Visualization-Oriented Progressive Time Series
Transformation

XIN CHEN", Renmin University of China, China
LINGYU ZHANG?, Shandong University, China
HUAIWEI BAO, Shandong University, China

WEI LU, Renmin University of China, China

EUGENE WU, Columbia University, USA

XIAOHUI YU, York University, Canada

YUNHAI WANGT, Renmin University of China, China

Visual analysis of large time-series data often requires transformations over multivariate time series. Existing
methods struggle to meet interactive response time requirements, relying on full transformations that incur
high computation costs. We propose a visualization-oriented transformation system PIVOT that incrementally
generates accurate visualizations by selectively transforming only essential data samples. At its core is a
transformation-aware query mechanism that efficiently computes point-wise transformations by leveraging
cached hierarchical data on the server. To support responsive interaction, we introduce a pixel-based error-
bound guarantee that estimates the accuracy of intermediate visualizations without requiring a reference,
enabling a balance between latency and visual fidelity. Experiments show that PIVOT achieves highly accurate
visualizations with interactive response times, outperforming existing error-free methods by up to an order of
magnitude on billion-scale datasets.
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1 Introduction

Time-series data have experienced rapid growth in recent years across diverse domains, including
finance, transportation, and manufacturing. Typically collected at regular intervals, this large-scale
data is often stored in cloud-hosted databases, enabling efficient access and scalable processing.
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Time Series Data Store
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Fig. 1. Visual analysis of multiple time series from a dataset of NYSE-listed stocks. Analysts may casually
apply and compose various point-wise transformations to explore interesting patterns, expecting timely and
highly accurate visualizations.
Analyzing time-series data commonly involves applying various point-wise transformations [6,
8], which operate independently on values at each aligned timestamp. These transformations
generally fall into two categories: (i) per-series operations, which modify individual time series
using techniques such as the Box-Cox transformation or logarithmic scaling; and (ii) cross-series
operations, which combine values from multiple aligned series—such as summation or subtraction
at the same timestamp—to produce derived insights.

Figure 1 explores a collection of time series representing stock prices, each annotated with
metadata such as region and sector. An analyst might begin by (1) filtering the series based on
metadata predicates—for example, selecting bank stocks from the US—and then applying per-series
point-wise transformations to compute cumulative returns relative to the initial price. Next, (2)
the analyst may aggregate the transformed series by computing the average return across all
selected US stocks for each timestamp. Finally, (3) this average could be subtracted from another
group of series, such as EU stocks, to assess relative market performance. Such workflows often
involve multiple transformation steps, with users interactively adjusting parameters and composing
operators to uncover meaningful patterns. These types of analyses are ad hoc as part of the user’s
data exploration, and so they are expected to respond quickly in order to maintain the user’s
analysis flow [28].

As datasets grow larger, ensuring responsiveness for these ad hoc analyses is particularly chal-
lenging because results cannot be pre-computed. One approach involves first performing the
necessary transformations on the server, followed by the application of visualization-driven ag-
gregation techniques such as M4 [21] and OM?® [44]. These techniques help identify the essential
records within each pixel column that preserve the exact rendering of the input time series. The
selected records are then transmitted to the client for visualization, significantly reducing data
transfer volume and enhancing rendering efficiency. However, executing this over the full dataset
remains a bottleneck. For example, performing a logarithmic transformation to the TLC Trip Record
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data [42] with 4.7 million data points takes 2.1 seconds on PostgreSQL and 1.2 seconds on DuckDB
using a single thread. Alternatively, applying visualization-driven aggregation techniques first and
then performing transformations on the selected records on the server can reduce overhead, but
may compromise accuracy in the transformation results. This is because aggregation simplifies or
approximates the data, potentially losing important details necessary for accurate visualizations.

To address this issue, a possible alternative is to adopt progressive visual analytics (PVA) [32,
41, 43, 46]. PVA delivers semantically meaningful partial results during data processing, allowing
users to interact with evolving visualizations and adjust parameters in real time, without having
to wait for the entire computation to complete. Most existing PVA techniques [13, 16, 30, 35],
however, are primarily designed for approximate aggregate queries (e.g., SUM, COUNT, MIN)
and are not well suited for point-wise data transformations. Even when adapted to support such
transformations, these methods often require substantial computation over the full dataset to
produce an accurate final visualization. Consequently, the overall computational cost remains high,
limiting the practicality of existing PVA methods for large-scale time-series analysis.

In this paper, we introduce PIVOT for progressive visual analytics of massive time-series data
that leverages visualization-aware optimizations to accurately visualize analysis results while
significantly reducing computation costs compared to full data processing. PIVOT efficiently
supports point-wise transformations while leveraging awareness of the visualization to integrate
ideas from visualization-driven data aggregation, which helps users rapidly identify patterns of
interest. Once such patterns are found, full transformations can be performed on the essential
data to support deeper analysis. In doing so, PIVOT aligns with the natural workflow of visual
exploration by prioritizing responsiveness and progressive refinement.

PIVOT builds on the Time-series Aggregation Tree (TAT), which hierarchically organizes time
series to efficiently identify minimum and maximum values over arbitrary intervals by traversing
only a subset of paths. Leveraging TAT, we propose a transformation-aware query mechanism
that generates sufficiently accurate visualizations of transformation results, reducing redundant
computation and query overhead. We show that for any point-wise transformation function f()
bounded over a given domain, a property satisfied by most transformations in visual analysis, the
hierarchy can be aggressively pruned to rapidly respond to time-series interactions.

To further support user-driven analysis, we introduce a pixel-based error-bound guarantee that
estimates the visual accuracy of intermediate results during TAT traversal in real time and enables
more aggressive pruning. This enables users to dynamically balance response time and visual
fidelity, refining transformations only when patterns or anomalies of interest are identified. Our
system supports both per-series and cross-series operations, as well as core interactions such as
zooming, panning, and dynamic transformation composition. Together, these capabilities offer a
flexible and scalable foundation for the visual exploration of complex time-series data.

We evaluated PIVOT on time-series datasets with up to one billion records by quantitatively
comparing it against a straightforward baseline: DuckDB [36] along with its inherently customized
M4 [17], focusing on visual fidelity, processing time, and memory usage. The results show that
PIVOT produces visualizations with user-controllable accuracy and achieves lower response times,
even under error-free conditions, while also significantly reducing memory usage compared to
DuckDB.

In summary, we make the following key contributions:

e We propose a novel system, PIVOT, a Progressive Interactive Visualization-Oriented Transfor-
mation system, for exploring large-scale time-series data interactively.

e We present a transformation-aware query that integrates sample selection, transformation,
and visualization to accelerate computation while ensuring error-free visual output.
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e We provide a pixel-based error-bound guarantee, enabling users to balance response time and
visualization accuracy during interactive transformation.

e We quantitatively evaluate our method against state-of-the-art techniques in terms of both
accuracy and efficiency.

2 Problem Formulation and Background

In this section, we first formally define the problem of visualization-oriented progressive time series
transformation, followed by a brief overview of the relevant background.

2.1 Problem Formulation

We formalize two core problems related to visualizing transformation results over large-scale time
series data: (1) efficiently generating error-free visualizations, and (2) generating approximate
visualizations with guaranteed pixel-level error bounds.

Let X = {Xj, ..., X;u} be a multivariate time-series dataset, where each time series X; contains
n elements, and X;[¢] denotes the value of X; at timestamp ¢. Interactive visual analysis often
involves applying point-wise transformations to one or more time-series attributes, where the
transformation is computed independently at each timestamp:

Y[t] = f(X[t], X;[t). ... X [2D), 1)
where X;, Xj, ..., Xi form a user-specified subset of X, and the number of input variables [ satisfies
I € [1, m]. Both the selection of input series and the temporal range over which Y is computed can
be specified by the user.

A time series Y is often rendered as a line chart on a canvas of width w and height h, where each
point (¢, Y[t]) is mapped to canvas coordinates:
px(t) =w- L ftart @)
tend — Istart
py(Y[t) = h- S0, ®)
max ~— Imin
Here, fstart, tend define the time range, and Y, Yimax the value range. Following prior work [21, 44],
we define the rasterization as the process of converting line segments between adjacent data points
into a sequence of pixels. The pixels traversed by these segments are marked as foreground, and all
others are considered background. Figure 2b shows an example where gray pixels represent the
foreground corresponding to the time series in Figure 2a. However, not all data points contribute
to the final rasterization, as traversing a pixel multiple times has the same visual effect as doing so
once.

Definition 1. A pixel column on a canvas of width w corresponds to one of w equal-width intervals
over the time range [fstart, tend]. For the k-th interval, the data values in time series X; form a group
ci,k = {Xi[t] | te [tstart + (k - 1)5, lstart + ké]}» where § = tmi;wtqmt

When the transformation function f is computationally expensive or the number of data points
n is large, computing the full result Y as defined in Equation 1 can exceed acceptable latency for
interaction, making it difficult for users to remain engaged. Inspired by the M4 approach [21], which
demonstrates that rasterization within a pixel column relies only on a small set of key data points,
we aim to progressively and efficiently generate error-free visualizations using a carefully selected
subset of points from the original time series X, particularly for common point-wise functions f.

Problem I (Error-free Visualization). Given a multivariate time series dataset X and a transfor-
mation function f : X — Y, design a query mechanism Q that selects a subset Q(X) € X such
that the rendered visualization satisfies V(f(Q(X))) = V(f(X)) for any canvas resolution, where
V denotes rasterization.
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Fig. 2. lllustration of M4 and our proposed TAT representation with a sample time series in (a). (b) The
corresponding line charts with two pixel columns: the blue line connects all data points, while the black line
uses only M4-aggregated samples in each pixel column. (c) The corresponding TAT structure, where each
node stores the minimum and maximum values and the associated time interval.

Although error-free visualizations are ideal, it is not always feasible under real-time constraints.
When users seek early visual feedback during exploration, approximate visualizations with bounded
perceptual error are acceptable [29]. This motivates a second problem formulation:

Problem II (Error-bounded Visualization). Given a multivariate time series dataset X, a function f :
X — Y, and a user-defined pixel error threshold 7, design a query mechanism Q that progressively
refines a subset Q(X) such that the pixel error rate upper bound ¢ of the visualization V(f(Q(X)))
satisfies ¢ < 7.

These two formulations capture the essential trade-off between accuracy and responsiveness
in visualization-oriented time-series transformation. Our goal is to support both error-free and
error-bounded modes, enabling interactive exploration of large-scale transformed time series with
guaranteed visualization accuracy.

2.2 Background: M4 and Its Variants

For a given time series X;, M4 [21] aggregation extracts the minimum, maximum, and the first and
last data values within each pixel column. By connecting these four points in temporal order to form
inner-column line segments and inter-column line segments and rasterizing these resulting segments,
an error-free visualization can be produced using significantly fewer data points (see Figure 2b).
However, retrieving the four aggregated samples for each pixel column requires scanning the entire
dataset, resulting in a query time complexity of O(n). Processing millions of records may take over
one second, which is beyond the latency limit [28] for interactive visual analysis.

OM? and MinMaxCache. To support interactive progressive visualization, OM? [44] observed that
an error-free result can be achieved using all inter-column line segments and only the inter-column
segments whose rasterized pixels are not already covered. Notably, inner-column and inter-column
segments are not connected unless they share points. Based on this, OM? pre-processes a time
series into a multi-level min max coefficient tree via a forward transform, recursively computing
aggregates and encoding their differences to preserve detail. The resulting hierarchy, about three-
quarters the size of the original data, is stored on the server.
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At runtime, a visualization-aware incremental query algorithm with time complexity O(w log n)
(w is the canvas width) retrieves only the coefficients needed for reconstruction via inverse trans-
form. For each pixel column, the server streams coefficients for four M4 samples to the client.
The visualization is progressively refined during traversal, using a pruning strategy that skips
inter-column segments whose pixels are already covered by inner-column ones.

To eliminate the need for preprocessing, MinMaxCache [29] uses an adaptive caching strategy.
Instead of fixed-width intervals, it caches min and max aggregates at dynamically chosen granular-
ities to approximate M4 samples. Upon query, it checks whether the cached aggregates satisfy a
pixel-level error bound; if not, it retrieves the missing values and updates the cache. This enables
error-bounded visualizations without prior computation.

However, M4 and its variants target raw time-series visualization. When applied to our setting
that involves visualizing transformed time series, they require full transformation results before
rendering. Consequently, users must wait for costly computations to complete before gaining any
visual insight.

3 TAT: Time-series Aggregation Tree

To solve Problem I, we propose a time-series aggregation hierarchy, TAT, which supports progressive
visualization and enables fluid interaction for point-wise transformations through an efficient
pruning strategy. Before introducing TAT, we first examine an approach that extends M4 to identify
essential data points required for transformation. While effective in certain cases, this method is
limited to scenarios where the transformation function is monotonic.

3.1 M4-based Transformation Approach

For a given time series X; and a display window with width w, M4 [21] groups X; into w columns.
When a monotonic function f is applied to all data points in the k-th pixel column, the relative
order of the values is preserved or reversed. Specifically, if f is monotonically increasing, then for
all X;[t] < X;[t'] in this column, we have f(X;[t]) < f(X;[t']); if f is monotonically decreasing,
the order is reversed. In either case, the minimum and maximum values of f(X;) in the pixel column
can be directly derived from the minimum and maximum of the original series X;. Likewise, the
first and last values of f(X;) in each pixel column are determined by the first and last values of
X;. Therefore, the pixels rasterized in the visualization of f(X;) are entirely determined by the
M4-aggregated samples of X;.

However, this only holds for monotonic univariate functions, as illustrated in Figure 3a. For
non-monotonic transformations, even a single time series can lead to incorrect visualizations. For
example, consider the function f(x) = x - sin(x), which reaches its maximum at x = 8 within
the first pixel column C;; (see Figure 3b). The M4 aggregation for C;; do not capture this peak,
resulting in an incorrect visual range of [f(10), f(6)]. This issue also arises when applying point-
wise functions to multiple time series. For example, the point-wise difference (X1, X;) = X1 — X
yields a minimum function value f(7, 4) that does not align with the minimum s,;, computed from
the extrema of X; and X, as illustrated in Figure 3c. Therefore, using only M4 aggregates from
individual series is insufficient.

While M4 variants such as OM® and MinMaxCache improve query performance, the data samples
they retrieve only guarantee visual fidelity for visualizations of time series resulting from monotonic
univariate transformations, similar to M4.

3.2 TAT and Its Property

Rather than operating directly on raw time series, our method constructs a hierarchical data
structure, called the time-series aggregation tree (TAT). This structure is specifically designed
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to selectively retrieve only the data points necessary for accurately rasterizing the results of
non-monotonic or multivariate transformations, thereby reducing computational overhead.

As illustrated in Figure 2c, a full TAT is a complete binary tree in which each node is associated
with the following attributes:
e id: uniquely identifies node, indexed from top to bottom.
® (tstart, tend): start/end timestamps of interval the node represents.
® [Xmin, Xmax|: min/max values observed in node’s interval.
For example, the root node in Figure 2c has an id of 1, a time range of (0, 7) and the value range of
[0, 10]. The bottom layer of TAT consists of the original time series, with each data point acting as
a leaf node. Before constructing TAT, we pad the number of leaf nodes to the next power of two
by appending null values. For any parent node p, its temporal and value ranges are recursively
computed from its two child nodes ¢; and ¢,:

P-Lstart = min(c;.Lstart, Cr -Lstart)

p-tend = max(cl-tend: cr-tend): (4)
P-Xmin = min(c;. Xmin, Cr-Xmin)»
P-Xmax = max(cl-xma)(a cr~xmax)- (5)

Since the time-series data is ordered, p.ts.t must be equal to ¢j.tspart, and p.teng must be equal to

Cr.tend- In contrast, p.xmin and p.xmax are computed by taking the minimum and maximum values
from both child nodes. For example, in Figure 2c, the maximum value of the root node coincides
with that of its left child.
Theorem 1. For a function bounded within a given domain, the minimum value within the
sub-domain of a parent node p is always less than or equal to the minimum values within the
sub-domains of its child nodes, ¢; and c,. Similarly, the maximum value of p is always greater than
or equal to the maximum values of ¢; and c;.

Proor. A fundamental property of the TAT is the transitivity of minimum and maximum values

between a parent node p and its child nodes ¢; and c;, as defined in Equation 5:
P-Xmin < C1-Xmin and P-Xmin < Cr-Xmins
PXmax = Cl.- Xmax and  p.Xmax = Cr-Xmax-

For a bounded function f, there exists a minimum value s,,;;, = f (%) within the range [p.xmnin,
P-Xmax]. If X is within [¢;.Xmin, ¢1-Xmax ], then s,,;, is also the minimum in this range. Also, since
[er-Xmins Cr-Xmax] S [P-Xmins P-Xmax]s Smin must be less than or equal to the minimum value in
[cr-Xmins Cr-Xmax |- Similarly, if X is within [c,.Xmin, ¢ -Xmax |, then spip is the minimum in this range
and must be less than or equal to the minimum in [¢;.Xmin, €. Xmax]. The same relationship holds
for the maximum value.

Thus, for any function f bounded within the domain of a TAT, the following transitive relation-
ships hold:

f(p)-smin < f(cl)-smin and f(p)-smin < f(cr)-smin,

f(P)-Smax = f(c1)-Smax and  f(p).Smax = f(¢r)-Smax- (6)
When the function f is applied to multiple aligned time series, p represents a set of nodes with an
identical ID across different TATs, and the same applies to ¢; and c,. O

Based on this theorem, nodes c; and ¢, can be pruned if applying f to node p does not yield
the minimum or maximum value in the current pixel column. For example, in Figure 3d, the right
child nodes with value ranges [6, 10] and [0, 1] are skipped because the left child yields function
values of 7 — 4 = 3 and 8 — (—3) = 11, which exceed the possible function value range of the right
child. Additionally, we leverage this theorem to compute the theoretical lower and upper bounds of
each node, which guides the traversal order during query processing. If f is differentiable over the
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Fig. 3. Illustration of how our solution handles three types of transformation functions: (a) monotonic
univariate, (b) non-monotonic univariate, and (c) bivariate. In all cases, the input time series has values {7, 8,
10, 6}, represented by black dots within a single pixel column. The corresponding function values are shown as
black squares, while yellow and green squares mark the minimum and maximum function values within the
domain, respectively. In (c), an additional time series {4, -3, 0, 1} is used, and the corresponding TAT structures
are illustrated in (d).

Multivariate

domain, its minimum and maximum values occur either at the domain boundaries or at stationary
points where f’(x) = 0, according to Fermat’s Theorem [1]. By precomputing the function values
at these stationary points, we can reduce redundant evaluations of f during traversal, improving
overall efficiency.

Yet, this theorem does not apply to unbounded functions, where it is infeasible to compute
theoretical lower and upper bounds based on the closed interval defined by the node values x,;,
and x;,4x. For example, the function f(x1, xz) = x1/x; approaches infinity at x; = 0, making the
bounds undefined when x,,,;,, < 0 and x4, > 0.

While TAT can be dynamically constructed using range queries by using a node’s start and
end timestamps as query conditions and applying aggregation functions such as ‘MIN()’ and
‘MAX()’ to compute its value range, this approach presents several limitations. For unordered time-
series data, each range scan incurs a time complexity of O(n), resulting in inefficient construction.
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Table 1. Notations

Symbol

Description

" S < ™. ~<E,<><x§_

lmin, max

¢

gR’ Rk
Ey
&

Width and height of the canvas

User-specified transformation function

Input multivariate time series

The i-th univariate time series in X

Transformed result, i.e., f(X)

Extreme valid results observed in Y

Extreme theoretical scores computed over the input domain
True extreme values in Y

Inner-column node with ID i

Candidate lists for minimum / maximum scores
Actual pixel error rate of an intermediate visualization
Value range of the entire canvas / pixel column k

The union set of erroneous pixels under any gR and Ry
Pixel error rate upper bound for given gR and Ry

T User-specified pixel error rate threshold

Moreover, it leads to redundant computation between parent and child nodes, as min and max values
computed for child intervals are discarded and recomputed when constructing parent nodes. Fully
materializing the tree structure also incurs significant storage overhead, requiring approximately
2n space.

4 PIVOT

In this section, we present PIVOT, a progressive interactive visualization-oriented transformation
system PIVOT enables real-time, user-driven exploration of large-scale multivariate time series
through efficient point-wise transformations. Common notations used throughout this section are
listed in Table 1.

4.1 Overview

PIVOT builds on top of TAT, a hierarchical structure constructed on the server at runtime. By
avoiding repeated full data scans, PIVOT supports efficient reuse and accommodates dynamic
updates of TATs during interaction. The system follows a client-server model, proceeding in two
stages: offline preprocessing and online querying (see Figure 4).

Offline Preprocessing. We apply the OM® preprocessor to convert each time series into an ordered
multi-level min-max coefficient tree via a forward transform. We reduce storage by compressing
the detail coefficients with the ALP algorithm [2], which is also adopted by DuckDB [3].

Online Querying. PIVOT uses visualization parameters (e.g., the canvas width w, height h, time
range (Lstart, Lend)> and user-specified analysis function f to reconstruct essential TAT nodes from
the precomputed OM? coefficients and then applies the requested point-wise transformations on
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the server. Once the necessary coefficients are retrieved, they are decompressed and inverted to
recover the raw values via the inverse transform. PIVOT then applies point-wise transformations
and aggregates the results by pixel column before progressively transmitting them to the client. To
maintain interactive performance, PIVOT queries on-demand nodes incrementally, so that users
can pan, zoom, resize, or otherwise explore the data seamlessly.

During query execution, PIVOT dynamically constructs partial TATs for fast access to relevant
transformation samples. By performing transformation-aware, tree-based querying, PIVOT selec-
tively retrieves TAT nodes likely to contain perceptually significant samples in each pixel column
regarding function f. Each non-leaf node in TAT carries two scores: the theoretical minimum
and maximum function values over its domain. Leaf nodes store the actual function values in Y.
These scores guide the query to the next nodes of interest, while the scores and the leaf-node
values collectively determine when the query process can stop. As discussed in the subsequent
section, our transformation-aware query progressively gathers the aggregated function values
Yi starts Yeend> Ye,min» Yk.max needed for both error-free and error-bounded visualizations.

4.2 Transformation-aware Queries using TAT

For a display window of width w, the server processes the request by executing the transformation-
aware query mechanism Q, which consists of three stages: identifying boundary points for each
pixel column, scoring nodes within the current TAT structure, and performing a depth-first traversal
to query and insert additional nodes as needed. The full procedure is detailed in Algorithm 1, with
an illustrative example shown in Figure 5.

Identifying Boundary (lines 1-2). First, the server identifies TAT nodes corresponding to boundary
timestamps of each pixel column k, using the canvas width w and time range (fstart, fend):
tk,start = tstart + k- 5; tk,end = lstart + (k + 1) -6 - 1,

where § = Lf‘"‘” Due to the full binary tree structure of the TAT, node IDs can be uniquely
determined by these timestamps, making the detection of boundary nodes to be both deterministic
and accurate. The relevant node IDs for these timestamps across all levels are combined into a
single query, excluding the global t .t and tend, as they do not contribute to the generation of
inter-column lines. From the retrieved nodes, the server constructs a partial TAT for each time
series corresponding to an attribute in the input multivariate dataset. Since both children of a
parent node are reconstructed together, two types of nodes are distinguished: nodes that contain at
least one boundary timestamp (tx szart OF tk enq) are defined as boundary nodes, while the remaining
nodes that cover timestamps within column are referred to as inner-column nodes. A boundary
node can be a leaf node, corresponding to a data point located at the boundary of pixel columns.
For example, in Figure 5a, all retrieved nodes outlined in red are constructed during this stage.
Among them, the red dashed boxes indicate boundary nodes and the lowest node with timestamp
21 is a leaf, corresponding to the last data point of pixel column C;.

By design, inner-column nodes obtained in this stage precisely cover the time intervals between
the boundaries. As a result, the identified nodes are sufficient to derive not only xx s¢qr¢ and xg end
but also Xy min and xx mqx for each pixel column. Together, they suffice for error-free visualizations
of the input time series. However, unlike OM?, which prunes certain boundary nodes when their
value ranges are fully contained within the overlap of adjacent pixel column ranges, we retain all
boundary leaf nodes to ensure that all inter-column segments remain connected, as the applied
transformation may cause their actual function value ranges to extend beyond those of the adjacent
inner-column segments.

Scoring Nodes (lines 3-13). In this stage, for each boundary leaf node, we compute the function f
directly to obtain valid results, which serve as the start and end values in the aggregated function
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Algorithm 1 Transformation-aware Query Mechanism

Input: Canvas width w, time range (tsqrs, tend), dataset D, function f
Output: M4 aggregation of transformation results Y

1: N = QueryDB(D, CalTimeRangeofAllCols(w, tstart, tend))
2: TAT tr = initializeTAT(N)
3: Initialize candidate node lists {lk,mm},‘:’:l, {lk,,,mx},‘c“’:l
4: for each pixel column k € [1,w] do
5: [Ye start> Ykend> Ok, min> Qk,max] = calFuncVals(f, trk leaves)
6: NS = calNodeScores(f, trk.innerColumnNodes)
7: Ik, min-heappush(NS), Ik max-heappush(NS)
8: ﬁk,min = lk,min-top()score’ ﬂk,max = lk,max-top()'score
9: end for
10: if IsUnivariateMonotonic(f) then
11: Set Ye min> Ye.max DY Br.min> Pk.max for each column k
12: return Y > Return exact results
13: end if
14:
15: while CheckTermination(a, ) do
16: for each pixel column k € [1,w] do
17: idmin = le,min-pop().id, idmax = i max-pop().id
18: while tr.isNonLeafNode(id,,;,) do
19: [m1,nr] = tr.split(idpmin, QueryDB(D, idmin))
20: [nSlarges MSsmatl] = calNodeScores(f, 71, 1)
21: idmin = NSsmal.id
22: Ik min-heappush (nsjarge)
23: end while
24: while tr.isNonLeafNode(id,;4,) do
25: [n1,nr] = tr.split(idmax, QueryDB(D, idmax))
26: [nSlarges MSsmatl] = calNodeScores(f, 7z, 1)
27: idmax = nslarge-id
28: Ik max-heappush(nssmai)
29: end while
30: Ak min = min(calFuncVals(f, tr.val(idmin)), @k min)
31: Qk.max = max(calFuncVals(f, tr.val(idmax)), %k max)
32: ﬁk,min = lk,min~t0p()~score: ﬁk,max = lk,max~t0P()~SC0re
33: Yk,min = Ok,min> Yk,max = Qk,max
34: end for
35: yield Y > Return progressive results

36: end while

values Y. These valid results initialize the minimum and maximum values of each pixel column k,
denoted a min and ak max-

For every inner-column non-leaf node, we apply f to its domain to determine the node’s minimum
and maximum scores. Each scored node then goes into a candidate list, stored in a heap ordered
first by score and then by node ID (see Figure 5b). In the corresponding minimum and maximum
lists, the top entry in each denotes the most extreme scores, Sk min and S max-

Based on these values, the true minimum and maximum of the transformed data, yk i, and
Yk.max» must satisfy

ﬂk,min < Ykmin < Qk,min and Okmax < Ykmax < /Bk,max- (7)
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Fig. 5. Illustration of the query mechanism Q on a time series of length 64 over a canvas with three pixel
columns. (a) For the non-monotonic function f(x) = (x? — 1)/2, Q retrieves aggregated values from the TAT,
with node scores shown below. (b) Evolution of candidate lists @ and f over the query process, alongside
corresponding progressive visualizations. The ground truth f(X), shown in gray, is for reference only; it is not
computed during execution.

Here, otk min and ak max come from boundary leaf nodes that are already computed, and by Theo-
rem 1, unqueried nodes cannot provide valid results below S min or above B max-

For a univariate monotonic function, one can simply set ymin = Pmin and Ymax = Pmax and thus
obtain exact aggregated outcomes Y without querying additional data points. As an example, the
Box-Cox transform [9] with A = 3, fi(x) = (x* —1)/A, can be applied directly to the M4-aggregated
samples from the first pixel column in Figure 5a, §4.Xmin = =7, 120-Xmax = 7, X1,end = 6, yielding
Yimin = =114, Yy max = 114, Yy eng = 71.67.

In contrast, for non-monotonic or multivariate functions that still satisfy Theorem 1, tree traversal
is still required to retrieve additional nodes and iteratively update & and f, progressively refining the
client-side visualization until it converges to the correct result. For instance, in the first pixel column
of Figure 5a, the function values computed from the minimum value —7 and the maximum value 7
both yield 24.00, which is insufficient to determine the true range of the transformation results;
further traversal is therefore required. To minimize redundant computation and data transfer, TAT
structures are cached on the server for reuse.

DEFS Traversal (lines 15-36). To finalize the actual minimum and maximum function values yk min
and yx max for each pixel column k, we perform a depth-first traversal guided by the current TATs
and two lists (one for minimum, one for maximum). Consider the process of finding yj min as
an example. In each iteration, we pop out the top node from the minimum list and query the
database to reconstruct its two child nodes and compute their scores. If a child node has a higher
minimum score or the same score but a smaller ID, it is inserted into the candidate list; otherwise,
we continue expanding its child nodes until reaching a leaf, where valid results can be computed.
Afterward, we update ok min and i min. Once @k min < Pk.min, the minimal aggregated result y min
is determined by &k min, as Pk min is the smallest score in the candidate list and all un-queried nodes
are descendants that cannot yield a lower score, according to Theorem 1. The same procedure
is used to update @y ;max and P max to determine yg mqx for each pixel column. Throughout this
process, we combine the valid results ¢, and a4y across all columns with the Y4+ and Yeuq, to
yield progressively transformation results. The query mechanism terminates until & and f for all
pixel columns converge at y, ensuring that the requirement in Problem I is met.
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Figure 5 illustrates the evolution of the candidate node lists for the first pixel column C; during
the query process. In the Scoring Nodes stage (Iteration 1), the function values of boundary leaf
nodes are used to initialize &1 ;min = 1.50 and a1 max = 17.50, and we push the inner-column nodes
n4 and nyo into both lists. In Iteration 2, popping 74 from the minimum list brings in 74, ns, and 17
are split to form a path to a new valid result, updating oy min to 0.00 at 134 and S min to -0.50 at
N16- For the maximum value, 1759 is popped out due to its larger ID, causing o1 max and f1 max to
converge at y1 max = 24.00. Yet, determining y; i, requires one more iteration to pop out and split
16, ensuring that @y min < P1,min. Throughout the process, 19 remains unsplit, leaving six nodes
unqueried.

For the second pixel column C,, an extreme case arises where the minimum and maximum input
values are 1 and 5. Since the scores of all inner-column nodes fall within the range [ f(1), f(5)] =
[0.00, 12.00], the correct function value range can be determined without retrieving additional
nodes, thereby significantly reducing response latency. The full example with all three pixel columns
is provided in the appendix due to space constraints.

Algorithm 1 supports any point-wise transformation composition, including both per-series and
cross-series operators. For example, the use case in Figure 1 defines a composite transformation
g9(X1, X3, X3, 1), which comprises three component functions: cumulative return computation, aver-
aging across multiple series, and point-wise subtraction. According to Equation 1, multiple input
values aligned by the same timestamp are combined into a single output value. Hence, the query
mechanism Q retrieves all required nodes with the identical ID across the involved time series
and calculates a single pair of minimum and maximum scores. Therefore, auxiliary data structures
like i, and Ip,qx remain applicable without modification, following the same usage described in
Section 4.2 and the query process for g(Xi, X3, X3, t) is shown in the appendix.

Acceleration Strategies. Although shown step by step for clarity, making a separate database
query for each node expansion is expensive. We address this inefficiency in two ways. First, we
batch the retrieval of child nodes by aggregating the IDs of all split candidates from l,,,;, and L4
across pixel columns into a single query. Second, we balance performance and memory usage
by using a three-level cache. Since the upper levels of the tree are traversed more frequently,
the top 2!2 nodes are both decompressed and decoded to allow fast access. The next 22° nodes
are decompressed into coefficients but remain undecoded, while the remaining nodes stay fully
compressed in memory and are decompressed on demand. This caching design supports efficient
in-memory processing of billion-scale time-series datasets.

Time Complexity. Given a canvas width w, the query process has a time complexity of O(i -
w - log n), where n is the number of data points within the global time range, and i is the number
of iterations, determined by the distribution of the input time series. In the worst case, all inner-
column nodes may have scores higher than the actual extreme values y, triggering full splits and
resulting in a time complexity of O(n). Although such cases are rare, they highlight the importance
of incorporating an error-bound guarantee to balance visual accuracy and response latency.

4.3 Query with Pixel Error-bound Guarantees

In this section, we propose a pixel-based error-bound guarantee to enable users to dynamically
balance interaction latency and visualization accuracy.

Pixel Error-bound Guarantees. The score-based DFS traversal naturally supports progressive
refinement, gradually converging towards the actual extrema y. However, it lacks a mechanism
for early termination, as there is no metric to assess the accuracy of intermediate visualizations.
For instance, in the first iteration of Figure 5b, o mip is initialized at 1.50, which overlaps with
Y1.min = 0.00 within the same pixel, yet this information is not visible to the user. To address this

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:14 Xin Chen et al.

0 2 2 63 21 a2 6 21 a2 6 0 2 22 63 2 42 6
24.00) 5200 ] 40.00] 200037001 3400 40.00 4000 32.00) 3500
§ E. Eg - .

18004 20, 18.00) 2088 24.00 2480

“Y1E; Es 2400 759 E4 20.75

s : 24,00 24, 17.50
12.00 e — 19 12.00 200 19.7 T 16.0
E, 17.50 75 2.00
12.00 12.00
6.0 o 6. 96 ' 8.00
Es Ee

0.00 -0.50% 0.00] -0.50 AOROIV . ] 0.00 '

(a) (9Ry, Rk,a) (b) (gRﬁy Rk,a) (c) (GRa, Rk,ﬂ) (d) (gRﬂr Rk,/i‘) (e) (gRavgv Rk,avg)

Fig. 6. lllustration of pixel errors under different combinations of Ry and gR. (a-d) The four extreme raster-
ization cases and (e) our average estimation approach using « and f values obtained in the first iteration.
Red and blue boxes indicate erroneous pixels relative to the final visualization in Figure 5b and consistently
rasterized pixels across all four cases, respectively. Black dashed lines serve as virtual guides for rasterization
between Ry that do not correspond to valid results.

limitation, we propose an error-bound guarantee based on the a and f values across all pixel
columns. Before introducing the guarantee, we first define the actual pixel error rate { as the ratio of
the number of erroneous pixels, which differ from the error-free visualization, to the total number
of pixels on the canvas.

Following MinMaxCache [29], our visualization-oriented error bound is defined as the proportion
of total pixels in the canvas that could be incorrect, which differs from metrics that require the final
visualization to be an exact reference image (e.g. SSIM [45]). Unlike MinMaxCache, where the input
time series’ global minimum and maximum values can be easily identified from the TAT, the global
minimum and maximum function values remain unknown during the query process. Consequently,
we must estimate both the value range for each pixel column, Ry, as well as the range of y-axis
limits, gR. These estimates jointly determine how data points are mapped to the visualization and
influence the pixel errors.

To render the resulting time series Y on the w X h canvas, the client can receive the pairs of
(k. mins Xk.max) and (B mins Pk.max) for each pixel column. According to Equation 7, the range gR
must lie between the range of

w w
9Ra = [min ot min, MAX ke max ] ®)
and
w w
gR,B = [1’]1(1}{1 ,Bk,mins Iiliilx ﬂk,max] . )

Similarly, the range Ry of each pixel column must lie between Ry ¢ = [k min, @k, max] and R g =
[ﬁk,min’ ﬁk,max] .

As a result, there are four possible extreme ways to rasterize the canvas, determined by different
combinations of gR and Ry values: (gRa, Rk.o), (9Rp, Rk.a), (gRa Ry p), and (gRg, Ry p). Given that
ok < Yk < Pr. the cases (gRq, Ry,p) and (gRg, Ry, 5) may introduce false foreground pixels, while
the case (gRg, Ry o) may result in missing pixels. In contrast, the case (gRq, Rio) can lead to both
false and missing pixels, where gR and Ry are simultaneously compressed. Figure 6(a-d) shows
an example, where oy and S are obtained in the first iteration in Figure 5b. Taking the final
visualization shown in the bottom right of Figure 5b as the ground truth, the erroneous pixels in
each of the four cases are highlighted with red boxes for comparison.

During the progression of visual analysis, the accurate minimum and maximum values of each
pixel column yk min and yx max remain unknown. Consequently, an accurate reference visualization
is unavailable, and potential erroneous pixels are identified as the ones with high uncertainty,
which are rasterized in some extreme cases but not others, as defined below.
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Definition 2. The pixel errors Eyy represent the difference between the union and intersection of
the pixel ranges rasterized by four combinations of gR and Ry.

Theorem 2. Ey includes all erroneous pixels in the line chart visualization, ensuring that no errors
occur outside Ey, regardless of the actual maximum and minimum function values k.

Proor. We separately analyze the erroneous pixels that occur when the values of gR or Ry are
fixed, although gR depends on Ry.

When ¢R is fixed, only one variable y is present in Equation 3. Since yj lies between a; and fy,
pixels rasterized in both cases of Ry, namely R, and Ry g, will also be rasterized for any value of
Yx. Therefore, the difference between the pixels rasterized by Ry , and R g must cover all potential
pixel errors when gR is fixed.

When the range values of Ry for each pixel column are fixed, Y;,;, and Y45 in Equation 3 are

determined by gR and we have the following projection:
pu(m, M) =h- T—,

where 7 is one of range values of any Ry, and m and M represent gR,i, and gRyayx, implying
y > m and § < M. Differentiating this projection with respect to m and IM gives:

i . H=M - op_, —G-m)

om  (M-m)2 oM = (M-m)?
which indicates that p, is continuous and monotonic. Since gR must also lie between gR,, and gRg,
its projected pixels are in the ranges of the ones projected by using gR, and gRg. In other words,
pixels rasterized in both gR, and gRg cases remain rasterized for any gR, and pixels rasterized in
only one of these cases must cover all potential pixel errors when the range values of Ry are fixed.

Combining the above two scenarios, pixels rasterized in all four extreme cases will be rasterized

in the final visualization, whereas the difference set Ey among these four cases covers all pixel

errors, regardless of yg. O

To illustrate this theorem, consider the third pixel column in the extreme cases shown in Figure 6a
and 6¢ under a fixed global range (gR). This column includes several potential pixel errors, such as
{E2, Eg}, yet the top two pixels are always rasterized regardless of the value of y3. In contrast, under
a fixed column range (Ry), the third pixel column in Figure 6a and 6b consistently rasterizes the
second pixel from the top and never the bottom one, regardless of how the y-axis range compresses
or shifts the line segment [12, 24].

Based on Theorem 2, Ey in Figure 6 is obtained by taking the union of rasterized pixels excluding
those that remain consistent (blue boxes) across all extreme cases. This result corresponds to the
union of pixel errors highlighted by red boxes, confirming Theorem 2. Accordingly, we define pixel
error rate upper bound as:

&= M (10)

By using a pixel error rate threshold 7 to guide th‘g (>1<uery mechanism Q, a tunable trade-off between
visual fidelity and response latency, as required in Problem II, is enabled. For example, in Figure 6,
¢ is 0.5, which exceeds the actual pixel error rates { in the four extreme cases: 1/6, 1/6, 1/4, and
1/12, respectively.

Query with Early Termination. To implement the error-bounded visualization (Problem II), we
integrate the condition ¢ < 7 into the CheckTermination(a, ) step (line 15) of Algorithm 1. Instead
of checking the convergence of ax and fj for each pixel column k, ¢, which depends on all pixel
columns, is evaluated once per iteration. To optimize performance, we implement Definition 2 by
calculating only the minimum and maximum endpoints of pixel ranges for each column under the
four extreme cases, thus avoiding the need to rasterize the four visualizations. By differencing these

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:16 Xin Chen et al.

endpoints, we directly compute the number of potential pixel errors, |Ey|, as defined in Equation 10,
without explicitly determining the error set Eyy. Once ¢ falls below 7, the query process terminates.
The default value for 7 is set to 0.05, which provides a practical balance between accuracy and
performance across the tested datasets.

In addition to providing strict error bounds, minimizing the actual error rate { in intermediate
results is critical for effective progressive visualization [7]. A key challenge lies in estimating the
value range of Y within each pixel column. Rather than using any of four combinations of gR and
Ry values shown in Figure 6(a—d), we adopt the average estimators:

Yk,min = (ak,min + ﬂk,min)/za Yk,max = (ak,max + .Bk,max)/z-
as the mean generally provides a better estimate than the endpoints (a; and fi) for unknown
distributions [10]. Accordingly, we update line 33 in Algorithm 1, so that the value ranges are
computed as:

w w
gRavg = [Iil_l{l Yi mins r}clillx Yk,max]: Rk,avg = [Yk,min: Yk,max] .
This modification helps the resulting line chart converge more quickly to an accurate visualization,

as illustrated in Figure 6e. A comparison of the four combinations and average estimators across
all tested datasets is provided in Figure 10c.

5 Evaluation

In this section, we evaluate the performance of PIVOT in terms of visualization accuracy, response
time, and memory usage. We first describe the experimental setup, then compare it with competing
methods in both cold-start and interaction scenarios under various parameter settings.

5.1 Experimental Setup

Competitors. We compare our system with a conventional pipeline that first performs transfor-
mations in the database, followed by visualization-driven aggregation using techniques like M4 to
extract representative samples for rendering. Since our focus is on interactive analysis, all com-
pressed coefficients are preloaded into server memory. Accordingly, we primarily compare against
DuckDB [36], a state-of-the-art in-memory analytical database that uses the same compression
algorithm as our system. To improve baseline performance, we incorporate AM4 [24], an optimized
M4 variant tailored for analytical database architectures like DuckDB. We refer to this baseline
as DkM4. We do not compare with the pipeline that first applies OM? [44] before performing
transformations, since it only guarantees correct visualizations for monotonic univariate functions,
as discussed in Section 3.1. For comparison, we evaluate two versions of our system: the exact
version (PIVOT) and an error-bounded version with r = 5%, denoted as PIVOT-0.05.

Datasets. As summarized in Table 2, we use 16 datasets with diverse sizes and distributions,
ranging from 5.26 million to 5.05 billion data points. Among the five real-world datasets, Power [20],
Soccer [33], and Stock [39] have been used in prior studies such as M4 [21] and OM? [44]. The
Taxi [42] and Flow datasets come from the transportation domain, where point-wise transformations
like computing transaction rates are common in visual analysis. Following the approach of Maroulis
et al. [29], we generated 11 synthetic datasets using random walks, ranging from 5 million to 5
billion data points. Each dataset covers a 4-year time span, with sampling intervals adjusted to
successively double the size of the previous dataset. We refer to this collection as Syn5M-5B.

Transformations. To ensure a comprehensive evaluation, we tested 13 representative transforma-
tions covering univariate, bivariate, and multivariate scenarios:

o Univariate functions include the monotonic function In(x) and the non-monotonic function
g1(x) =0.001-x*>-3-x.
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Table 2. Dataset basic characteristics

Name # Fields | # Data points
Flow 10 8,615,200
Power 7 226,733,542
Soccer 6 39,454,980
Stock 10 9,035,210
Taxi 11 52,066,080
Syn5M-5B 5 5.26M-5.05B

e Bivariate functions include the four basic arithmetic operations (+, —, X, +) and the squared L,

norm, defined as Lg (31, x2) = 4 [xlz + xg.

e Multivariate functions span a variety of common aggregations across all time series in the dataset:
average (avg), variance (var), weighted sum (wsum), maximum (max), L, norm, and a more

computation-intensive variant len(X) =2 In(x; + 1)2

Since In(x) and the division operator (+) are undefined for negative inputs, we filtered the datasets
to ensure all values were strictly positive, as noted in Section 3.

Measures. Following prior work [21, 44], we evaluate both visualization quality and system

performance using three measures:

o Visual Quality: Measured by the Structural Similarity Index (SSIM) [45], which quantifies the
similarity between visualizations generated by each method and the ground truth (full data
rendering). Higher values indicate better fidelity.

o Response Time: The total time from issuing a visualization request to rendering the result.

e Memory Usage: The peak memory consumed during query execution to generate the visualization,
including the OM3 coefficients, TAT, and other intermediate variables.

Hardware. The system follows a client-server architecture. The client, implemented in JavaScript,
runs on Chrome (v131.0.6778.205) on a MacBook Pro with a dual-core 2.7 GHz processor and 8
GB of RAM. The middleware, developed in C++, runs on a server equipped with two 12-core Intel
Xeon Silver 4410Y CPUs, 512 GB RAM, a 1 TB disk, and Ubuntu 20.04.

Scenarios. We evaluate system performance in two typical usage scenarios: cold-start and interac-
tion. The cold-start scenario simulates the initial rendering of a static line chart based solely on
user-defined parameters, without any cached data. In contrast, the interaction scenario reflects
ongoing analysis, where cached results are reused to speed up frequent operations such as resizing,
panning, zooming, and modifying variables or transformation functions.

5.2 Performance in Cold-start Scenarios

This section examines initialization overhead and how key parameters affect system performance
in cold-start scenarios. Specifically, we analyze the influence of the transformation function, the
number of input variables (), the number of data points (n), the canvas width (w), as well as the
error threshold (7). To assess effectiveness, we compare our system against the DkM4 baseline under
consistent conditions. Unless otherwise specified, the default settings are w = 600 and h = 600.

Initialization Overheads. We evaluated the preprocessing cost of PIVOT by measuring execution
time and peak memory usage across all datasets. As expected, both metrics scale linearly with
input size. For example, the smallest dataset (Syn5M) required 1.08 seconds and 0.08 GB of memory,
while the largest (Syn5B) took 688.52 seconds (~11 minutes) and 61.11 GB. Although preprocessing
introduces additional cost and must be performed offline, this one-time overhead is amortized
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Fig. 7. Performance comparison of three systems using 13 representative transformation functions covering
univariate, bivariate, and multivariate cases evaluated on all datasets: (a) SSIM, (b) response time, and (c)
memory usage.

over repeated use and enables sub-second interaction latency. Detailed results for each dataset are
provided in the appendix.

Types of Transformations. To assess how different types of transformation functions affect
system performance, we evaluate 13 representative functions spanning univariate, bivariate, and
multivariate cases. As shown in Figure 7, we report the visual quality, response time, and memory
usage for each function.

The boxplots in Figure 7a summarize SSIM scores across all datasets. As expected, both DkM4 and
PIVOT achieve perfect SSIM scores of 1.0 in all cases, as they are specifically designed to identify
M4-aggregated samples of the transformation results. PIVOT-0.05 also achieves SSIM scores of 1.0
for all univariate functions, except for the piecewise monotonic function ¢; (x) on the Flow dataset,
where the score slightly decreases to 0.998. For bivariate and multivariate functions, PIVOT-0.05
maintains median SSIM scores around 0.985, regardless of the number of input variables. This
result aligns with expectations. For example, the monotonic function In(x), discussed in Section 3.1,
allows for precise identification of essential samples. Similarly, although g (x) is only piecewise
monotonic, accurate sampling is still possible when nodes fall within monotonic subranges. In
contrast, bivariate and multivariate transformations depend on the pixel error threshold 7 = 0.05,
producing approximate but consistently high-quality visualizations.

Figure 7b shows the response times for all transformation functions across the datasets. Both
PIVOT and PIVOT-0.05 consistently remain below the interactive latency threshold of 0.5 seconds
(green dashed line), while DkM4 often exceeds this limit, especially for bivariate and multivariate
functions, and exhibits higher variability with more outliers. This aligns with our expectation that
DkM4 incurs high latency on the largest datasets due to its linear time complexity, whereas PIVOT
benefits from a tree-based query mechanism with logarithmic complexity. PIVOT-0.05 achieves the
fastest performance due to its error-bounded strategy, which avoids computing exact values when
unnecessary. On average, PIVOT and PIVOT-0.05 complete under 0.09 seconds and 0.05 seconds,
whereas DkM4 takes 1.19 seconds. PIVOT achieves a mean speedup of 13.9x over DkM4, with
PIVOT-0.05 improving further by 1.7x while maintaining high visual fidelity. This balance makes
PIVOT-0.05 particularly suitable for exploratory analysis where speed is critical and slight visual
approximations are acceptable.

Figure 7c presents the memory usage confidence intervals (CIs) for DkM4, PIVOT, and PIVOT-
0.05 across all datasets across three categories of transformation. DkM4 consistently shows the
highest memory consumption with noticeable variability and frequent outliers. In contrast, both
PIVOT and PIVOT-0.05 maintain significantly lower and more stable memory usage, remaining well
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points and (c,d) numbers of input variables when applying the transformation L;“(X) to the synthesized

time-series datasets.

below 1 GB across all transformation types. Specifically, PIVOT reduces memory usage by 5.21x
for univariate, 6.97x for bivariate, and 9.03x for multivariate transformations compared to DkM4.
PIVOT-0.05 achieves slightly lower memory usage than PIVOT, although the difference is marginal.
Upon careful inspection of the DuckDB configuration, we found that it applies compression only
to persistent on-disk databases, not to in-memory instances [25]. In contrast, PIVOT stores data in
compressed form in memory and decompresses them on demand, leading to significantly improved
memory efficiency. These results highlight the efficiency of our method in handling large-scale time-
series data with low memory overhead, making it particularly suitable for resource-constrained
environments.

Number of Data Points and Variables. To evaluate how the number of data points n in Equation 1
affects system performance, we applied the most computationally intensive transformation, L;“ (X),
to 11 synthetic datasets (Syn5M-5B) ranging from 5 million to 5 billion records, each with 5 fields.
As shown in Figure 8a and Figure 8b, both response time and memory usage increase as the dataset
size grows. DkM4 shows the highest and steepest increase in response time, surpassing 500 ms at
32M points and reaching 13.97 s at 5B points. In contrast, PIVOT maintains a stable response time of
around 305 ms even for 5B points, while PIVOT-0.05 further reduces it to under 153 ms. All methods
exhibit increased memory usage with larger datasets, particularly beyond 200M points. However,
PIVOT and PIVOT-0.05 show nearly identical and significantly slower memory growth compared
to DkM4. At 5B points, DkM4 consumes around 16.62 GB, while both PIVOT and PIVOT-0.05 use
only about 3.45 GB. For smaller datasets (e.g., 5M points), DkM4 requires 4.02 GB, whereas PIVOT
and PIVOT-0.05 use only 0.14 GB and 0.10 GB, respectively.

Similarly, we evaluate how the number of input variables [ in Equation 1 affects system perfor-
mance by synthesizing a time-series dataset with 128 million time points and 16 fields. We apply the
transformation, len(X), and progressively increase [ from 2 to 16 by randomly selecting different
fields. As shown in Figure 8c and Figure 8d, both response time and memory usage rise as more
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Fig. 9. Results of evaluation metrics on the largest real-world dataset Power as the canvas width varies: (a)
SSIM scores and (b) response time.

variables are involved in the transformation. DkM4 exhibits the highest and most rapidly increasing
response times, exceeding 1 second even for a small number of variables and approaching 3 seconds
at | = 16. In contrast, PIVOT consistently outperforms DkM4, with response times increasing more
gradually and remaining below approximately 1 second. PIVOT-0.05 achieves the best performance,
maintaining latency under 300 ms across all settings. In terms of memory usage, DkM4 grows
significantly with the number of variables, reaching 20.9 GB due to the overhead from SQL-based
intermediate results. Conversely, PIVOT and PIVOT-0.05 maintain a stable memory footprint
around 1.669 GB. Of this, approximately 1.666 GB is used to store compressed coefficients, and only
a small fraction (0.002 GB) is needed for temporary node construction. As a result, both variants of
our system demonstrate consistent memory efficiency regardless of the number of variables.

Canvas Width. We evaluate system performance on the largest real-world dataset, Power, using
13 transformation functions across six canvas widths ranging from 200 to 1200 pixels. Memory
usage is omitted, as PIVOT and PIVOT-0.05 consistently consume significantly less memory than
DkM4, as shown in Figure 8d.

Figure 9a shows that both DkM4 and PIVOT achieve perfect visual quality (SSIM = 1.0), while
PIVOT-0.05 maintains high accuracy with median SSIM around 0.99 across all canvas widths. As
illustrated in Figure 9b, response time increases with canvas width. At 1200 pixels, PIVOT maintains
a median response time below 200 ms, though some outliers reach 793 ms. DkM4’s median rises to
around 300 ms, with outliers up to 16 s. In contrast, PIVOT-0.05 consistently achieves the lowest
latency, with a median around 60 ms and all values under 250 ms.

Overall, PIVOT and PIVOT-0.05 deliver highly accurate visualizations while using significantly
less memory than DkM4 across all types of transformations. Although response time increases
moderately with transformation complexity and the number of variables, PIVOT-0.05 consistently
maintains response times under 250 ms, even for transformations involving 1 billion data points
and five variables.

Error Bound. We evaluate the effect of the pixel error-bound guarantee by running PIVOT with
four user-specified thresholds of 7: 0% (error-free), 1%, 5%, and 10%. As shown in Figure 10a,
average SSIM scores decrease with larger 7 values, indicating a strong correlation between the
threshold and perceived visual similarity. These results suggest that the proposed upper error
bound ¢ (Equation 10) effectively quantifies visual quality.

Figure 10D illustrates the relationship between the pixel error rate upper bound ¢ (purple points)
and the actual pixel error rate { (green points) under different 7 settings (black horizontal lines),
measured on the Power dataset. Results across 13 representative functions consistently show that
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the actual error rate stays below the corresponding upper bound, confirming the effectiveness of
our error-bound guarantee.

We further compare intermediate visualizations generated using either one of the four extreme
value combinations or the average estimators (see Figure 6) under the default 7 = 5%. As shown
in Figure 10c, the average estimator achieves the highest mean SSIM scores in 8 out of 13 repre-
sentative functions. For the remaining cases, all configurations perform nearly identically on the
two univariate functions, while the average estimator closely approximates the best-performing
configuration in the other three functions (+, avg, max), with only slightly lower scores. These
results demonstrate that the average estimator produces highly accurate intermediate visualizations
for approximating the final output.

5.3 Performance in Interaction Scenarios

To simulate interactive exploration scenarios, we begin by applying the addition operation to the

first two time series from one real-world dataset (Taxi) and one synthetic dataset (Syn5B) using

an initial canvas size of 600 X 600 pixels. This is followed by a sequence of 50 interactions, each

generated randomly according to a predefined query plan. Each interaction falls into one of the

following three categories, selected with equal probability:

e Transformation change: a new transformation is randomly chosen from the 13 representative
functions, ensuring it differs from the current one;
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Fig. 11. Interactive performance on the real-world dataset Taxi (a, b) and synthetic dataset Syn5B (c, d): (a, c)
SSIM scores; (b, d) response times.

e Variable change: a new combination of time-series fields is randomly selected from the dataset;
o Visual interaction: following the setup in [29], including Panning (shift the query window left or

right by a random offset between 10% and 50% of the current time interval), Zooming (zoom in

or out by a factor of 2), and Resizing (increase or decrease the canvas width by 50 pixels).
Each new interaction is executed immediately after the previous one completes, and the results
are summarized in Figure 11. We omit memory usage here, as both of our systems maintain stable
memory consumption, while DkM4 gradually increases over time; detailed memory usage results
are provided in the appendix.

From Figure 11a,11c, both DkM4 and PIVOT achieve perfect visual quality (SSIM = 1.0), while
PIVOT-0.05 maintains consistently high accuracy, with most SSIM scores above 0.98 and occasional
dips to 0.95 on the Taxi dataset. In terms of latency (Figure 11b,11d), DkM4 exhibits the highest
and most variable response times, often exceeding 1 second and peaking near 10 seconds. PIVOT
reduces latency significantly, staying within 0.1-0.4 seconds, while PIVOT-0.05 performs best,
consistently completing interactions in under 0.2 seconds and many within 0.05 seconds.

Comparing the two datasets, the synthetic data yields more stable results overall. PIVOT-0.05
maintains SSIM above 0.98 throughout on synthetic data, while on the Taxi dataset, SSIM occasion-
ally dips to 0.95. Response times are also lower on the synthetic dataset for all methods: DkM4 stays
below 8 seconds, PIVOT under 0.25 seconds, and PIVOT-0.05 under 0.15 seconds. On the real-world
Taxi dataset, response times increase slightly, likely due to greater data complexity and noise.

In summary, both PIVOT and PIVOT-0.05 provide consistently low-latency and high-quality
visualizations, with PIVOT-0.05 offering the fastest performance. While DkM4 struggles with
higher latency, especially on real-world data, our systems remain robust across diverse interaction
scenarios.
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6 Related Work

Time-Series Transformation. A fundamental step in the exploratory analysis of time-series data
is point-wise transformation [47], commonly used to normalize values or deriving new metrics
through custom formulas. These operations can be applied to individual series (e.g., Box-Cox
transformation, z-score normalization) or across multiple aligned series (e.g., point-wise subtraction
or multiplication). Although widely adopted in commercial tools and research systems [4, 34, 36,
47], most existing approaches perform these transformations entirely on the server side before
visualization. This design introduces two key limitations: (i) it requires complete computation of the
transformed result before users can begin interacting with it, which delays feedback; and (ii) it lacks
support for incremental refinement or early visual updates, making it difficult to support responsive,
exploratory workflows. As time-series datasets continue to grow and are increasingly stored on
remote or cloud-based platforms, these limitations become more pronounced, impeding real-time
analysis. In contrast, our work introduces a visualization-oriented approach that tightly integrates
transformation and visualization. Instead of waiting for the complete transformation, we enable
progressive visualization by selecting only the most informative data samples for early visualization,
significantly improving both the responsiveness and scalability of time-series exploration.

Progressive Visual Analytics. Progressive visual analytics (PVA) [11, 32, 41, 46] scales interactive
systems by showing meaningful partial results during computation, allowing users to refine analysis
in real time. Systems such as Falcon [31] and Sample+Seek [13] progressively render visual outputs
as data becomes available. Some PVA systems also support time-series data [15, 19, 26, 40], but
their capabilities are often limited to basic statistical summaries.

Sampling-based PVA methods [4, 13, 18, 23, 37] provide error-bound guarantees for aggregate
queries (e.g., SUM, COUNT, AVG), enabling approximate yet reliable visualizations. For example,
Kim et al. [23] proposed a rapid sampling algorithm for generating bar chart visualizations with
probabilistic guarantees on the correctness of ordering, which is a critical visual property. However,
these methods are not designed for point-wise transformations—operations applied to individual
values at aligned timestamps—and typically overlook perceptual fidelity in the visual output.
Although Plato [27] offers deterministic error guarantees for approximate analytics on compressed
time series, its metrics (e.g., L-norm) are disconnected from visualization quality. To bridge this gap,
our work integrates transformation-aware sampling with progressive visualization, introducing
a pixel-based error-bound guarantee specifically designed for time-series transformations. This
enables responsive, high-fidelity visual analysis with interactive latency, while accounting for both
computational efficiency and perceptual accuracy.

Visualization-driven Time Series Reduction. The rapid growth of time-series data has driven a
few reduction techniques aimed at improving query efficiency and minimizing data size. Traditional
methods [5, 12, 22] reduce dimensionality but often distort visual outputs, while line simplification
techniques [14, 37] preserve shape but not perceptual fidelity (e.g., SSIM [45]). Visualization-driven
approaches like M4 [21] preserve pixel-accurate charts by selecting key points per pixel column,
but suffer from high query costs and lack reuse strategies. Recent systems such as OM>[44],
MinMaxCache[29], and M4-LSM [38] improve performance via hierarchical indexing, caching, or
log-structured storage, but require precomputed results and assume static transformations. Our
method complements these efforts by enabling progressive, on-the-fly transformation of time-
series data with pixel-based error-bound guarantees, supporting interactive exploration with both
real-time responsiveness and transformation flexibility [47].
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7 Conclusion

In this paper, we presented PIVOT, a progressive transformation system for interactive visual analy-
sis of multivariate time series. Unlike traditional pipelines that separate visualization-driven aggrega-
tion and point-wise transformation into two distinct stages, PIVOT employs a transformation-aware
query mechanism on time-series aggregation trees (TAT) to directly identify essential data samples
for progressive refinement toward an error-free visualization. We further introduced a pixel-based
error-bound guarantee that lets users balance visual accuracy and response latency. Experiments
show that PIVOT outperforms existing methods with up to a 10x speedup.

Despite its advantages, PIVOT has limitations. It currently supports only point-wise trans-
formations and relies on OM®’s offline preprocessing, making it unsuitable for streaming data.
Future work includes extending support to multi-timestamp operations (e.g., cross-correlation),
constructing TATs using dynamic caching strategies such as MinMaxCache to eliminate the need
for preprocessing, and evaluating system performance under realistic cross-series workloads.
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