by-side view and blending view to show
comparison of the forecast and observation data on June 16,
2008. (a,b) Side-by-side view; (c) Blending the rain band in
observation data to forecast data with the blending ratio 0.7;
(d) Blending the rain band in forecast data to observation
data with the blending ratio 0.7.

comparison view (outlined in yellow), a linked trend view
(outlined in brown) consisting of a ThemeRiver view
(outlined in pink) and a time series curve view (outlined in
red), a statistical view (outlined in green), and a parameters
control area (outlined in blue). The differences in the rain
bands from forecast and observation can also be examined
in the blending view. The main idea of combining these
views is inspired by Tufte’s macro/micro principle [Tuf83]
for the purpose of showing the individual verification
while conveying an overview. The comparison view and
the statistical view are the micro views for displaying
the verification result of key frames of the forecast and
observation sequences. The parameters control area contains
the maximal number of rain bands, the intensity threshold
for rain band and the size of the rendered image.

ThemeRiver view We implemented a simplified version
of ThemeRiver [HHWN02] that stacks multiple time series
plots in one view. This view helps us see not only the
trends of individual variables but also the cumulative trend
of several variables. Here, there are two kinds of trends,
which represent the forecast quality based on matched and
unmatched rain bands, respectively. To reveal the overall
error between matched rain bands, center error in x and y
directions, intenstiy error, and angle error all are represented
as the correspondng weighted terms in Equation 7 and
are rendered as four themes in one trend. The other trend
consists of the metrics of FAR and MR, which represents
the changing of the numbers of false and missing alarms.
In Figure 4, the ThemeRiver view shows the four errors
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of matched rain bands during June - August 2008. We can
easily see that the intensity error is the largest and the center
error in y direction is the smallest.

To help the user explore the temporal trend, several
interactions are provided. First, the user can reorder the
themes to emphasize important metrics. Second, the theme
of interest can be highlighted by clicking. Third, the user can
focus on a specific time slice with a selection bar.

Time series curve view Although the ThemeRiver
is very effective in revealing the cumulative extent of
several attributes, it is not effective in showing the trend
of individual attribute which is sometimes important for
analysis. For this purpose, we provide a time series curve
view as shown in Figure 4. To highlight important patterns
like the peaks and crests and suppress the aliasing effect, a
Gaussian filter is used to smooth the time series curves.

ThemeRiver view focues on revealing the relative
differences among four errors, while time series curve view
shows the trend of each error. To help the user explore both
types of the information simultaneously, these two views are
linked together. Once the user selects a label at the top of
ThemeRiver view, its time series curve is shown and the
corresponding theme in ThemeRiver view is highlighted.
When the user selects a theme in ThemeRiver view, its
corresponding time series curve is shown. The color of the
curve is set to the same as its corresponding theme in the
ThemeRiver view.

Side-by-Side comparison view As noted by Robertson
et al. [RFF∗08], side-by-side comparisons are less sensitive
to visual clutter, but require more time to scan all windows
and more mental overhead to compare the differences. To
alleviate this problem, the diameter of the unmatched rain
band is colored in white while the matched are in red.
Meanwhile, we highlight the matched one in the other
data when the user selects a rain band in the forecast or
observation data.

Blending view The side by side view requires users to
mentally combine the two images in their minds when they
compare the rain bands in forecast and observation data.
This could be demanding, time consuming, and inaccurate,
especially when many small rain bands appear in the map.
Therefore, we also provide an alpha blending of the two
kinds of rain bands to get a better observation at some
overlapped rain bands when forecast and observation results
simultaneously appear in the same view. In a single view, the
user can set the background to either forecast or observation
and then adjust the blending ratio with a sliding bar.
This blending eases the user’s task of comparing shape,
orientation, and locations of matched rain bands.

6.2. Linking between Views

Using interactive brushing, the time sequences can be
filtered into a specific time range or a time slice. When

brushing one of the ThemeRiver view or the time series
curve view, the other views will be automatically updated.
Once a time slice is selected from this range, the comparison
view and the statistical view will show the verification result.
When the user explores the rain bands in the comparison and
blending view, the errors corresponding to the selected pair
of rain bands are highlighted in the statistical view. On the
other hand, when the user explores the statistical view, the
corresponding pair of rain bands will be highlighted when
he/she selects one error term.

Figure 4 shows an example where the time slice is
indicated by the pink line in the time series curve view.
In this example, the verification result for June 16, 2008 is
selected, which has the largest forecast error in angle error of
rain bands. From the comparison views in Figure 5, we can
see that two rain bands are matched but the directions are
very different. Selecting this pair of rain bands in the forecast
or observation, its corresponding error is highlighted in the
statistical view.

7. Expert Evaluation

Two meteorologists used our system to perform visual
analysis of the forecast and observation data during June -
August, 2008. Before analyzing the forecast performance,
the meteorologists conducted several tests to verify our
rain bands extraction and matching algorithm. Then, they
analyzed the forecast performance on different levels and
investigated which factors the forecast system should
emphasize or deemphasize.

7.1. Extraction of rain bands

In this section, the meteorologists applied our method on
several data sets to verify whether our method can extract
reasonable rain bands. We present two examples here.

Figure 6(a) is the observation data on June 16, 2008. The
meteorologists, according to their prior knowledge, know
there were two rain bands mutually perpendicular to each
other. From the orientation of our extracted rain bands,
we can see the intersection angle between them is about
90◦ (86◦ to be exact), which confirms the knowledge of
the meteorologists. Figure 6(b) is another example, where
the meteorologists thought there was one rain band from
the northeast of China to South China while our method
separates it into two rain bands. Although our result is
not exactly the same as the meteorologists’ preconception,
it is still reasonable, because there are two centroids of
precipitations. The one from the northeast of China to North
China can be classified as heavy rain, while the intensity of
the other from Hubei province to Guangxi is not so strong.
The other two rain bands are also reasonable where the one
in the corner of northeast of China is caused by frontal
predications and the one in southwest is caused by the ocean
circulation.
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Through these tests, the meteorologists concluded that our
extracted rain bands are reasonable. Moreover, they pointed
out that the highlighted major axis of rain bands is useful in
getting visual perception of the orientation of rain bands.
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Figure 6: Two examples of rain bands exploration. (a) two
mutually perpendicular rain bands; (b) four smaller rain
bands.
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Figure 7: Two examples of using our rain band based
verification of precipitation forecast. (a) a missing rain band
with a gray major axis shown in the observation; (b) a false
rain band with a gray major axis shown in the forecast.

7.2. Matching of rain bands

By using our proposed co-estimation algorithm, the
correspondence of rain bands in forecast and observation
can be built naturally. Correct correspondence can help the
meteorologists to compare the formations of rain bands.
Here, we present two examples where the meteorologists
verified the validity of the correspondences with our method
(Figure 7).

Figure 7(a) shows the rain band based verification result
on July 15, 2008. Obviously, the rainfall map of the forecast
indicates that there is a rain band missing in the forecast.

In this result, we can see that two rain bands are matched
but they are much larger in the forecast than the ones in
the observation. And one rain band in the Sichuan Basin is
missing in the forecast. Therefore, the correspondences are
reasonable. Figure 7(b) is a slightly more complex example.
Not only does it have a false rain band, but also the rain band
in the southwest of China in the observation may match to
the false rain band because they are more similar in size.
Nevertheless, our co-estimation method builds the correct
correspondence and suggests that the center of the matched
rain band located at the southwest of China in the forecast
should move to the west a little.

After extensively testing this issue on all pairs of
the forecast and observation, our co-estimation algorithm
gets correct matching in 89 out of 92 tests. Thus, the
meteorologists finally concluded that our method gives the
right correspondence most of the time, which is particularly
useful in helping them analyze the difference between
forecast and observation. Besides, they also observed that
the blending view ameliorates the task of comparing
matched rain bands, making their analysis work more
convenient.

7.3. Forecast Performance Analysis

By linking time series with spatial distributions of rain
bands, the meteorologists can perform spatial-temporal
analysis of the forecast sequence. Here, the meteorologists
analyzed the forecast performance on two levels by setting
two different thresholds of rainfall intensity at 5mm and
25mm. The former corresponds to the distribution of all
kinds of precipitation, while the latter corresponds to the
heavy and violent rains.

After setting the threshold to 5mm, Figure 9(a,b) shows
the errors between matched rain bands and the errors
of unmatched rain bands (FAR, MR), respectively. By
observing their corresponding themes in Figure 9(a), we can
see that the center error in y direction plays a minor role
while the intensity error dominates the ThemeRiver view.
It can be seen that they (Figure 8(b) and Figure 8(c)) are
both biased toward the positive direction by inspecting the
corresponding time series curves (Figure 8). In contrast,
most of errors in the x direction (Figure 8(a)) are negative.
The meteorologists concluded that the moving speeds of the
forecasted fronts are a little off. Further investigation and
experiments are needed to identify the reasons.

By analyzing the time series curve, we can clearly identify
several outliers, which are more than two standard deviations
away from the mean. For example, there are four outliers
marked in red in the curves of the intensity error and the
center error in y direction. After checking the side by side
view of the corresponding data sets, we concluded that this is
caused by the definition of our error indicator. The shape of
the rain band in this case is close to a circle, no signification
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Figure 8: Time series curves of four error indicators of matched rain bands with the threshold set at 5mm, where outliers in
(b,c) are marked in red.
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Figure 9: The ThemeRivers of errors of rainfall intensity between matched rain bands and errors introduced by unmatched rain
bands (FAR and MR) with different thresholds. (a,b) The threshold set at 5mm; (c,d) The threshold set at 25mm.

orientation is shown. However, our error indicator always
uses the direction of major axis, giving misleading results in
this case. New definition of this error is under consideration.

From Figure 9(b), we can see that the false alarm rate is
higher than the missing rate in the first half of June; after that
the false alarm rate is close to the missing rate. Figure 9(c,d)
show the ThemeRiver views of corresponding errors as the
threshold is set to 25mm. From Figure 9(c), we can see the
intensity error still dominates the ThemeRiver view while
the center error in y direction is the smallest as in Figure 9(a).
Since our domain scientists assume the rainfall intensity is
less than 5mm can be ignored, we can conclude that many
rainfalls are missed by the forecast system.

Combining Figure 9(c) and Figure 9(d) together, we can
find the errors between matched rain bands disappear while
the false alarm rate is high in some days, for example,
June 1, July 3, and August 29. Compared to Figure 9(b),
the false alarm rate and especially the missing rate are
higher in Figure 9(d). This indicates that the forecast system
performs poorly for heavy rain during this time period. This
is an unexpected result. After checking with our domain
scientists, there are climate anomalies in summer of 2008
in China and several rainstorms are unexpected.

7.4. Expert Feedback

Our framework is iteratively refined based on the requests
and the feedback from the meteorologists. After explaining

the visualizations we created for their data, they were able
to identify issues. For example, we only designed the time
series curve view to show four errors defined in Equation 6
initially. One meteorologist pointed out that the relative
differences among different errors are important for them
in the diagnosis of the forecast system. Considering this, we
linked ThemeRiver view and time series curve view together
to simultaneously depict the relative differences and absolute
errors.

The informal feedback from meteorologists confirms
that our visual analysis framework offers both a good
overview of the forecast performance and detailed patterns
about rain bands. In particular, they found our side-by-side
and blending views are quite useful for them to check
the differences between the rain bands in forecast and
observation data. The linked views between ThemeRiver
view and time series curve view help them examine the
trends of the individual errors and the relative frequency of
the four errors at the same time.

8. Conclusion and Future Work

This paper introduces a GMM based co-estimation method
for verification of the precipitation forecasts. By using
the GMM to extract rain bands from the forecasts
or observations, the spatial distribution of the rainfall
is revealed. A new co-estimation scheme facilitates
simultaneous analysis of the forecasts and observations.
With a novel visual analysis framework, the spatial-temporal
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trend of the verification results can be explored efficiently.
Using the forecast and observation data of China during
June - August 2008, the effectiveness of our system has been
verified by meteorologists.

However, there are still some limitations in our work.
The current GMM based rain band extraction is exclusively
based on the distribution of rainfall, while the meteorologists
sometimes consider other factors, such as the wind.
Incorporating such kind of factors into our algorithm is a part
of future work. Second, our GMM co-estimation algorithm
relies on the assumption that the rainfall distributions in
the forecast and observation are similar. However, this
assumption is not always true. Future work is needed to
accommodate for rain bands of disparate sizes.
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