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Abstract—The multidimensional transfer function is a flexible and effective tool for exploring volume data. However, designing an

appropriate transfer function is a trial-and-error process and remains a challenge. In this paper, we propose a novel volume exploration

scheme that explores volumetric structures in the feature space by modeling the space using the Gaussian mixture model (GMM). Our

new approach has three distinctive advantages. First, an initial feature separation can be automatically achieved through GMM

estimation. Second, the calculated Gaussians can be directly mapped to a set of elliptical transfer functions (ETFs), facilitating a fast

pre-integrated volume rendering process. Third, an inexperienced user can flexibly manipulate the ETFs with the assistance of a suite

of simple widgets, and discover potential features with several interactions. We further extend the GMM-based exploration scheme to

time-varying data sets using an incremental GMM estimation algorithm. The algorithm estimates the GMM for one time step by using

itself and the GMM generated from its previous steps. Sequentially applying the incremental algorithm to all time steps in a selected

time interval yields a preliminary classification for each time step. In addition, the computed ETFs can be freely adjusted. The

adjustments are then automatically propagated to other time steps. In this way, coherent user-guided exploration of a given time

interval is achieved. Our GPU implementation demonstrates interactive performance and good scalability. The effectiveness of our

approach is verified on several data sets.

Index Terms—Volume classification, volume rendering, Gaussian mixture model, time-varying data, temporal coherence.

Ç

1 INTRODUCTION

VOLUME exploration focuses on revealing hidden struc-
tures in volumetric data sets. Effective exploration is a

challenging problem because there is no prior information
available with respect to data distribution. This difficulty is
magnified by the fact that exploring and manipulating in
three-dimensional (3D) space is typically counterintuitive
and laborious. Feature spaces (the axes of which represent
attributes of the data) are usually used to design transfer
functions. With a properly designed feature space, transfer
function design becomes a user controllable process that
structures the feature space and maps selected data
properties to specific colors and opacities. To understand
these various structures better, a number of multidimen-
sional transfer function design schemes have been pro-
posed. In particular, two-dimensional (2D) transfer
functions [15] based on scalar values and gradient magni-
tudes are very effective in extracting multiple materials and
their boundaries. The specification of 2D transfer functions

can be performed with the help of various classification
widgets. However, the selection of features within the 2D
feature space is a trial-and-error process and is very likely
to yield unsatisfactory results. The gap between the
flexibility of multidimensional transfer function design
and the fidelity requirement of volume exploration makes
transfer function design challenging. For time-varying data,
additional care should be taken to preserve coherence
among different time steps as well as reduce the computa-
tional cost of per-step exploration.

We have identified three reasons for the difficulty in the
multidimensional transfer function design. First, the search

space is very large. The user is often required to spend much
time understanding the underlying features and their spatial
relationships. Second, modulating the parameters of classi-
fication widgets to maximize the likelihood of feature

separation is not trivial, even when all features have been
identified. Third, traditional classification widgets (e.g.,
rectangular and triangular) are too regular to describe
multidimensional features, which may have complex shapes.

In a previous paper [37], we introduced a novel volume

exploration scheme by approximating the exploration space
with a set of Gaussian functions. This scheme takes an
analyze-and-manipulate approach. Prior to manipulation, it
performs a maximum likelihood feature separation of the

feature space to construct a continuous and probabilistic
representation using the Gaussian mixture model (GMM).
The GMM enables semiautomatic volume classification by
converting mixture components to a set of suggestive
elliptical transfer functions (ETFs). Here, “semiautomatic”

means that the number of mixture components is determined
by the user, and that the suggested ETFs may be adjusted.
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The obtained ETFs not only facilitate preintegrated volume
rendering but also give rise to a suite of flexible elliptical
classification widgets. Although achieving a satisfactory
classification still requires user adjustments to the ETFs, the
interaction is effective, as demonstrated in Fig. 1.

This paper enhances the GMM-based volume classifica-
tion scheme by employing an incremental GMM estimation
algorithm [3] to ease classification of time-varying data. The
incremental algorithm estimates the GMM of each time step
by exploiting the GMM generated from previous steps.
Compared with previous work [19], [38] that deals with the
collection of all time steps, incrementally estimating the
GMM processes the sequence of time steps individually in
less memory and time.

As the data set itself may be noisy, the results provided by
incremental GMM estimation can typically be improved by
appropriate user adjustments. Making these adjustments is
actually a procedure of choosing the features of interest and
feeding this prior knowledge into the visualization. How-
ever, adjusting the time steps individually imposes a large
workload upon the user, and may result in a temporally
incoherent classification. Conversely, directly applying user
adjustments to the initial ETFs of other time steps may not
catch the variations in the feature space and may produce
results with temporal incoherence. Assuming that the
density distribution variations among the time steps reflects
the evolution of features, we propose a coherent adjustment
propagation technique to solve this problem.

The rest of this paper is organized as follows: The related
work is summarized in Section 2. The classification and
exploration of a data set using the GMM is described in
Section 3. Section 4 introduces the coherent classification of
time-varying data. The implementation details are described
in Section 5. The results are demonstrated in Section 6.
Finally, conclusions are presented in Section 7.

2 RELATED WORK

Related work falls into three categories: 1) transfer function
design, 2) time-varying data classification, and 3) Gaussian
mixture models.

2.1 Transfer Function Design

A complete review of transfer function design is beyond the
scope of this paper; we refer the reader to Pfister et al. [21].
We restrict our discussion to the design of multidimen-
sional transfer functions [18]. Despite their excellent
performance in material classification, multidimensional
transfer functions did not receive widespread attention
until the ground breaking work by Kindlmann and Durkin
[13]. Their research shows that determining multidimen-
sional transfer functions in a 2D histogram of data values
and gradient magnitudes can effectively capture bound-
aries between materials. To facilitate the specification of
multidimensional transfer function, Kniss et al. [15]
introduce a set of manipulable widgets. Local [14], [25]
and global information [6], [7] can be incorporated into
multidimensional feature spaces as well.

Based on an analysis of the data set itself, many methods
have been proposed to simplify the creation of multi-
dimensional transfer functions. Fujishiro et al. [9] and Zhou
and Takatsuka [41] utilize topology analysis to automate
transfer function generation. Tzeng and Ma [32] use the
ISODATA algorithm to perform clustering in multidimen-
sional histograms. Roettger et al. [23] propose transfer
functions that consider spatial information in the process of
clustering 2D histograms. To structure the feature space
effectively, Selver and Güzelis [26] use a self-generating
hierarchial radial basis function network to analyze volume
histogram stacks. Likewise, Maciejewski et al. [19] apply a
nonparametric density estimation technique. Using ma-
chine learning techniques, Tzeng et al. [31] introduce a
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Fig. 1. Modeling the density and density gradient magnitude feature space using the GMM for the Feet data set. (a) Automatically generated ETFs,
the volume rendering, and individual volume renderings associated with each ETF. (b) Result obtained by scaling the ETFs in red and plum, and
adjusting their maximum opacities with the phalanges and ankles clearly shown.



painting interface to derive high-dimensional transfer
functions. Salama et al. [24] derive semantic transfer
functions by utilizing principle component analysis. In this
paper, we introduce a new volume exploration scheme, by
analyzing the feature space using the GMM to maximize the
likelihood of feature separation. Immediate visual feedback
is enabled by mapping these Gaussians to ETFs and
analytically integrating the ETFs in the context of a
preintegrated volume rendering process.

2.2 Time-Varying Data Classification

The main challenge in designing transfer functions for time-
varying data is that the user has to consider not only the
evolution of features, but also temporal coherence. Several
effective methods have been developed to address this
challenge. Jankun-Kelly and Ma [12] propose to generate
summarized transfer functions by merging the transfer
functions of all time steps. Tzeng and Ma [33] introduce a
solution to compute transfer functions automatically for all
time steps, given several transfer functions defined for key
time steps. By brushing a 2D time histogram, Akiba et al. [1]
classify multiple time steps simultaneously.

Nonetheless, even using time histograms, finding an
appropriate transfer function for each time step is still very
time consuming. To alleviate this problem, some research
has been devoted to semiautomatic classification. Woodring
and Shen [38] first utilize temporal clustering and sequen-
cing to find dynamic features and create the corresponding
transfer functions. By treating time-varying 2D histograms
as a 3D volume, Maciejewski et al. [19] cluster the volume
using kernel density estimation to generate transfer func-
tions for all steps. For long time series, these clustering
methods will take much time [38]. To resolve this issue, we
adopt an incremental clustering method [3] that locally
clusters the data of each time step with the clustered result
generated from previous time steps. Without collecting all
the time steps, our method requires little memory and time.
This is similar to the feature tracking approach [27], which
uses the detected features of the current step to predict the
features of the next step. To preserve temporal coherence,
Tikhonova et al. [30] apply a global transfer function to the
intermediate representation of the rendered image from
each time step. We employ an alternative solution capable
of directly generating coherent visualization while generat-
ing a transfer function for each time step.

2.3 Gaussian Mixture Models

The GMM [2] is well suited to modeling clusters of points.
Each cluster is assigned a Gaussian, with its mean some-
where in the middle of the cluster, and a standard deviation
that measures the spread of that cluster. The GMM has been
widely used in pattern recognition [29] and medical image
segmentation [39]. Recently, the GMM has been introduced
to the visualization community by Correa et al. [5] to model
uncertainty distributions. In time-critical applications such
as neural signal monitoring, data sets are generated on the
fly. Hence, modeling an entire data set using the GMM is
usually impractical for large time-varying data sets.
Accordingly, we employ an incremental GMM estimation
algorithm [3], which models the current time step by using
estimated GMM parameters generated from previous steps.

3 EXPLORING FEATURE SPACE USING THE GMM

The GMM is an unsupervised clustering method. It can
extract coherent regions in feature space and corresponding
meaningful structures in the input data space [2], where
each region is represented by a Gaussian distribution.

We choose the GMM to explore the 2D feature space of
volume data for three reasons. First, clustering is achieved
by maximizing the likelihood of feature separation. This
provides the user with a solid starting point for volume
exploration. Second, mixture components can be mapped to
ETFs, facilitating a fast preintegrated volume rendering
process. Third, the ETFs can be controlled by flexible
elliptical classification widgets. GMM-based volume ex-
ploration takes an analyze-and-manipulate approach, as
shown in Fig. 1. In the analysis stage, the user is provided
with a reasonable base for volume classification. In the
manipulation stage, the user adjusts the features with the
help of flexible classification widgets.

3.1 Maximized Likelihood Feature Separation

Given a 2D feature space (e.g., scalar values and gradient
magnitudes), each Gaussian function represents a homo-
genous region whose corresponding probability distribu-
tion function is defined as

gðxj�;�Þ ¼ 1

2�j�j1=2
e�

1
2ðx��Þ

T��1ðx��Þ; ð1Þ

where x is a vector in the feature space, � is the center
vector of the Gaussian, � is the 2� 2 covariance matrix used
to scale and rotate the Gaussian, and gðxÞ is the probability
of x. As such, the distribution of all regions is represented
by the Gaussian mixture distribution

pðxj�Þ ¼
Xk
j¼1

�jgjðxj�j;�jÞ; ð2Þ

where �j is the prior probability of the jth Gaussian and
satisfies the following condition:

Xk
j¼1

�j ¼ 1 and �j � 0 for j 2 f1; . . . ; kg: ð3Þ

� denotes the parameter set of the GMM with k components
f�j; �j;�jgkj¼1. As each region corresponds to a feature in
the underlying data set, determining the appropriate
parameters � can be converted to a problem of specifying
the feature to which the points in the feature space most
likely belong. Assuming that the vectors in the feature space
fx1; . . . ; xng are independent identically distributed, the
maximum likelihood estimation of � is

�̂ ¼ arg max
�
pðx1; . . . ; xnj�Þ ¼ arg max

�

Yn
i¼1

pðxij�Þ; ð4Þ

where n is the number of voxels in the volume.
As a general method for finding the maximal-likelihood

estimation of the parameters of the underlying distribution,
the well-known EM algorithm [2] provides an iterative
means to determine �. Given an initial estimated parameter
set �, the EM algorithm iterates over the following steps until
it converges to a local maximum of the likelihood function:
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. E Step:

P ðjjxiÞ ¼ �̂jgðxij�̂j; �̂jÞPk
j¼1 �̂

jgðxij�̂j; �̂jÞ
: ð5Þ

. M Step:

�̂j ¼ 1

n

Xn
i¼1

P ðjjxiÞ�̂j ¼
Pn

i¼1 P ðjjxiÞxiPn
i¼1 P ðjjxiÞ

;

�̂j ¼
Pn

i¼1 P ðjjxiÞðxi � �̂jÞðxi � �̂jÞ
TPn

i¼1 P ðjjxiÞ
;

ð6Þ

where i 2 ½1; . . . ; n�, j 2 ½1; . . . ; k�, n is the number of voxels
in the volumetric data set, P ðjjxiÞ is the probability of the
vector xi belonging to the jth feature, and Ej is the
cumulated posterior probability of the jth Gaussian. The E
step finds the expected value of the log-likelihoodPn

i¼1 log pðxij�Þ, and the M step finds new parameters that
maximize the expectation computed in the E step. The log-
likelihood holds due to the monotonicity of the log function.
It is used here to deal with the multiplication of a large
number of floating point probability values that are in ð0; 1Þ.
In a few iterations, a locally optimal solution is achieved.
However, convergence to a globally optimal solution is not
guaranteed, and the number of iterations depends on the
initial assigned parameters. At times, the user has to spend
much time finding the proper initial parameters and the
optimal number of mixture components. This poses
difficulties for interactive volume classification.

To reduce the user’s workload, we use the greedy EM
algorithm [35], which builds models in an adaptive manner.
Starting with a single component whose parameters are
easily computed, two steps are alternatively performed:
adding a new component to the mixture, and updating the
complete mixture using the E and M steps until a conver-
gence criterion is met. Using this greedy algorithm, the initial
parameters �do not need to be chosen by the user, making the
number of mixture components manageable. If the results are
not acceptable, the user can insert new components to update
the GMM. Fig. 2 shows the volume classification of the
Engine data set (available at URL http://www.volvis.org/)
using this greedy algorithm. In Fig. 2b, a new component is
added to the clustering shown in Fig. 2a, providing
separation of the main body and the wheels. Although there
is no known constructive method to find the global
maximum, the greedy EM algorithm we adopted locates
the global maximum using a search heuristic [35].

After finding an appropriate �, each pixel in the feature
space is associated with a probability vector p ¼ ðp1; . . . ; pkÞ,
where pj ¼ gðxj�jÞ. With these vectors, the discrete feature
space becomes continuous. In contrast with the kernel
density estimation [19], the GMM is a semiparametric
density estimation technique, where an analytical Gaussian
function represents each cluster. This property greatly
favors interaction with a set of transformations.

3.2 Elliptical Transfer Functions

One important advantage of GMM-based separation over
previous work [23], [32] is that the obtained mixture
components can be converted to ETFs

�ðxÞ ¼ �maxe
�1

2ðx��Þ
T��1ðx��Þ; ð7Þ

where �max is the maximum opacity and

��1 ¼ a b
c d

� �
; ð8Þ

where the initial values of b and c are equal. To guarantee

that it can be manipulated as an elliptical primitive, ��1

must satisfy the following condition [40]:

ðbþ cÞ2 � 4ad < 0: ð9Þ

Compared with the axis-aligned GTF used in Kniss et al. [16]

and Song et al. [28] where ��1 is a diagonal matrix, an ETF is

more general and affords more flexible feature separation.

We can use the mixing probability of each Gaussian to set the

initial �max for each ETF, because it represents its maximal

contribution to the density distribution.

3.3 Preintegrated Volume Rendering with ETFs

Kniss et al. [16] and Song et al. [28] derive analytic forms

for preintegrated axis-aligned Gaussian transfer functions.

In this section, we demonstrate that an arbitrarily direc-

tional ETF can also be incorporated with preintegrated

volume rendering.
According to the volume rendering equation [20],

opacity can be expressed as

� ¼ 1� e�
R D

0
�ðxð�ÞÞd�

¼ 1� e�
R D

0

Pn

j¼1
�jðxð�ÞÞd�

¼ 1� e
Pn

j¼1
�
R D

0
�jðxð�ÞÞd�;

ð10Þ

where D is the distance between the entry and exit points f

and b. By assuming that the feature vector x between xf and

xb varies linearly, the term �j in (10) becomes
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Fig. 2. Using the greedy EM algorithm to classify the Engine data set
with different numbers of mixture components: (a) three; (b) four. In (b),
the main body and wheel parts are separated.



�j ¼ �jmaxe
�1

2 xf��jþ�
xb�xf
Dð ÞT ð�jÞ�1 xf��jþ�

xb�xf
Dð Þ:

Suppose the feature vector x consists of a density

component and a gradient magnitude component, we have

x ¼ fs; gg, xf ¼ ðsf ; gfÞ, and xb ¼ ðsb; gbÞ. We define ks ¼
sb�sf
D , kg ¼ gb�gf

D , ds ¼ sf � sj, dg ¼ gf � gj, yielding

Ij ¼
�
ak2

s þ ðbþ cÞkskg þ dk2
g

�
�2

þ 2ðaksds þ 0:5ðbþ cÞðksdg þ kgdsÞ þ dkgdgÞ�
þ ðad2

s þ ðbþ cÞdsdg þ dd2
g

�
;

where Ij is the exponent of �j. Let

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak2

s þ ðbþ cÞkskg þ dk2
g

q
;

B ¼ ðaksds þ 0:5ðbþ cÞðksdg þ kgdsÞ þ dkgdgÞ=A;
C ¼

�
ad2

s þ ðbþ cÞdsdg þ dd2
g

�
�B2;

the integral �
RD

0 �jðxð�ÞÞd� in (10) can be written as

Rj ¼ �
Z D

0

�jmax�jðxð�ÞÞd�

¼ �
Z D

0

�jmaxe
�1

2ððA�þBÞ
2þCÞd�

¼ ��jmax

ffiffiffi
�

2

r
e�

C
2

A
erf

ADþBffiffiffi
2
p

� �
� erf Bffiffiffi

2
p
� �� �

¼ �P � erf
ADþBffiffiffi

2
p

� �
� erf Bffiffiffi

2
p
� �� �

;

ð11Þ

where erfðzÞ ¼
R z

0 e
�z2
dx and P ¼ �jmax

ffiffi
�
2

p
e
�C

2

A . When A is

less than or equal to zero, Rj can be evaluated using (7).

Thus, the final opacity is � ¼ 1� expð
Pn

j¼1 RjÞ.
Previous work [16], [28] approximates the erf function

using a 2D texture, requiring numerical integration. Instead,

we analytically evaluate it using a GPU, leading to high-

quality preintegrated volume rendering. Figs. 3a and 3c

compare our result with that of numerically integrated

rendering at the same sampling rate. Fig. 3b shows the result

produced by a numerical integration scheme with a doubled

sampling rate. In terms of achieving comparable visual

quality (Figs. 3a and 3b), our approach achieves better

performance than the numerical integration approach.

3.4 Elliptical Classification Widgets

Unlike the inverse triangular or rectangular widgets used

in the previous work [16], [28], the manipulation primitives

in our approach are arbitrarily directional elliptical

primitives. Moreover, the operations can be represented

as a variety of transformations. The center of the elliptical

primitive is the mean value �. The other parameters can be

computed by applying singular value decomposition [22]
to the matrix ��1

��1 ¼
a b

c d

� �

¼
� cosð�Þ sinð�Þ
sinð�Þ cosð�Þ

� �
	1 0

0 	2

� �
cosð Þ � sinð Þ
sinð Þ cosð Þ

� �T
;

ð12Þ

where 1ffiffiffiffi
	1
p and 1ffiffiffiffi

	2
p are the radii along the major and minor

axes and � and  are the two angles that rotate the

coordinate axes to the major and minor axes, respectively.

For a symmetric 2� 2 matrix, � is equal to  .
After obtaining the parameters of the elliptical primitive,

the following affine transformations can be applied:

. Translation—shifting the mean �. The user can move
the widget in feature space to explore features of
interest. This transformation is guided by the user’s
domain knowledge about the feature space. For
example, moving the widget toward a higher gradient
magnitude region in the density and density gradient
feature space can enhance feature boundaries.

. Scaling—scaling the radii of the principal axes 	1 and
	2. In our experience, the scaling operation is often
guided by observing the extent of the corresponding
feature. The initial ETFs usually overlap (Fig. 1a), and
therefore appropriate scaling can improve feature
separation. However, the user should be careful to
avoid missing important structures, or introducing
undesired or distracting features.

. Rotation—rotating the elliptical widget. This adds
an angle 
 to � and  in (12), leading to a new
covariance matrix �. As the direction of the ETF
characterizes the feature distribution [11], choosing
an appropriate direction can improve the accuracy of
feature identification. In our experience, such a
direction can be found in several attempts by
observing changes in the rendered image and the
shape of the histogram.

Fig. 4 illustrates the four operations on the ETF in
red, as shown in Fig. 1a: recoloring, translating,
scaling, and rotating. By interactively specifying each
mixture component, the corresponding volumetric
structures can be observed, providing a context to
modulate the transfer function.

. Subdivision. Some mixture components may con-
tain more than one feature, as illustrated by the ETF
in dark red in Fig. 2a. To find more interesting small-
scale features in an ETF, two operations can be
performed. First, the greedy EM algorithm can be
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Fig. 3. Visualizing the Carp data set (256� 256� 512) by performing (a) analytic integration with the object sample distance 0.6; (b) numerical
integration with the object sample distance 0.3; and (c) numerical integration with the object sample distance 0.6. Their performances are 38, 29, and
54 fps, respectively.



employed again to yield more ETFs (Fig. 2).
However, the adjustments made to the original ETFs
cannot be incorporated into the subdivision process.
This is a limitation of our current EM algorithm. An
alternative solution is to subdivide an ETF directly
into two pieces along the major axis, yielding two
half radii for 	1 and 	2. The user can also use the
scaling operation to refine them when this subdivi-
sion obscures interesting features. Fig. 5 shows an
example where the joints of the feet can be
distinguished from other structures using the sub-
division operation. Clearly, we should not expect the
subdivision to always produce a better classification.
If the classification results are unsatisfactory, the
user can easily backtrack to the original ETF.

4 COHERENT EXPLORATION OF TIME-VARYING

DATA

In this section, we describe our GMM-based volume
classification scheme for exploring time-varying data sets.
In time-varying data sets, features of interest may evolve
dynamically. Sudden appearances and disappearances are
common phenomena. This may lead to sharp variations in
the feature space, making coherent visualization of the
entire time sequence a difficult task. However, these
phenomena usually only occur in several keyframes.
Consequently we divide the sequence into a list of time
intervals in which the number of interesting features is
fixed. The subdivision can be accomplished by utilizing the
user’s prior knowledge and/or automatic keyframe detec-
tion. Automatically detecting these sharp variations is
beyond the scope of this paper. For details we refer to
Wang et al. [36] and Lee and Shen [17]. Domain scientists
usually have adequate knowledge and experience regard-
ing when features of interest are likely to appear. In our

work, the time intervals are manually constructed. In the
rest of this section, we focus on achieving coherent user-
guided exploration of one given time interval.

There are two ways to achieve this goal. A straightfor-
ward way is to construct the GMM individually for each
time step, which we refer to as individual classification.
Although this does not incur any additional cost, its
classification results cannot maintain temporal coherence
without considering other time steps. Another way is to
construct a volume of the feature space with one axis
representing time and the others representing the feature
space dimensions; this volume is then clustered with
the GMM. However, constructing and clustering this
feature space volume requires a large amount of storage
and time. Guided by the principle of data stream clustering
“to maintain a consistently good clustering of the sequence
observed so far, using a small amount of memory and time”
[10], we introduce a coherent classification scheme with the
help of the incremental GMM estimation algorithm [3]. We
call this method incremental classification.

We call an ETF computed from the incremental
classification process a suggestive ETF, which may be
adjusted later by the user. However, manually adjusting
the ETFs for all time steps imposes a heavy workload on
the user and may lead to temporally incoherent results. To
resolve this issue, we allow the user to select a time step
for making adjustments. We then automatically transfer
these adjustments to the suggestive ETFs of other time
steps. One straightforward way is to apply these adjust-
ments directly to other time steps, which may yield good
results for data with a small shift in histograms over time.
We call this approach direct transfer. However, because
most time-varying data sets are dynamic in nature, direct
transfer may result in temporal incoherence. Accordingly,
we propose a coherent propagation scheme that considers
the evolution of feature space. We call this method
coherent propagation.

4.1 Incremental Classification

We first define some notation. For the tth time step, the
vectors in the feature space are fx1

t ; . . . ; xnt g, and the
parameter set is �t ¼ f�jt ; �

j
t ;�

j
tg
k
j¼1, where k is the number

of Gaussian components, and Et
j is the cumulated posterior

probability of the jth Gaussian.
An initial GMM with a parameter set �t is created by the

EM algorithm for the tth time step. The tth time step is
either the first step or a specified step. The vectors of the
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Fig. 4. Manipulating the ETF in red shown in Fig. 1a. (a) Recoloring from
dark red to pink. (b) Translating the recolored ETF in (a) 0.21 along the
x-axis and -0.15 along the y-axis. (c) Scaling the recolored ETF in (a) by
a factor of 0.38 along both the major and minor axes. (d) Rotating the
recolored ETF in (a) 45 degrees counter-clockwise.

Fig. 5. Subdividing an ETF into two smaller ones. (a) The original ETF
and the rendering result. (b) The two subdivided and recolored ETFs
and the associated result, where the joints are differentiated from other
structures.



tþ 1th time step and �t are the input to the incremental
GMM estimation algorithm.

The incremental GMM estimation algorithm separates
the data into two parts: one is dedicated to the data already
used to train �t and the other to the data at the tþ 1th time
step. The differences between adjacent time steps tend to be
small; thus, we can assume that the set of the posterior
probability fP ðjjxitÞg

n
i¼1 remains the same when the new

data set fx1
tþ1; . . . ; xntþ1g updates this classification. Thus, the

cumulative posterior probability Ej
t of each Gaussian for the

feature of the tth time step remains unchanged during
the update. To maximize the likelihood

Qn
i¼1 pðxitþ1j�tþ1Þ,

the EM procedure can be rewritten as follows:

. E Step:

P
�
jjxitþ1

�
¼

b�jtþ1g
�
xitþ1jb�jtþ1;

b�j
tþ1

�
Pk

j¼1 b�jtþ1g
�
xijb�jtþ1;

b�j
tþ1

� ;
Ej
tþ1 ¼

Xn
i¼1

P
�
jjxitþ1

�
:

ð13Þ

. M Step:

b�jtþ1 ¼
Ej
t þ E

j
tþ1

2n
;

b�jtþ1 ¼
Ej
t�

j
t þ
Pn

i¼1 P
�
jjxitþ1

�
xitþ1

Ej
t þ E

j
tþ1

;

b�j
tþ1 ¼

Pn
i¼1 P

�
jjxit
��
xit � b�jtþ1

��
xit � b�jtþ1

�T
Ej
t þ E

j
tþ1

þ
Pn

i¼1 P
�
jjxitþ1

��
xitþ1 � b�jtþ1

��
xi � b�jtþ1

�T
Ej
t þ E

j
tþ1

¼
Et
j �j

t þ
�
�jt � b�jtþ1

��
�jt � b�tþ1

j

�T	 

Ej
t þ E

j
tþ1

þ
Pn

i¼1 P
�
jjxitþ1

��
xitþ1 � b�jtþ1

��
xi � b�jtþ1

�T
Ej
t þ E

j
tþ1

;

ð14Þ

where the variables with a hat will be iteratively updated
until some convergence criterion is met. Note that �t and Et

remain the same in the classification of the tþ 1th time step.
Compared with (6), (14) updates b�jtþ1, b�jtþ1, and b�j

tþ1 by
taking the new incoming data and the estimated GMM
parameters of the previous time steps as an entity.
Accordingly, the additional memory requirement is OðkÞ,
where k is the number of the mixture components. By
setting �t as the initial parameters, convergence can be
quickly achieved. As the correspondence between the
feature and the Gaussian remains unchanged, the user
can globally set the color and opacity for each feature from
all the time steps. To demonstrate the effectiveness and
robustness of incremental classification, we created a
synthetic time-varying data set (128� 128� 128� 40) in
which several concentric spheres move together. In this
data set, the scalar values in the regions bounded by these
spheres vary with time. To explore the movements of these

spheres, we start incremental classification from the first
time step, whose individual classification result is shown in
Fig. 6a. Fig. 6b shows the incremental result of the 30th time
step where four spheres are clearly shown. Although
applying the individual classification of the 30th time step
can characterize some features, as shown in Fig. 6c, it
captures the wrong boundary for the red sphere and misses
the inner sphere.

Notice that in the 30th time step, the right arc in the
histogram is small and individual classification will treat it
as one feature. This will not occur for the first time step
because the right arc in its histogram is much larger. In
contrast, incremental classification captures small variations
of the histogram for every time step and produces coherent
classification results.

4.2 Coherent Adjustment Propagation

With the classification results provided by the incremental
EM algorithm, user adjustments are usually indispensable
because they reflect domain knowledge or preference.
Incremental classifications catch the small differences be-
tween adjacent time steps by updating the parameters of the
mixture components; hence, user adjustments of these
parameters should be updated accordingly for each time
step. To achieve temporal coherence, we design a coherent
propagation technique to transfer user adjustments of a
selected time step automatically to other time steps.

Based on the assumption that the mixture components
capture the variations of features, we first find affine
transformations in the feature space that match the mixture
components pairwise between two counterparts. These
transformations are then used to depict the correspondence
of histograms between the two time steps and are later
applied to propagate the adjustments. To keep the number
of Gaussians fixed, user adjustments are limited to affine
transformations, as mentioned in Section 3.4.

For a feature, the Gaussian components at the current
and next steps are

Gðxt; �tÞ ¼ eðxt��tÞ
T��1

t ðxt��tÞ;

Gðxtþ1; �tþ1Þ ¼ eðxtþ1��tþ1ÞT��1
tþ1ðxtþ1��tþ1Þ;

respectively, where xt and xtþ1 are the vectors of the tth and
tþ 1th time steps, respectively. Similarly, we denote the
adjusted and to-be-adjusted Gaussians as

eGðxt; e�tÞ ¼ eðxt�e�tÞTe��1
t ðxt�e�tÞ;

eGðxtþ1; e�tþ1Þ ¼ eðxtþ1�e�tþ1ÞTe��1
tþ1ðxtþ1�e�tþ1Þ:

An affine transformation T in the feature space is

xtþ1 ¼ Txt ¼ Axt þ d; ð15Þ

which transforms xt to xtþ1. It can be determined by
matching the components of these two time steps

Gðxt; �tÞ ¼ GðAxt þ d; �tþ1Þ;

which leads to

AT��1
tþ1A ¼ ��1

t ;

A�1ð�tþ1 � dÞ ¼ �t:
ð16Þ
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The transformation T and the adjusted eGðxt; e�tÞ are then
used to determine the parameter e�tþ1 by matching

eGtðxtÞ ¼ eGtþ1ðTxtÞ:

Applying the Cholesky decomposition [22], the parameterse�tþ1 and e�tþ1 can be easily found as follows:

A ¼ Ltþ1L
�1
t ;e�tþ1 ¼ Ae�tA
T ;e�tþ1 ¼ �tþ1 þAðe�t � �tÞ;

ð17Þ

where �tþ1 ¼ Ltþ1L
T
tþ1 and �t ¼ LtLTt . As such, other

suggestive ETFs of the tþ 1th time step and the transfer
function of its next time step can be automatically updated.

Compared with the results produced by the direct
transfer, the coherent propagation considers the differences
between two histograms. Figs. 6e and 6f show a comparison
of the classification results produced by these two methods.
This example shows the advantage of coherent propagation
over direct transfer. The latter ignores differences between
the suggestive ETFs at different time steps, making the
adjustments on them miss the modification that corre-
sponds to the evolution of the features. In contrast, coherent
propagation considers the evolution of features captured by
the incremental EM algorithm and modifies the adjustment
accordingly. From the results, we can see that coherent
propagation is more appropriate in adjusting the positions,
sizes, and orientations of the suggestive ETFs.

Suppose the user wants to remove noise around the
spheres (Fig. 6a). He/she then adjusts the suggestive ETFs
of the first time step until the desired result is achieved, as
shown in Fig. 6d. As there is a one-to-one correspondence
between the features in different time steps, coherent

propagation can transfer the user adjustments to the 30th
time step. Fig. 6e shows the propagation result where four
spheres are visible and become more clear. However, the
red sphere becomes thinner and the green sphere is missed
in Fig. 6f, which is caused by directly applying the user
adjustments to Fig. 6b. A comparison of these two kinds of
time-series results is shown in the supplemental video,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2011.97.

So far, we have only described a forward propagation
workflow, where the user adjusts a selected time step and
propagates the adjustments forward. Incremental classifica-
tion allows for coherent backward propagation by deriving
the GMM of the t� 1th time step from the tth time step.
Fig. 11 shows an example.

5 IMPLEMENTATION DETAILS

We implemented and tested our approach on a PC with an
Intel Core 2 Duo E6320 1.8 GHZ CPU, 2.0 GB RAM, and an
NVIDIA Geforce GTX 260 video card (512 MB video
memory), using the Cg Language. All images shown in
this paper were generated at a resolution of 1;024� 768. We
describe the implementation details in the context of
exploring one data set because it is almost the same for a
sequence of data sets.

The core part of our scheme is the greedy EM algorithm.
We use accelerated greedy EM [34], which has proven to be
convergent for large data sets. It first organizes data into a
kd-tree structure to precompute the statistical variables used
in the optimization. The algorithm then uses the partitioned
blocks to perform the optimization.

There are two methods for using greedy EM clustering.
The first one performs EM clustering only once throughout
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Fig. 6. Illustration of coherent propagation and direct transfer with a synthetic time-varying data set. (a) Classification result of the first time step
produced by individual classification. (b) Incremental classification result of the 30th time step based on (a). (c) Individual classification result of the
30th time step. (d) Result produced by making adjustments to the first time step. (e) Adjusted result of the 30th time step by coherent propagation
with respect to the adjustments from (a) to (d). (f) Classification result of the 30th time step produced by direct transfer with respect to the
adjustments from (a) to (d).



the entire procedure. After the desired number of compo-
nents is generated in the first stage, these components can
be freely manipulated. We call this the one-round clustering.
In contrast, the second method is a multiround procedure in
which new components can be inserted progressively
based on an arbitrary initial separation. The multiround
procedure is preferred in our approach because it achieves
both high performance and sufficient flexibility. The second
and third columns of Table 1 compare the performance of
these two methods.

Rendering performance gradually decreases as the num-
ber of mixture components increases, because ETF-based
preintegrated volume rendering is directly evaluated on the
GPU. As listed in the fourth column of Table 1, doubling the
number of ETFs makes rendering performance drop in half.
With a fixed number of components, rendering performance
decreases as the data size increases. In Table 2, we can see that
our GMM-based volume renderer can achieve interactive
frame rates for medium-sized volume data.

As shown in Tables 1 and 2, the number of ETFs has the
most significant influence on performance. In our experi-
ments, we found that a small number of mixture compo-
nents are sufficient for good approximations of the
distribution of 2D feature space, while offering a rich space
for exploration. As shown in Table 1, generation of five
mixture components typically takes less than one second
with an unoptimized CPU implementation.

6 APPLICATIONS

When provided with a 2D histogram, the user may have
few ideas regarding which samples in the feature space
correspond to meaningful structures in the volumetric data
set. Based on maximum likelihood estimation, our approach
automatically decomposes the feature space into several
regions that denote meaningful structures. If the initial
result is not satisfactory, the user can iteratively tune the
suggestive ETFs, to better understand further the relation-
ship between volumetric structures.

The GMM-based exploration scheme can be applied to
many kinds of meaningful feature spaces, because it is
independent of the definition of the feature space. In addition
to the widely used density and density gradient magnitude,
other meaningful variables can be incorporated into the
feature spaces. By applying the GMM to these feature spaces,
the user is equipped with an exploration tool for feature
classification, knowledge-aware multivariate volume ex-
ploration, and temporally coherent transfer function design.

6.1 Arc-Shaped Feature Space

To demonstrate the effectiveness of our two-stage exploration
scheme on the density and density gradient magnitude

feature space, we used the Feet data set. The first clustering
step produces four ETFs, as shown in Fig. 1a, where the ETFs
in red and plum dominate. The ETF in red corresponds to the
skin and phalanges, whereas the ETF in plum corresponds to
a portion of the skin and the ankle. Most of the voxels in the
data set belong to these two ETFs. However, the skin
identified by the ETF in red occludes the phalanges, and
parts of the skin identified by the ETF in plum occludes the
ankle. These two ETFs overlap with each other, and both
identify a portion of the skin. Thus, we first scaled them to
improve the separation between the phalanges and the
ankles. Afterward, we rotated the ETF in red to a better
direction. After these manipulations, a more desirable result
was obtained, as shown in Fig. 1b, where these two parts
become clearly differentiated. From the experiment, we can
see that our two-stage exploration scheme is capable of
quickly obtaining the desired classification results.

To demonstrate the effectiveness of our exploration
scheme in reconstructive surgery, we conducted another
experiment on a CT facial deformity data set, as shown in
Fig. 7. The data set was acquired from a patient suffering
from a facial deformity. The damaged regions located near
the upper jaw and the top of the skull must be identified in
the surgical planning procedure. We obtained the initial
result after clustering the 2D histogram with three mixture
components, as shown in Fig. 7b, where two regions are
vaguely shown: a lesion in cyan and a damaged region
where some teeth are absent. However, the relationship
between these regions and the bones of the head and face is
not clear. We noticed that the ETF in gray, corresponding to
the skin, overlaps with the others located in the low gradient
magnitude region. We shrank it to achieve better feature
separation. To enhance its boundary, we then moved it to a
higher gradient magnitude region and rotated it to align
with the direction of the nearby arc. We handled the other
features in a similar fashion. After these adjustments, a
better result (Fig. 7c) was achieved, where the lesion
(marked in cyan) and the damaged region where some teeth
are absent are clearly illustrated. From this result, we can see
that parts of the teeth left to the nose are lost and that the face
is deformed toward the right. To investigate the lesion
located at the top of the skull, the user explores the data set
from another viewpoint and finds a large crack, as shown in
Fig. 7d. From this experiment, we can see that our GMM
exploration scheme provides an effective navigation inter-
face for the user to explore the relationships between
structures freely.

6.2 Arbitrarily Shaped Feature Space

The above two examples involve medical data sets. The
histograms of the density and density gradient magnitude
of these data sets exhibit arc shapes, representing material
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TABLE 1
Clustering and Rendering Performances

for the Engine Data Set (256� 256� 256)

TABLE 2
Rendering Performances for Six Data Sets



boundaries. With this intuition, the user simply places the
ETFs along the arcs and obtains a reasonably good image.
However, specifying the ETFs for many scientific data sets
can be quite challenging because they do not have clear
boundaries, and thus their histograms do not exhibit arc
shapes. In contrast, the GMM-based scheme works well by
supporting a continuous, probabilistic representation,
whether or not the data set has an arc-shaped distribution.

To illustrate the advantage of our approach in the
exploration of data sets without a discernable arc shape,
our next experiment utilized the Horseshoe Vortex data set
shown in Fig. 8. Here, the feature space consists of the
second invariant of the velocity gradient and its gradient
magnitude. We can see the vortex tubes, their intersections,
and some distracting noise from the initial classification
result (middle, Fig. 8). To show these structures more
clearly, the user scales and moves the ETFs, obtaining a
better result (right, Fig. 8).

6.3 Knowledge-Aware Feature Space

Other variables can be employed in addition to the feature

space composed of density and density gradient magnitude.

Usually, a user who works on multivariate time-varying data

has specific domain knowledge for constructing a suitable

feature space. Representing these kinds of feature spaces with

GMM-enabled probabilistic representations can favorably

characterize feature separation, facilitating quick discovery

of particularly interesting features.
To demonstrate the effectiveness of our scheme in

multivariate feature space, we conducted an experiment

on the Turbulent data set (Fig. 9) produced by a 128-cubed

simulation of a compressible, turbulent slip surface.

Vortices exist in the region with a large vorticity and small

pressure. Thus, we applied the GMM exploration scheme to

the vorticity versus the pressure feature space and obtained

four mixture components (top left, Fig. 9). Among these

four ETFs, the user is not interested in the ones located in

the regions with small vorticities and large pressures. After

removing these two ETFs and adjusting the other two ETFs,

a better result (right, Fig. 9) is obtained, which reveals the

kinking and tangling vortex tubes.
Note that the feature space in this example does not

exhibit any arc-like shape. Our approach still yields
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Fig. 7. Exploring the CT facial deformity data set using the density and density gradient magnitude feature space. The three automatically generated
ETFs (first row of (a)) produce a result (b) that vaguely depicts the skin and the damaged region on the head. After adjusting these three ETFs
(second row of (a)), the damaged regions become clearly distinguished (c, d).

Fig. 8. Exploring the Horseshoe Vortex data set using the second invariant of the velocity gradient and its gradient magnitude feature space. The
three automatically generated ETFs (top left) produce a result (middle) that shows some noise. By manipulating these three ETFs (bottom left), the
interior vortex tubes are clearly shown (right).



acceptable results by clustering the histogram space into
varied regions that correspond to different ranges of
vorticity and pressure. Moreover, the user can adjust the
suggestive results according to his/her domain knowledge.

6.4 Time-Varying Data

In time-varying data visualization, coherence plays an
important role in correctly interpreting the rendered
images. After adjusting the initial ETFs of a selected time
step, the evolution of features of interest can be easily
identified from the semiautomatically generated visualiza-
tion results. To demonstrate the effectiveness of our
approach, we applied it to two different time-varying data
sets. The time-series animations of these two data sets
generated by our method are included in the supplemental
electronic material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.97.

In the first case study, we used the Vortex data set
(128� 128� 128� 100) generated from a pseudospectral
simulation of vortex structures [27]. The suggestive classifi-
cation results show three regions corresponding to low
vorticity, mid vorticity with low gradient, and high vorticity

with high gradient. To make the tubes clearer, we performed
several manipulations on the initial classification result of the
first time step (first row in Fig. 10a). In this result, three layers
of vortex tubes with different ranges of vorticity magnitude
are clearly shown (second row of Fig. 10a). These adjustments
are then propagated to the other 99 time steps, producing
coherent results where the vortex structures gradually
become larger. The second row in Figs. 10b, 10c, and 10d
shows the results of the 19th, 69th, and 94th time steps,
respectively. The first row in Figs. 10b, 10c, and 10d shows the
classification results of these time steps generated by the
direct transfer. The vorticity magnitude in the simulation is a
continuous function; thus, the depth order of the low, mid,
and high vorticity features should be preserved during the
evolution. Comparing these two groups of classification
results, we can see that the exterior vortex tubes are always
maintained in the propagation-based results, whereas the
result produced by the direct transfer misses the exterior
layer, as shown in Figs. 10b and 10d. Moreover, the result in
the first row of Fig. 10c misses the interior high vorticity tube
because the sizes and relative locations of the corresponding
Gaussian components are incoherent with those in the user
adjusted time step. From this experiment, we can see that the
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Fig. 9. Exploring the Turbulent data set in the vorticity and pressure feature space. The result (middle) with the automatically generated four ETFs
(top left) does not clearly show the vortex tubes. By performing a sequence of operations, namely, removing the two ETFs located in the regions with
small vorticities and large pressures as well as scaling and recoloring the other two ETFs, the kinking and tangling vortex tubes become clearly
shown with a large contrast.

Fig. 10. Coherent exploration of the Vortex data set. (a) The initial classification result of the first time step (first row) and the adjusted result
containing a three-layered vortex tube (second row). The first row of (b, c, d) shows the classification results of the 19th, 69th, and 94th time steps by
directly transferring the ETF adjustments in (a). Using our coherent adjustment propagation method, coherent results that preserve the depth are
generated (second row of (b, c, d)).



proposed coherent propagation generates more consistent
adjustments to the ETFs. Moreover, the resulting images are
more coherent in feature evolution.

Incremental propagation also works for backward pro-
pagation. We tested two-way propagation using the data set
Hurricane Isabel, the benchmark for the IEEE 2004 Visualiza-
tion Design Contest. This data set was generated by the
National Center for Atmospheric Research to simulate a
strong hurricane in the west Atlantic region in September
2003. It has 48 time steps, with a resolution of 500 �
500� 100. In this data set, the researchers are concerned
with how the variables relate to the evolution of the
hurricane eye. We studied the water vapor mixing ratio
(vapor). After dividing vapor into three ranges, i.e., high,
middle, and low vapor, we adjusted the initial classification of
the 30th time step and obtained the result, shown in Fig. 11c.
In this adjusted result, the high vapor region is indicated in
blue, the middle in sky blue, and the lower in gray. We can
see that the region close to the hurricane eye has high vapor.
This is reasonable because vapor is the fuel of a hurricane. To
find out how vapor evolves with the hurricane eye, the
adjustments for the 30th time step are forward and backward
propagated to other steps. Figs. 11a, 11b, and 11d show the
classification results of the 10th, 20th, and 40th time steps.
From these four time steps, we can see that the vapor
gradually increases and that there is an increasing number of
bubbles in the trajectory of the hurricane eye.

6.5 Limitations

Although our approach provides an easy-to-use exploration
mechanism, it is still a semiautomatic method and requires
some user supervision. First, the number of the mixture
components needs to be provided, because the user may not
have a clear idea about how many features of interest are in
the data set. A recently developed Bayesian variation
framework for the mixture model [4] can solve this
problem. It simultaneously estimates the number of mixture
components and learns the parameters of the mixture
model. Second, the interaction of the elliptical classification
widgets is a pure manipulation in the feature space.
Although we provided some empirical guidelines in Section
3.4, we would like to integrate some guidance metrics for
our scheme, e.g., visibility histograms [8].

Although incremental GMM estimation provides coher-
ent classification, keeping a fixed number of Gaussians for
all time steps may miss some features. In addition, the

propagation is only valid within a specified time interval.
To resolve these issues, we plan to investigate several
solutions to divide time sequences into lists of intervals,
with each interval having a fixed number of features. One
possible solution is to use methods from importance-driven
time-varying data visualization [36], which can automati-
cally select multiple representative time steps. Another
possible solution is temporal trend identification [17], in
which dynamic time warping captures temporally coherent
features. Our current incremental propagation method only
considers the adjustments of one time step. We intend to
propagate user adjustments on multiple representative time
steps in future work.

7 CONCLUSION

This paper introduces a new volume exploration scheme
with a unique ability to capture the data characteristics,
while still affording favorable user interactivity. This
flexibility is especially helpful to inexperienced users
because it can automatically provide a suggestive volume
classification using a greedy EM algorithm and an incre-
mental GMM estimation scheme. By allowing the user to
interactively select precomputed clusters in the feature
space, he/she can gain an initial understanding of the
underlying data set. Moreover, each cluster can be
manipulated using an elliptical classification widget. By
using the GPU, ETF-enabled transfer functions can be
seamlessly incorporated with preintegrated volume render-
ing. For time-varying data sets, the manipulation of a
selected time step can be propagated to other steps, yielding
coherent classification.
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Fig. 11. Coherent exploration of the vapor variable in the Hurricane Isabel data set. After adjusting the initial ETFs of the 30th time step, the regions
with high, middle, and low vapor are indicated in blue, skyblue, and gray, respectively, as shown in (c). These adjustments are then backward and
forward propagated to all the other time steps. (a, b, d) Classification results of the 10th, 20th, and 40th time steps, respectively.
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