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Abstract
Due to 3D occlusion, the specification of proper opacities in direct volume rendering is a time-consuming and
unintuitive process. The visibility histograms introduced by Correa and Ma reflect the effect of occlusion by mea-
suring the influence of each sample in the histogram to the rendered image. However, the visibility is defined on
individual samples, while volume exploration focuses on conveying the spatial relationships between features.
Moreover, the high computational cost and large memory requirement limits its application in multi-dimensional
transfer function design.
In this paper, we extend visibility histograms to feature visibility, which measures the contribution of each feature
in the rendered image. Compared to visibility histograms, it has two distinctive advantages for opacity specifica-
tion. First, the user can directly specify the visibilities for features and the opacities are automatically generated
using an optimization algorithm. Second, its calculation requires only one rendering pass with no additional mem-
ory requirement. This feature visibility based opacity specification is fast and compatible with all types of transfer
function design. Furthermore, we introduce a two-step volume exploration scheme, in which an automatic opti-
mization is first performed to provide a clear illustration of the spatial relationship and then the user adjusts the
visibilities directly to achieve the desired feature enhancement. The effectiveness of this scheme is demonstrated
by experimental results on several volumetric datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Direct volume rendering has proven to be an effective means
of discovering meaningful features in volumes. By speci-
fying appropriate opacities for extracted features, the ex-
terior and interior features can be simultaneously revealed
in a semi-transparent manner. However, in practice it is
rather difficult and time-demanding to specify appropriate
opacities, due to 3D occlusion between features. The main
reason is that interaction in the transfer function domain
is mainly guided by careful observation of changes in the
rendered image [KKH01]. Decisions based on this kind
of adjustment are subjective and view-dependent. More-

† Corresponding author, the first two authors contributed equally.

over, there is no quantitative metric to measure the influ-
ence of each feature to the rendered image. While most
of the previous research focused on how to extract fea-
tures [RBS05, MWCE09, WCS∗10], very little attention has
been paid to quantitative analysis of the visibility of classi-
fied features in the rendered image.

Recently, visibility histograms [CM11] have been intro-
duced to guide transfer function design, which represent the
contribution of each sample in the histogram to the rendered
image. This metric is computed by measuring the visibility
of each sample in each view-oriented slice and then adding
the visibility to the corresponding bin in the histogram.
As the dimension of the histogram increases, its compu-
tational performance decreases drastically. Meanwhile, the
histogram space is often classified into several continuous
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regions, of which each region represents a feature [KKH01].
The user is more concerned with the influence of each fea-
ture to the rendered image. Therefore, calculating the visi-
bility for each sample seems to be unnecessary, especially
for multi-dimensional transfer function design.

In this paper we propose a new metric, feature visibility,
that reveals the visibility of each classified feature. Comput-
ing the visibility of a feature is simple and fast. For any num-
ber of extracted features, their corresponding feature visibil-
ities can be obtained with one additional rendering pass. By
representing feature visibilities with a bar chart, the influ-
ence of each feature on the rendered image can be intuitively
perceived. As shown in Fig. 1, when the other features are
occluded by the skin, only the skin’s visibility is larger. In
contrast, the opacity of the skin is lower than those of the
teeth and the vessel. The manipulation of the opacity transfer
function becomes more intuitive when the feature visibility
is incorporated into the interaction.

Even when guided by this metric, obtaining satisfactory
classification results for some complicated datasets still re-
quires many interactions. To further reduce user workload,
we introduce a new interaction scheme that allows the user
to set the visibility for each feature instead of directly mod-
ulating the opacity. An optimization procedure is then in-
voked to generate the opacity of each feature automatically.
This visibility-based opacity specification method is effec-
tive. In addition, we introduce summarized visibility to make
the optimization result work well for other viewpoints.

Since the optimization procedure is independent of the
definition of transfer functions, the visibility based opacity
specification can be applied to all types of current transfer
function design modes, e.g. the gradient magnitude modu-
lated transfer function. As a result, a visibility-driven opac-
ity optimization can always be applied to an existing transfer
function to provide a clear spatial depiction. The user can
then continue the iteration loop between the transfer func-
tion design and the visibility based opacity optimization. We
call this process visibility-driven volume exploration, which
equips volume exploration with a perceivable and objective
guidance and eases the user interaction.

The contributions of this paper are as follows:

• A new metric, feature visibility, that measures the con-
tribution of each feature to the rendered image, and an
efficient algorithm to calculate it (section 3).

• A feature visibility based opacity specification approach
that allows the user to directly specify the desired visibil-
ity for the feature of interest (section 4).

• A two-step feature visibility driven volume exploration
scheme that improves the effectiveness of the volume ex-
ploration (section 5).

2. Related Work

The use of multi-dimensional transfer functions has been
shown to be an effective way to accurately classify mate-
rials for both scalar and multivariate data. By analyzing the
2D histogram of data values and gradient magnitudes, Kindl-
mann and Durkin [KD98] demonstrate that the arc structures
of the 2D histogram correspond to the material boundaries.
Further exploiting this behavior, Kniss et al. [KKH01] de-
velop a set of direct manipulation widgets to define multidi-
mensional transfer functions [Lev88]. To better characterize
local structures, curvature has also been incorporated into
the transfer function domain [KWTM03]. Despite the effec-
tiveness of these approaches, they inherently lose the spatial
information. To incorporate spatial relations into the trans-
fer function design, Roettger et al. [RBS05] consider spatial
information in the process of clustering 2D histograms. Re-
cently, Correa and Ma introduce several spatial-aware prop-
erties to classify complex datasets in terms of spatial re-
lationships among features, i.e., size [CM08], occlusion
[CM09], and visibility [CM11]. For illuminating the global
structure of the volume, Takeshima et al. [TTFN05] and We-
ber et al. [WDC∗07] introduce a set of topological attributes
to design multi-dimensional transfer functions. However,
as the dimension increases, finding an appropriate transfer
function becomes more complicated.

Through analysis of the volume data, many methods have
been proposed to simplify the creation of multi-dimensional
transfer functions. Tzeng and Ma [TM04] use the ISODATA
algorithm to cluster the multi-dimensional histograms. To
effectively decompose the 2D histogram, Maciejewski et
al. [MWCE09] apply a non-parametric density estimation
technique to group voxels of similar features within the
2D histogram and Wang et al. [WCS∗10] analyze the his-
togram space with the Gaussian mixture model, which
maximizes the likelihood of feature separation. Selver and
Güzelis [SG09] introduce a self-generating hierarchical ra-
dial basis function network to initialize transfer functions
for abdominal data. In order to provide intuitive user inter-
faces for the transfer function design, Tzeng et al [TLM05]
introduce a painting interface that derives high-dimensional
transfer functions with a learning classifier and Rezk-Salama
et al. [SKK06] present high-level user interfaces which allow
the user to design transfer functions with semantics. Similar
with them, our feature visibility is a high-level quantity, mea-
suring the influence of each feature to the rendered images.

In all of the above, the quality of the transfer function
evaluated by observing its resultant image is subjective. To
make transfer function design more effective, several met-
rics have been proposed. Based on the perception princi-
ples, Chan et al [CWM∗09] introduce several image quality
measures, such as transmittance anchoring principle (TAP),
to enhance the perceived quality of semitransparent struc-
tures. The visibility histograms introduced by Correa and
Ma [CM11] act as an immediate feedback to the user re-

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

2118



Y. Wang et al. / Efficient opacity specification based on feature visibilities in direct volume rendering

Opacity Opacity
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Figure 1: Bar charts representing the visibilities of classified features in the CT facial deformity data (512× 512× 361). After
identifying four features shown as the ellipses in the 2D density vs. gradient magnitude histogram (middle), the user first sets
a large opacity for the peach ellipse to observe the skin layer (left). We can see that the other features have small visibilities.
After lowering the opacities of skin and vessel, the features visibilities are updated accordingly, where the visibility of the bones
increases (right).

garding the contribution of each sample in the final resulting
image. With this measure, the process of transfer function
design becomes more intuitive and informative. However,
computing a visibility histogram in the domain of multi-
dimensional transfer functions will become memory inten-
sive and costly to compute. In contrast, the proposed feature
visibility is feature-oriented and its evaluation only requires
one additional rendering pass for all features rather than
the expensive visibility gathering from view-oriented slices.
Furthermore, we provide a new method for opacity specifi-
cation, where the user directly specifies the desired visibility
for features of interest and the appropriate opacities are au-
tomatically obtained. This is similar to the perception-based
transparency equalization [CWM∗09], which automatically
corrects the rendering parameters based on the psychologi-
cal principles. While this work focuses on the equalization
of segmented layered structures, our scheme does not require
any pre-processing. Moreover, the proposed feature visibil-
ity not only works as a guideline for transfer function design
but can also be directly specified for the features of interest.

3. Feature Visibility

Feature visibility is inspired by the visibility his-
tograms [CM11], which measure the accumulated opacity
of each sample p to the eye position E:

V H(x) = A(x)
∫

p∈Ω
δ(p,x)e

∫ E
p τ(t)dtd p (1)

where Ω is the volume of data, τ(t) is the attenuation coeffi-
cient of a sample, A(x) is the opacity of the sample value x,
and δ(p,x) is a membership function:

δ(p,x) =

{
1 if V (p) = x
0 otherwise

(2)

where V maps the voxel p to the transfer function do-
main. Accordingly, the computation complexity of visibil-
ity histogram is proportional to the number of histogram
bins which increases exponentially with the dimension
of transfer function domain. It will be memory intensive
and time-consuming for multi-dimensional transfer func-
tions [CM11]. On the other hand, calculating the visibility
for each sample seems to be unnecessary. The volume classi-
fication is usually achieved by first specifying the regions of
the transfer function that correspond to potential features and
then setting appropriate opacities to these features, rather
than individual samples. Thus the user is concerned with the
influence of each feature to the rendered image and the pro-
posed feature visibility is a high-level quantity.

For multi-dimensional transfer functions, features are rep-
resented as subregions in the feature space. Usually, these
regions are brushed by classification widgets, which can
be overlapping or non-overlpaping. For the ith feature, the
opacity of its corresponding voxels is defined as [KPI∗03]:

αi(x) = αmax iρi(x) (3)

where x is a sampling point in the feature space, αmaxi is
the specified opacity which is the maximum within the as-
sociated classification widget. ρ(x) is a template function,
such as a constant function, a linear function, or a Gaus-
sian function. Its parameters can be interactively specified
or determined with well designed feature extraction algo-
rithms [WCS∗10, MWCE09]. After the feature extraction,
the user has to specify proper opacity to each feature to ex-
plore features of interest. For convenience, in this paper we
refer to the specification of αmax i as the opacity specifica-
tion.

As mentioned above, the user concerns the influence of
each feature on the rendered image. Hence, we first define
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a,b,c) The visibility bar charts from different
viewpoints. Notice the increase and decrease of features
visibilities, depends on the occlusion relation among them.
(d,e,f) Illustration of the visibility images of three features in
the rendered image (c). (d) The visibility image of dentine;
(e) The visibility image of enamel; (f) The visibility image of
pulp.

the absolute feature visibility for each feature:

Ṽi =
∫

s∈S
V Ii(s)ds (4)

V Ii(s) =
∫ Ls

0
αi(V (p(λs)))e

∫ λs
0 τ(t)dtdλs (5)

where S is the output image, s is the sample in S from which
a ray is cast, p(λs) is a parametric representation of the ray,
and Ls is the ray length. V Ii is the visibility image of the
ith feature where V Ii(s) is the visibility of each pixel. Since
the user concerns the relative influence, our proposed feature
visibility is a relative variable:

Vi =
Ṽi

∑n
j=1 Ṽi

(6)

For n extracted features, the accumulated visibility V Ii(s)
is discretized by means of the front-to-back composition at
discrete intervals:

α j = α j−1 +
n

∑
i=1

αi(x)(1−α j−1) (7)

V Ii, j =V Ii, j−1 +αi(x)(1−α j−1) (8)

where ∑n
i=1 αi(x) is the resulting opacity contributions from

n classification widgets, and α j−1 is the previously accumu-
lated value for opacity. As such, the visibility images of n
extracted features and the rendered image can be obtained
simultaneously. Fig. 2(d,e,f) show the visibility images of
three features in Fig. 2(c). To graphically represent the oc-
clusion relation between different features, we associate fea-
ture visibilities to a bar chart. Fig. 1 shows an example in
which the teeth are partially occluded by the skin. Lowering

the opacity of the skin leads to small increases in the teeth’
visibility, while the visibilities of the vessel and bone are in-
creased greatly.

In principle, feature visibility can be obtained as brushing
the visibility histogram into several regions and summing
the visibilities of samples in each region. If these regions
are the same size and cover the entire histogram range, the
bar chart of feature visibilities is a visibility histogram with
small number of bins. However, the calculation of feature
visibilities does not require the high dimensional visibility
histogram. Instead, an efficient volume rendering algorithm
can be employed to generate 2D visibility images using GPU
and then simply transfer the image from GPU to CPU to
calculate the feature visibilities.

Obviously, the proposed feature visibility is opacity-
dependent and view-dependent. As shown in Fig. 1, the fea-
ture visibility depends on opacities of all features. Mean-
while, it varies with viewpoints, as shown in Fig. 2(a,b,c).
From the viewpoint in Fig. 2(a) to the viewpoint in Fig. 2(c),
the visibility of the dentine gradually increases while the
enamel’s visibility decreases.

3.1. GPU-assisted Computation

Using the multiple render targets (MRT) extension, we can
handle 8 color buffers simultaneously. Thus, in total we can
render 32 visibility images with one additional rendering
pass by packing 32 visibility images into 8 floating point
RGBA textures. If the number of features exceeds 32, the
visibility images can be obtain by multipass rendering. Af-
ter obtaining these visibility images, they are read back to
the CPU for accumulation.

With all other factors such as viewpoint, opacity and light-
ing are fixed, the viewport size is the unique factor that af-
fects the performance of visibility evaluation. The procedure
of visibility evaluation consists of three steps: rendering vis-
ibility images, reading back from GPU to CPU, integration
on the CPU. Fig. 3 shows the time consumed on rendering
and reading back visibility images for the CT facial defor-
mity dataset with different viewport sizes. Due to the large
size of this dataset, a ray casting through the data takes about
100ms on the NVIDIA GeForce GTX 260 video card. Fur-
thermore, the parallel efficiency of the GPU shader also has
slight influence on the rendering performance, shown in red
in Fig. 3. The main impact of viewport size on performance
is the time consumed in reading back of the visibility im-
ages, shown in blue in Fig. 3. The integration on the CPU
can be finished in less than 5ms even for 1024× 1024 visi-
bility images.

Nonetheless, the resulting visibility is insensitive to the
viewport. This is because feature visibility is a relative vari-
able, even in a small viewport the ratio of sampled voxels of
each features is nearly the same as a large viewport. Thus,
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we use a 32× 32 viewport to calculate the visibility. How-
ever, smaller viewport may introduce some aliasing effects
for the features with high spatial frequency. Fortunately, we
have not encountered this problem in our experiments.

T
im

e 
(m

s)
 

Size of the viewport

Figure 3: The relation between the viewport size and the
time consumed in rendering and reading back visibility im-
ages for the CT facial deformity dataset (512× 512× 361).

4. Feature visibility based Opacity Specification

In volume visualization, the user explores features of inter-
est by assigning large opacities to them then continues ma-
nipulating other features’ opacities. However, direct opacity
specification is a challenging task since small adjustments
to the opacity may result in dramatic changes in the result
and usually adjustments on one feature affect appearances
of other features. Fig. 1 shows an example, where the bone
and teeth can be clearly revealed only when the opacity of
the skin is lowered to a very small value.

Because feature visibility is a high-level quantity, we pro-
pose a new opacity specification paradigm, that is, the user
specifies the desired visibility and the opacity is generated to
produce an image with the desired visibility. This is a major
difference from the semiautomatic transfer functions design
with visibility histograms [CM11], in which the user can
only set the initial transfer function not the visibility.

Since feature visibility is a normalized variable, the sum
of all feature visibilities is always kept 1. To achieve fo-
cus+context effect, we allow the user to fix some feature
visibilities and adjust the others. After setting the desired
visibilities Vi for features, the specification of the opacity
set Θ = {αmax1,αmax2, · · · ,αmaxn} can be cast into an opti-
mization problem:

argmin
Θ

n

∑
i=1

(Vi −Vi)
2 (9)

where Vi is the visibility of the ith feature defined in Equa-
tion 6, and αi satisfies the following constraints:

0 ≤ αi ≤ 1 (10)

To minimize this energy function, we use an active set
algorithm (ASA) [Pol69], which is an iterative method that
distinguishes the set of active constraints from the inactive
ones. ASA is a general optimization algorithm especially
suited for solving box constrained optimization problems.
Moreover, it can achieve global convergence with some
loose assumptions. In other words, the iteration is guaran-
teed to converge to a local minimum no matter what the ini-
tial guess is. This property is very useful in the opacity op-
timization procedure where the user usually does not have a
clear idea about what initial opacities are close enough to
ensure convergence. The traditional conjugate gradient or
steepest descent methods do not have this property. Real-
ization of this algorithm requires the calculation of partial
derivatives and an initial solution. Because it is not easy to
find an analytical expression for the gradient in Equation 9,
we calculate partial derivatives of the objective function us-
ing a second-order central difference scheme.

Meanwhile, we set the initial solution with the specified
visibilities, because visibility is often positively correlated
with opacity. With this configuration, the example in the op-
timization of Fig. 4(b) to Fig. 4(c) takes 38 steps to converge.
In all the other experiments the optimization converges in
less than 20 steps.

Because feature visibility is integrated on the spatial ex-
tents of its corresponding feature, a small-sized feature usu-
ally has a small visibility. Hence, setting the same speci-
fied visibility for each feature favors small-sized features. As
shown in Fig. 4(b), large-sized features’ opacities are greatly
decreased to make the teeth region have the same visibility
as other features. In order to make all features clear, the user
can set a smaller specified visibility for the teeth (Fig. 4(c)).

4.1. Multi-View Optimization

Because the visibility is view-dependent, the visibility based
opacity specification cannot guarantee that all features have
the same visibilities in other viewpoints. It is desirable that
the obtained opacities can lead to the similar visibility under
different viewpoints.

To achieve the visibility invariant multiple-view visual-
ization, one of the most straightforward methods is to solve
Equation 9 at each viewpoint. Fig. 5 shows the separate op-
timization results for two different viewpoints. Comparing
Fig. 5(b) with Fig. 5(a), we see that the re-optimization re-
sult nearly achieves the desired visibilities and clearly shows
the damaged regions near the teeth. However, the result in
Fig. 5(b) is incoherent with the result in Fig. 4(c), which
imposes some overhead on the user in the data exploration.
This point is also demonstrated by the comparison of the op-
timization results in Fig. 5(b) and Fig. 5(c).

Allowing for small variations in the visibilities, we intro-
duce the summarized visibility to accomplish this optimiza-
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Figure 4: The results of visibility based opacity specification for the CT facial deformity dataset. (a) The initial rendered image
and its corresponding feature visibilities. (b) The obtained opacities: 0.999, 0.011,0.035, and 0.013 for each feature and its
resulting image and visibilities produced by specifying the same visibilities 0.25 for four features (white lines). (d) The resulting
image, opacities, and feature visibilities produced by specifying the visibilities 0.132, 0.178, 0.027 and 0.663 for four features
(white lines), respectively.

(c)(b)(a)

Opacity Opacity Opacity

Visibility Visibility Visibility

Figure 5: View-dependent nature of the visibility-based
opacity specification for the CT facial deformity dataset. (a)
The result produced by changing the viewpoint in Fig. 4(c),
where the differences between the evaluated visibilities and
the specified visibilities (white lines) are larger. (b) The op-
timization yields a better depiction of the region near the
teeth, by decreasing the opacity of the vessel and bone. (c)
The optimization result of another viewpoint where the dam-
aged regions in the head are clearly shown.

tion, defined as:

Vi = G(V 1
i ,V

2
i , · · · ,Vm

i ) (11)

where m is the number of viewpoints, V j
i is the visibility

of the ith feature under the jth viewpoint, and G is an op-
erator, like maximum, minimum or mean. For convenience,
we use the mean operator. To clearly reveal the spatial re-
lationship among extracted features, m viewpoints can be
selected by information-theoretic metrics [BS05, VFSG06]
or manual specification. With this summarized visibility, the
multi-view optimization can be performed as a single-view
optimization. Fig. 6 shows the result of the optimization re-
sult of a summarized visibility for three specified directions.
Although the optimized ones and the desired visibilities are
not identical, the resulting images appropriately depict the
damaged regions near the head and teeth.

4.2. Gradient Modulated Transfer Function

The definition of feature visibility is independent of trans-
fer functions, and thus the optimization framework supports
various transfer function design modes. Gradient magnitude
opacity-modulation is an efficient way to highlight bound-
aries between materials [ER00]. It defines the opacity of
each voxel as α|∇N(P)|k , where |∇N(P)| is the gradient at
the sample point P and k controls how the opacity is scaled
by the gradient magnitude. For convenience, we name the
2D transfer function without gradient modulation standard
2D transfer function.

To adaptively enhance features, we allow the user to mod-
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Figure 6: The obtained opacities and their resulting images produced by using the summarized visibility for the CT facial
deformity dataset. Although the evaluated visibilities from three viewpoints are not completely equal to the specified ones, the
resulting images not only depict the damaged regions but also preserve the coherence.

ulate different features. The opacity of the samples of the ith
feature is defined as

αi(x) = αmaxiρi(x)|∇N(P)|ki (12)

where ki is constant for the ith feature. For the traditional
transfer function design, these kinds of transfer functions re-
quire the user to adjust the extra dimension for each fea-
ture. Fortunately, in our approach, the user interaction re-
mains simple by specifying the desired visibility for each
feature. Fig. 9 gives a comparison of the optimization results
produced by the standard 2D transfer function and the gradi-
ent modulated 2D transfer function. Obviously, the gradient
modulated 2D transfer function reveals the structure near the
core in the supernova more clearly.

5. Feature Visibility driven Volume Exploration

Using an arbitrary classification approach such as the gra-
dient analysis [KD98] or statistical analysis [MWCE09,
WCS∗10], several meaningful features can be efficiently ex-
tracted from an input volume. The user can then explore
these features by specifying appropriate opacities in two
manners: visibility assisted and visibility based opacity spec-
ification. In the former, the opacity specification is guided by
the visibility, which immediately indicates to the user the in-
fluence of each feature in the rendered image. Fig. 1 shows
an example where the user can intuitively perceive the visi-
bility change of each feature after lowering the opacity of the
skin. However, finding appropriate opacities is still a trial-
and-error process.

Visibility Equalizer 

Specific 
Equalization

Automatic
Equalization

Feature
Extractor

Extracted 
Features

Volume 
dataset

Rendered 
Image

Figure 7: The pipeline of our volume exploration scheme.

We focus on the latter: visibility based opacity specifi-
cation. Here, the features are already extracted by some al-
gorithms [MWCE09, WCS∗10] or specified by other users,
the user just wants to enhance features of interest. Fig. 7
shows the pipeline of this scheme, which consists of two
steps: an automatic optimization and iterative specific op-
timization. The first is performed automatically by setting
the specific feature visibility to 1/n for each feature. Al-
though its produced result may emphasize small-sized fea-
tures, almost all features can be clearly shown. After gaining
an overview from this result, the user iteratively adjusts the
visibilities and optimizes the opacities. Based on the classi-
fied features, this exploration scheme help the user quickly
find proper opacities to clearly reveal the spatial relationship
among extracted features. If the user finds the classification
result needs improvement after the optimization, he/she can
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Figure 8: The optimization result for the Horseshoe Vortex dataset classified with various widgets. (a) The transfer function
consists of three classification widgets. (b) The rendering result with the initial opacity specification. (c) The initial optimization
result. (d) The optimization result produced by specifying the visibilities to be 0.269, 0.045, and 0.686 for the three features,
respectively.

adjust the classification while the feature visibility can quan-
titatively measure the influence of each feature to the ren-
dered image. Normally, the user can accomplish the volume
exploration in several iterations.

5.1. Medical data

To demonstrate the effectiveness of our approach in surgery
repair, we conduct an experiment on the CT facial defor-
mity dataset. Initially, the user sets the opacities using a set
of pre-defined values for four extracted features. Fig. 4(a)
shows its resulting image and visibilities. We notice that the
bone and a portion of the teeth are occluded by the skin. This
point is also demonstrated by the visibility chart, where the
skin’s visibility is much larger than others. After applying
the automatic optimization, Fig. 4(b) shows the overview of
these four features. Compared to Fig. 4(a), these four fea-
tures are visible but not clearly shown. The reason is that the
size of the feature colored in cyan is very small, while its
corresponding default visibility is fairly large. The user then
decreases its specified visibility and increases the bone’s vis-
ibility, yielding a more pleasing result (Fig. 4(c)) where the
spatial relations of four features are clearly shown. However,
we still can see something abnormal in the teeth region but
not clearly in the current viewpoint. Some parts colored in
cyan near the head cannot be seen.

To inspect the damaged regions more clearly, the user first
selects three other viewpoints and then obtains the optimiza-
tion results for each viewpoint as shown in Fig. 5. Then, the
user employs the summarized visibility to perform optimiza-
tion to achieve coherent feature enhancement. Fig. 6 shows
the coherent results where these damaged regions are still
clearly shown. From this experiment, we can see that the
summarized visibility not only helps the user obtain the de-

sired result but also preserves the coherence between neigh-
boring viewpoints.

5.2. Simulated Data

To demonstrate the effectiveness of our approach, an ex-
periment was conducted on the Horseshoe Vortex dataset
(256× 256× 401). This data consists of two layers of vor-
tex tubes and several intersections of vortex tubes. Because
the surface of the intersections is very thin and the inner
layer is composed of vortices, we use the inverse triangular
widget and elliptical widgets to capture them, respectively,
as shown in Fig. 8(a). Fig. 8(b) shows the initial classifica-
tion results after setting the opacity to 0.5 for each feature.
We notice that interior vortex tubes and vortex intersections
are occluded by the exterior vortex tubes. Fig. 8(c) shows
the result of the automatic optimization. The resulting im-
age clearly shows the inner vortex tubes and vortex intersec-
tions, while providing the outer shape of the features as a
context. Fig. 8(d) shows the effect of shifting the visibility
to the outer layer. The opacities are adapted interactively to
reflect the change in the visibilities. From this experiment,
we can see that the visibility based opacity assignment can
work well with different classification widgets.

Although the spatial relationship between vortex tubes is
very complicated, no strong occluder is present in the data.
For some datasets produced by hydrodynamic simulations,
some features of interest are occluded by the outer layer. An
example is shown in Fig. 9(a), where the supernova dataset
has been classified into six features: three outer layers, two
turbulent structures, and an innermost core. Clearly reveal-
ing these features can help the scientist to understand the
interaction between them. First, we use the standard 2D
transfer function (the entropy and the gradient magnitude of
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(a) (b) (c) (d)

Figure 9: The automatic optimization results based on the standard 2D transfer function and the gradient modulated 2D
transfer function for the supernova dataset. (a) The transfer function with six features. (b) The initial result produced by setting
each feature’s opacity to 1.0. (c) Setting uniform visibility 1/6 to each feature, the result can show the inner turbulent structures
but not the core. (d) With the gradient modulated 2D transfer function, the optimization result clearly reveals the core and its
surrounding turbulent structures.

entropy) to do optimization. Simply setting each feature’s
opacity to 1 (Fig. 9(b)), we only can see the three outer lay-
ers. After the automatic optimization, the resulting opacity
specification provides better visibility to the inner structures
(Fig. 9(c)). However, the part near the core is still not clearly
revealed. When we use the gradient modulated 2D transfer
function, the automatical optimization result (Fig. 9(d)) does
a better job in depicting the inner features, especially the
core.

5.3. Evaluation and Discussion

To evaluate the usefulness of our method, we asked 7 unpaid
graduate students to participate in our user study. Four of
them are majored in scientific visualization, and others are
in other research groups. Before the test, we explained the
differences between traditional opacity-based and visibility-
based volume exploration schemes and demonstrated how to
use them in our system. The test did not start until they could
easily explore the Horseshoe Vortex dataset (Fig. 8) without
our help.

Next they were required to explore the CT facial defor-
mity dataset in Fig. 4. We recorded the total interaction time
needed to obtain the result in Fig. 4(c) starting from Fig. 4(a)
by using these two different exploration schemes. The sim-
ilarity between the image produced by the participant and
Fig. 4(c) is measured with relative mean squared error. We
consider the result satisfactory if the error is smaller than
10%. As shown in Fig. 10, most of participants spent at least
30% less time using the visibility-base exploration scheme
compared with the time required by using the opacity-based
scheme to generate similar results. All users said visibility-
based exploration is more intuitive and the default optimiza-
tion results provided a good starting point for further adjust-

ments. The user feedback suggested our system is an easy-
to-use tool for volume exploration.

Nonetheless, the 6th user spent more time using visibility-
based scheme than the opacity-based scheme as shown in
Fig. 10. After analyzing his interaction, we found he spent
more time in small fine tuning after obtaining a satisfac-
tory result. From this case, we can see that our visibility-
based exploration scheme is complementary to the tradi-
tional opacity-based exploration scheme.
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Figure 10: User interaction time using visibility-based ex-
ploration scheme and opacity-based scheme.

As discussed in Section 4, the optimization result favors
small-sized features, which leads to the opacities of large-
sized features are too small. This brings inconvenience for
the user to understand the spatial relation of features, as
demonstrated in Section 5.1 and 5.2. This is a drawback of
the current scheme. A possible solution is to incorporate the
image footprint into the definition of feature visibility.

Currently, a feature in the feature space is characterized
by a template function ρ. In this sense, different ρ produces
different classification results. A feature can also be defined
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as a group of voxels, such as segmented objects. Extension
of feature visibility to support more general feature defini-
tion is one of future work.

6. Conclusion

This paper proposes a new metric: feature visibility to mea-
sure the influence of each feature to the resulting image.
With this metric, traditional transfer function design be-
comes more informative. To make this procedure more in-
tuitive, the feature visibility based opacity specification is
provided to allow the user to directly set the visibility for the
features of interest instead of adjusting the opacity. We also
introduce a two-step volume exploration scheme, in which
an automatic optimization is first performed to provide a
clear spatial relation and then the user is allowed to select
features and specify the desired visibility for features of in-
terest. This scheme has proven to be effective and efficient
over various types of volumetric data, ranging from medical
data to fluid simulation data.
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