
Visualization-Oriented Progressive Time Series
Transformation
XIN CHEN∗, Renmin University of China, China

LINGYU ZHANG∗, Shandong University, China

HUAIWEI BAO, Shandong University, China

WEI LU, Renmin University of China, China

EUGENE WU, Columbia University, USA

XIAOHUI YU, York University, Canada

YUNHAI WANG†, Renmin University of China, China

Visual analysis of large time-series data often requires transformations over multivariate time series. Existing

methods struggle to meet interactive response time requirements, relying on full transformations that incur

high computation costs. We propose a visualization-oriented transformation system PIVOT that incrementally

generates accurate visualizations by selectively transforming only essential data samples. At its core is a

transformation-aware query mechanism that efficiently computes point-wise transformations by leveraging

cached hierarchical data on the server. To support responsive interaction, we introduce a pixel-based error-
bound guarantee that estimates the accuracy of intermediate visualizations without requiring a reference,

enabling a balance between latency and visual fidelity. Experiments show that PIVOT achieves highly accurate

visualizations with interactive response times, outperforming existing error-free methods by up to an order of

magnitude on billion-scale datasets.

CCS Concepts: • Information systems → Query optimization; • Human-centered computing →
Interactive systems and tools; Information visualization.

Additional Key Words and Phrases: Time series, interactive progressive visualization, transformation

ACM Reference Format:
Xin Chen, Lingyu Zhang, Huaiwei Bao, Wei Lu, EugeneWu, Xiaohui Yu, and Yunhai Wang. 2025. Visualization-

Oriented Progressive Time Series Transformation. Proc. ACM Manag. Data 3, 6 (SIGMOD), Article 376 (Decem-

ber 2025), 26 pages. https://doi.org/10.1145/3769841

1 Introduction
Time-series data have experienced rapid growth in recent years across diverse domains, including

finance, transportation, and manufacturing. Typically collected at regular intervals, this large-scale

data is often stored in cloud-hosted databases, enabling efficient access and scalable processing.

∗
Both authors contributed equally to this research.

†
Yunhai Wang is the corresponding author.

Authors’ Contact Information: Xin Chen, Renmin University of China, Beijing, China, chenxin19961029@ruc.edu.cn;

Lingyu Zhang, Shandong University, Qingdao, China, zhanglingyu@mail.sdu.edu.cn; Huaiwei Bao, Shandong University,

Qingdao, China, bhuaiwei@gmail.com; Wei Lu, Renmin University of China, Beijing, China, lu-wei@ruc.edu.cn; Eugene

Wu, ewu@cs.columbia.edu, Columbia University, New York City, New York, USA, ewu@cs.columbia.edu; Xiaohui Yu,

xhyu@yorku.ca, York University, New York City, New York, Canada, xhyu@yorku.ca; Yunhai Wang, Renmin University of

China, Beijing, China, wang.yh@ruc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/12-ART376

https://doi.org/10.1145/3769841

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.

https://orcid.org/0009-0005-0200-2493
https://orcid.org/0000-0002-4651-7991
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0003-0059-6580
https://doi.org/10.1145/3769841
https://orcid.org/0009-0005-0200-2493
https://orcid.org/0000-0002-4651-7991
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0003-4254-6688
https://orcid.org/0000-0003-0059-6580
https://doi.org/10.1145/3769841


376:2 Xin Chen et al.

Metadata

Prices

Time Series Data Store

JPM
HSBC

... ... ... ...

US
EU

Bank
Bank

Ticker Region Sector Listing date
1991-05-09
1999-12-06

2000-01-03
2000-01-04
2000-01-05

...

...
23.24
22.73
22.59

19.85
18.64
18.54

Time JPM HSBC

Filter(US, Bank)

CumRet=

(Prices-StartPrice)

/StartPrice

Avg(CumRet)Filter(EU,

Bank)

CumRet:EU-

Avg:US

1

2

3

Fig. 1. Visual analysis of multiple time series from a dataset of NYSE-listed stocks. Analysts may casually
apply and compose various point-wise transformations to explore interesting patterns, expecting timely and
highly accurate visualizations.
Analyzing time-series data commonly involves applying various point-wise transformations [6,
8], which operate independently on values at each aligned timestamp. These transformations

generally fall into two categories: (i) per-series operations, which modify individual time series

using techniques such as the Box-Cox transformation or logarithmic scaling; and (ii) cross-series

operations, which combine values from multiple aligned series—such as summation or subtraction

at the same timestamp—to produce derived insights.

Figure 1 explores a collection of time series representing stock prices, each annotated with

metadata such as region and sector. An analyst might begin by (1) filtering the series based on

metadata predicates—for example, selecting bank stocks from the US—and then applying per-series

point-wise transformations to compute cumulative returns relative to the initial price. Next, (2)

the analyst may aggregate the transformed series by computing the average return across all

selected US stocks for each timestamp. Finally, (3) this average could be subtracted from another

group of series, such as EU stocks, to assess relative market performance. Such workflows often

involve multiple transformation steps, with users interactively adjusting parameters and composing

operators to uncover meaningful patterns. These types of analyses are ad hoc as part of the user’s
data exploration, and so they are expected to respond quickly in order to maintain the user’s

analysis flow [28].

As datasets grow larger, ensuring responsiveness for these ad hoc analyses is particularly chal-

lenging because results cannot be pre-computed. One approach involves first performing the

necessary transformations on the server, followed by the application of visualization-driven ag-

gregation techniques such as M4 [21] and OM
3
[44]. These techniques help identify the essential

records within each pixel column that preserve the exact rendering of the input time series. The

selected records are then transmitted to the client for visualization, significantly reducing data

transfer volume and enhancing rendering efficiency. However, executing this over the full dataset

remains a bottleneck. For example, performing a logarithmic transformation to the TLC Trip Record

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:3

data [42] with 4.7 million data points takes 2.1 seconds on PostgreSQL and 1.2 seconds on DuckDB

using a single thread. Alternatively, applying visualization-driven aggregation techniques first and

then performing transformations on the selected records on the server can reduce overhead, but

may compromise accuracy in the transformation results. This is because aggregation simplifies or

approximates the data, potentially losing important details necessary for accurate visualizations.

To address this issue, a possible alternative is to adopt progressive visual analytics (PVA) [32,

41, 43, 46]. PVA delivers semantically meaningful partial results during data processing, allowing

users to interact with evolving visualizations and adjust parameters in real time, without having

to wait for the entire computation to complete. Most existing PVA techniques [13, 16, 30, 35],

however, are primarily designed for approximate aggregate queries (e.g., SUM, COUNT, MIN)

and are not well suited for point-wise data transformations. Even when adapted to support such

transformations, these methods often require substantial computation over the full dataset to

produce an accurate final visualization. Consequently, the overall computational cost remains high,

limiting the practicality of existing PVA methods for large-scale time-series analysis.

In this paper, we introduce PIVOT for progressive visual analytics of massive time-series data

that leverages visualization-aware optimizations to accurately visualize analysis results while

significantly reducing computation costs compared to full data processing. PIVOT efficiently

supports point-wise transformations while leveraging awareness of the visualization to integrate

ideas from visualization-driven data aggregation, which helps users rapidly identify patterns of

interest. Once such patterns are found, full transformations can be performed on the essential

data to support deeper analysis. In doing so, PIVOT aligns with the natural workflow of visual

exploration by prioritizing responsiveness and progressive refinement.

PIVOT builds on the Time-series Aggregation Tree (TAT), which hierarchically organizes time

series to efficiently identify minimum and maximum values over arbitrary intervals by traversing

only a subset of paths. Leveraging TAT, we propose a transformation-aware query mechanism

that generates sufficiently accurate visualizations of transformation results, reducing redundant

computation and query overhead. We show that for any point-wise transformation function 𝑓 ()
bounded over a given domain, a property satisfied by most transformations in visual analysis, the

hierarchy can be aggressively pruned to rapidly respond to time-series interactions.

To further support user-driven analysis, we introduce a pixel-based error-bound guarantee that

estimates the visual accuracy of intermediate results during TAT traversal in real time and enables

more aggressive pruning. This enables users to dynamically balance response time and visual

fidelity, refining transformations only when patterns or anomalies of interest are identified. Our

system supports both per-series and cross-series operations, as well as core interactions such as

zooming, panning, and dynamic transformation composition. Together, these capabilities offer a

flexible and scalable foundation for the visual exploration of complex time-series data.

We evaluated PIVOT on time-series datasets with up to one billion records by quantitatively

comparing it against a straightforward baseline: DuckDB [36] along with its inherently customized

M4 [17], focusing on visual fidelity, processing time, and memory usage. The results show that

PIVOT produces visualizations with user-controllable accuracy and achieves lower response times,

even under error-free conditions, while also significantly reducing memory usage compared to

DuckDB.

In summary, we make the following key contributions:

• We propose a novel system, PIVOT, a Progressive Interactive Visualization-Oriented Transfor-
mation system, for exploring large-scale time-series data interactively.

• We present a transformation-aware query that integrates sample selection, transformation,

and visualization to accelerate computation while ensuring error-free visual output.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:4 Xin Chen et al.

• We provide a pixel-based error-bound guarantee, enabling users to balance response time and

visualization accuracy during interactive transformation.

• We quantitatively evaluate our method against state-of-the-art techniques in terms of both

accuracy and efficiency.

2 Problem Formulation and Background
In this section, we first formally define the problem of visualization-oriented progressive time series

transformation, followed by a brief overview of the relevant background.

2.1 Problem Formulation
We formalize two core problems related to visualizing transformation results over large-scale time

series data: (1) efficiently generating error-free visualizations, and (2) generating approximate

visualizations with guaranteed pixel-level error bounds.

Let X = {𝑋1, . . . , 𝑋𝑚} be a multivariate time-series dataset, where each time series 𝑋𝑖 contains

𝑛 elements, and 𝑋𝑖 [𝑡] denotes the value of 𝑋𝑖 at timestamp 𝑡 . Interactive visual analysis often

involves applying point-wise transformations to one or more time-series attributes, where the

transformation is computed independently at each timestamp:

𝑌 [𝑡] = 𝑓 (𝑋𝑖 [𝑡], 𝑋 𝑗 [𝑡], . . . , 𝑋𝑘 [𝑡]), (1)

where 𝑋𝑖 , 𝑋 𝑗 , . . . , 𝑋𝑘 form a user-specified subset of X, and the number of input variables 𝑙 satisfies

𝑙 ∈ [1,𝑚]. Both the selection of input series and the temporal range over which 𝑌 is computed can

be specified by the user.

A time series 𝑌 is often rendered as a line chart on a canvas of width𝑤 and height ℎ, where each

point (𝑡, 𝑌 [𝑡]) is mapped to canvas coordinates:

𝑝𝑥 (𝑡) =𝑤 · 𝑡 − 𝑡start

𝑡end − 𝑡start
, (2)

𝑝𝑦 (𝑌 [𝑡]) = ℎ · 𝑌 [𝑡] − 𝑌min

𝑌max − 𝑌min

. (3)

Here, 𝑡start, 𝑡end define the time range, and 𝑌min, 𝑌max the value range. Following prior work [21, 44],

we define the rasterization as the process of converting line segments between adjacent data points

into a sequence of pixels. The pixels traversed by these segments are marked as foreground, and all

others are considered background. Figure 2b shows an example where gray pixels represent the

foreground corresponding to the time series in Figure 2a. However, not all data points contribute

to the final rasterization, as traversing a pixel multiple times has the same visual effect as doing so

once.

Definition 1. A pixel column on a canvas of width𝑤 corresponds to one of𝑤 equal-width intervals

over the time range [𝑡start, 𝑡end]. For the 𝑘-th interval, the data values in time series 𝑋𝑖 form a group

𝐶𝑖,𝑘 = {𝑋𝑖 [𝑡] | 𝑡 ∈ [𝑡start + (𝑘 − 1)𝛿, 𝑡start + 𝑘𝛿]}, where 𝛿 ≈ 𝑡end−𝑡start
𝑤

.

When the transformation function 𝑓 is computationally expensive or the number of data points

𝑛 is large, computing the full result 𝑌 as defined in Equation 1 can exceed acceptable latency for

interaction, making it difficult for users to remain engaged. Inspired by the M4 approach [21], which

demonstrates that rasterization within a pixel column relies only on a small set of key data points,

we aim to progressively and efficiently generate error-free visualizations using a carefully selected

subset of points from the original time series X, particularly for common point-wise functions 𝑓 .

Problem I (Error-free Visualization). Given a multivariate time series dataset X and a transfor-

mation function 𝑓 : X → 𝑌 , design a query mechanism 𝑄 that selects a subset 𝑄 (X) ⊆ X such

that the rendered visualization satisfies V(𝑓 (𝑄 (X))) = V(𝑓 (X)) for any canvas resolution, where

V denotes rasterization.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:5

0

2.5

5

7.5

10
0 3.5

start end min max
7

(a) (b)

t
7
8
10
6
2
5
0
7

0
1
2
3
4
5
6
7

X[t]

X
(c)

7 8 10 2 06 5 7

100

70

52 7010687

106

6

0

4

420

0

7

7

7

531

3

id:1

id:2

id:6id:5id:4 id:7

id:3

x_min
x_max

Fig. 2. Illustration of M4 and our proposed TAT representation with a sample time series in (a). (b) The
corresponding line charts with two pixel columns: the blue line connects all data points, while the black line
uses only M4-aggregated samples in each pixel column. (c) The corresponding TAT structure, where each
node stores the minimum and maximum values and the associated time interval.

Although error-free visualizations are ideal, it is not always feasible under real-time constraints.

When users seek early visual feedback during exploration, approximate visualizations with bounded

perceptual error are acceptable [29]. This motivates a second problem formulation:

Problem II (Error-bounded Visualization). Given a multivariate time series datasetX, a function 𝑓 :

X → 𝑌 , and a user-defined pixel error threshold 𝜏 , design a query mechanism 𝑄 that progressively

refines a subset 𝑄 (X) such that the pixel error rate upper bound 𝜀 of the visualization V(𝑓 (𝑄 (X)))
satisfies 𝜀 ≤ 𝜏 .

These two formulations capture the essential trade-off between accuracy and responsiveness

in visualization-oriented time-series transformation. Our goal is to support both error-free and

error-bounded modes, enabling interactive exploration of large-scale transformed time series with

guaranteed visualization accuracy.

2.2 Background: M4 and Its Variants
For a given time series 𝑋𝑖 , M4 [21] aggregation extracts the minimum, maximum, and the first and

last data values within each pixel column. By connecting these four points in temporal order to form

inner-column line segments and inter-column line segments and rasterizing these resulting segments,

an error-free visualization can be produced using significantly fewer data points (see Figure 2b).

However, retrieving the four aggregated samples for each pixel column requires scanning the entire

dataset, resulting in a query time complexity of 𝑂 (𝑛). Processing millions of records may take over

one second, which is beyond the latency limit [28] for interactive visual analysis.

OM3 andMinMaxCache. To support interactive progressive visualization, OM3
[44] observed that

an error-free result can be achieved using all inter-column line segments and only the inter-column

segments whose rasterized pixels are not already covered. Notably, inner-column and inter-column

segments are not connected unless they share points. Based on this, OM
3
pre-processes a time

series into a multi-level min max coefficient tree via a forward transform, recursively computing

aggregates and encoding their differences to preserve detail. The resulting hierarchy, about three-

quarters the size of the original data, is stored on the server.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:6 Xin Chen et al.

At runtime, a visualization-aware incremental query algorithm with time complexity𝑂 (𝑤 log𝑛)
(𝑤 is the canvas width) retrieves only the coefficients needed for reconstruction via inverse trans-

form. For each pixel column, the server streams coefficients for four M4 samples to the client.

The visualization is progressively refined during traversal, using a pruning strategy that skips

inter-column segments whose pixels are already covered by inner-column ones.

To eliminate the need for preprocessing, MinMaxCache [29] uses an adaptive caching strategy.

Instead of fixed-width intervals, it caches min and max aggregates at dynamically chosen granular-

ities to approximate M4 samples. Upon query, it checks whether the cached aggregates satisfy a

pixel-level error bound; if not, it retrieves the missing values and updates the cache. This enables

error-bounded visualizations without prior computation.

However, M4 and its variants target raw time-series visualization. When applied to our setting

that involves visualizing transformed time series, they require full transformation results before

rendering. Consequently, users must wait for costly computations to complete before gaining any

visual insight.

3 TAT: Time-series Aggregation Tree
To solve Problem I, we propose a time-series aggregation hierarchy, TAT, which supports progressive

visualization and enables fluid interaction for point-wise transformations through an efficient

pruning strategy. Before introducing TAT, we first examine an approach that extends M4 to identify

essential data points required for transformation. While effective in certain cases, this method is

limited to scenarios where the transformation function is monotonic.

3.1 M4-based Transformation Approach
For a given time series 𝑋𝑖 and a display window with width𝑤 , M4 [21] groups 𝑋𝑖 into𝑤 columns.

When a monotonic function 𝑓 is applied to all data points in the 𝑘-th pixel column, the relative

order of the values is preserved or reversed. Specifically, if 𝑓 is monotonically increasing, then for

all 𝑋𝑖 [𝑡] < 𝑋𝑖 [𝑡 ′] in this column, we have 𝑓 (𝑋𝑖 [𝑡]) < 𝑓 (𝑋𝑖 [𝑡 ′]); if 𝑓 is monotonically decreasing,

the order is reversed. In either case, the minimum and maximum values of 𝑓 (𝑋𝑖 ) in the pixel column

can be directly derived from the minimum and maximum of the original series 𝑋𝑖 . Likewise, the

first and last values of 𝑓 (𝑋𝑖 ) in each pixel column are determined by the first and last values of

𝑋𝑖 . Therefore, the pixels rasterized in the visualization of 𝑓 (𝑋𝑖 ) are entirely determined by the

M4-aggregated samples of 𝑋𝑖 .

However, this only holds for monotonic univariate functions, as illustrated in Figure 3a. For

non-monotonic transformations, even a single time series can lead to incorrect visualizations. For

example, consider the function 𝑓 (𝑥) = 𝑥 · sin(𝑥), which reaches its maximum at 𝑥 = 8 within

the first pixel column 𝐶1,1 (see Figure 3b). The M4 aggregation for 𝐶1,1 do not capture this peak,

resulting in an incorrect visual range of [𝑓 (10), 𝑓 (6)]. This issue also arises when applying point-

wise functions to multiple time series. For example, the point-wise difference 𝑓 (𝑋1, 𝑋2) = 𝑋1 − 𝑋2

yields a minimum function value 𝑓 (7, 4) that does not align with the minimum 𝑠𝑚𝑖𝑛 computed from

the extrema of 𝑋1 and 𝑋2, as illustrated in Figure 3c. Therefore, using only M4 aggregates from

individual series is insufficient.

While M4 variants such as OM
3
and MinMaxCache improve query performance, the data samples

they retrieve only guarantee visual fidelity for visualizations of time series resulting frommonotonic

univariate transformations, similar to M4.

3.2 TAT and Its Property
Rather than operating directly on raw time series, our method constructs a hierarchical data

structure, called the time-series aggregation tree (TAT). This structure is specifically designed

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:7

to selectively retrieve only the data points necessary for accurately rasterizing the results of

non-monotonic or multivariate transformations, thereby reducing computational overhead.

As illustrated in Figure 2c, a full TAT is a complete binary tree in which each node is associated

with the following attributes:

• 𝑖𝑑 : uniquely identifies node, indexed from top to bottom.

• ⟨𝑡start, 𝑡end⟩: start/end timestamps of interval the node represents.

• [𝑥min, 𝑥max]: min/max values observed in node’s interval.

For example, the root node in Figure 2c has an 𝑖𝑑 of 1, a time range of ⟨0, 7⟩ and the value range of

[0, 10]. The bottom layer of TAT consists of the original time series, with each data point acting as

a leaf node. Before constructing TAT, we pad the number of leaf nodes to the next power of two

by appending null values. For any parent node 𝑝 , its temporal and value ranges are recursively

computed from its two child nodes 𝑐𝑙 and 𝑐𝑟 :

𝑝.𝑡start =min(𝑐𝑙 .𝑡start, 𝑐𝑟 .𝑡start),
𝑝 .𝑡end =max(𝑐𝑙 .𝑡end, 𝑐𝑟 .𝑡end), (4)

𝑝.𝑥min =min(𝑐𝑙 .𝑥min, 𝑐𝑟 .𝑥min),
𝑝.𝑥max =max(𝑐𝑙 .𝑥max, 𝑐𝑟 .𝑥max). (5)

Since the time-series data is ordered, 𝑝.𝑡start must be equal to 𝑐𝑙 .𝑡start, and 𝑝.𝑡end must be equal to

𝑐𝑟 .𝑡end. In contrast, 𝑝.𝑥min and 𝑝.𝑥max are computed by taking the minimum and maximum values

from both child nodes. For example, in Figure 2c, the maximum value of the root node coincides

with that of its left child.

Theorem 1. For a function bounded within a given domain, the minimum value within the

sub-domain of a parent node 𝑝 is always less than or equal to the minimum values within the

sub-domains of its child nodes, 𝑐𝑙 and 𝑐𝑟 . Similarly, the maximum value of 𝑝 is always greater than

or equal to the maximum values of 𝑐𝑙 and 𝑐𝑟 .

Proof. A fundamental property of the TAT is the transitivity of minimum and maximum values

between a parent node 𝑝 and its child nodes 𝑐𝑙 and 𝑐𝑟 , as defined in Equation 5:

𝑝.𝑥𝑚𝑖𝑛 ≤ 𝑐𝑙 .𝑥𝑚𝑖𝑛 and 𝑝.𝑥𝑚𝑖𝑛 ≤ 𝑐𝑟 .𝑥𝑚𝑖𝑛,

𝑝 .𝑥𝑚𝑎𝑥 ≥ 𝑐𝑙 .𝑥𝑚𝑎𝑥 and 𝑝.𝑥𝑚𝑎𝑥 ≥ 𝑐𝑟 .𝑥𝑚𝑎𝑥 .

For a bounded function 𝑓 , there exists a minimum value 𝑠𝑚𝑖𝑛 = 𝑓 (𝑥) within the range [𝑝.𝑥𝑚𝑖𝑛,

𝑝.𝑥𝑚𝑎𝑥 ]. If 𝑥 is within [𝑐𝑙 .𝑥𝑚𝑖𝑛, 𝑐𝑙 .𝑥𝑚𝑎𝑥 ], then 𝑠𝑚𝑖𝑛 is also the minimum in this range. Also, since

[𝑐𝑟 .𝑥𝑚𝑖𝑛, 𝑐𝑟 .𝑥𝑚𝑎𝑥 ] ⊆ [𝑝.𝑥𝑚𝑖𝑛, 𝑝.𝑥𝑚𝑎𝑥 ], 𝑠𝑚𝑖𝑛 must be less than or equal to the minimum value in

[𝑐𝑟 .𝑥𝑚𝑖𝑛, 𝑐𝑟 .𝑥𝑚𝑎𝑥 ]. Similarly, if 𝑥 is within [𝑐𝑟 .𝑥𝑚𝑖𝑛, 𝑐𝑟 .𝑥𝑚𝑎𝑥 ], then 𝑠𝑚𝑖𝑛 is the minimum in this range

and must be less than or equal to the minimum in [𝑐𝑙 .𝑥𝑚𝑖𝑛, 𝑐𝑙 .𝑥𝑚𝑎𝑥 ]. The same relationship holds

for the maximum value.

Thus, for any function 𝑓 bounded within the domain of a TAT, the following transitive relation-

ships hold:

𝑓 (𝑝).𝑠𝑚𝑖𝑛 ≤ 𝑓 (𝑐𝑙 ).𝑠𝑚𝑖𝑛 and 𝑓 (𝑝).𝑠𝑚𝑖𝑛 ≤ 𝑓 (𝑐𝑟 ).𝑠𝑚𝑖𝑛,

𝑓 (𝑝).𝑠𝑚𝑎𝑥 ≥ 𝑓 (𝑐𝑙 ).𝑠𝑚𝑎𝑥 and 𝑓 (𝑝).𝑠𝑚𝑎𝑥 ≥ 𝑓 (𝑐𝑟 ).𝑠𝑚𝑎𝑥 . (6)

When the function 𝑓 is applied to multiple aligned time series, 𝑝 represents a set of nodes with an

identical ID across different TATs, and the same applies to 𝑐𝑙 and 𝑐𝑟 . □

Based on this theorem, nodes 𝑐𝑙 and 𝑐𝑟 can be pruned if applying 𝑓 to node 𝑝 does not yield

the minimum or maximum value in the current pixel column. For example, in Figure 3d, the right

child nodes with value ranges [6, 10] and [0, 1] are skipped because the left child yields function

values of 7 − 4 = 3 and 8 − (−3) = 11, which exceed the possible function value range of the right

child. Additionally, we leverage this theorem to compute the theoretical lower and upper bounds of

each node, which guides the traversal order during query processing. If 𝑓 is differentiable over the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:8 Xin Chen et al.

x

f(x)

0 2 4 6 7 8 10

8

6

4

2

0

-2

-6
-4

U
n

iv
ar

ia
te x

f(x)

0 2 4 6 7 8 10

2

1

0

-1

-2

-3

-4

(a) f(x) = ln(x), x∈(0,+∞)

(c) f(x1,x2) = x1-x2 (d)

(b) f(x) = x*sin(x)

M
u

lt
iv

ar
ia

te

smin

smin

smax smax

high

low

x1

x2

0 2 4 6 7 8 10

2
1

4

0

-2
-3
-4

smax

smin
10687

106id:2

id:4 id:5

104-3

4-3id:2

id:4 id:5

C1,1

C2,1

2.00

2.00

3.00

3.00

5.00

5.00

13.00

13.00

11.00

11.00

10.00

10.00

7

4

x

x

8

-3

10

0

6

1

Fig. 3. Illustration of how our solution handles three types of transformation functions: (a) monotonic
univariate, (b) non-monotonic univariate, and (c) bivariate. In all cases, the input time series has values {7, 8,
10, 6}, represented by black dots within a single pixel column. The corresponding function values are shown as
black squares, while yellow and green squares mark the minimum and maximum function values within the
domain, respectively. In (c), an additional time series {4, -3, 0, 1} is used, and the corresponding TAT structures
are illustrated in (d).

domain, its minimum and maximum values occur either at the domain boundaries or at stationary

points where 𝑓 ′ (𝑥) = 0, according to Fermat’s Theorem [1]. By precomputing the function values

at these stationary points, we can reduce redundant evaluations of 𝑓 during traversal, improving

overall efficiency.

Yet, this theorem does not apply to unbounded functions, where it is infeasible to compute

theoretical lower and upper bounds based on the closed interval defined by the node values 𝑥𝑚𝑖𝑛

and 𝑥𝑚𝑎𝑥 . For example, the function 𝑓 (𝑥1, 𝑥2) = 𝑥1/𝑥2 approaches infinity at 𝑥2 = 0, making the

bounds undefined when 𝑥𝑚𝑖𝑛 < 0 and 𝑥𝑚𝑎𝑥 > 0.

While TAT can be dynamically constructed using range queries by using a node’s start and

end timestamps as query conditions and applying aggregation functions such as ‘MIN()’ and

‘MAX()’ to compute its value range, this approach presents several limitations. For unordered time-

series data, each range scan incurs a time complexity of 𝑂 (𝑛), resulting in inefficient construction.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:9

Server Client User

...
x_min

x_max

TATs

Data Store

query

nodes

Pixel Column 1 Pixel Column w

Y= (X1, X2, ...)

w

f

progressive 
refinement

apply a point-wise transformation f

visualization

parameters

Aggregated 
function values

{Yw,start, Yw,end, Yw,min, Yw,max}{Y1,start, Y1,end, Y1,min, Y1,max} ...
...

X1

...

X2

Offline Online

multivariate 

time series data

OM3

preprocessor

lossless

 floating-point

compressor

Fig. 4. Overview of our system PIVOT for exploring compressed large-scale time series stored in memory on
a remote server.

Table 1. Notations
Symbol Description
𝑤,ℎ Width and height of the canvas

𝑓 User-specified transformation function

X Input multivariate time series

𝑋𝑖 The 𝑖-th univariate time series in X
𝑌 Transformed result, i.e., 𝑓 (X)
𝛼 Extreme valid results observed in 𝑌

𝛽 Extreme theoretical scores computed over the input domain

𝛾 True extreme values in 𝑌

𝜂𝑖 Inner-column node with ID 𝑖

𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 Candidate lists for minimum / maximum scores

𝜁 Actual pixel error rate of an intermediate visualization

𝑔𝑅, 𝑅𝑘 Value range of the entire canvas / pixel column 𝑘

𝐸𝑈 The union set of erroneous pixels under any 𝑔𝑅 and 𝑅𝑘
𝜀 Pixel error rate upper bound for given 𝑔𝑅 and 𝑅𝑘
𝜏 User-specified pixel error rate threshold

Moreover, it leads to redundant computation between parent and child nodes, as min andmax values

computed for child intervals are discarded and recomputed when constructing parent nodes. Fully

materializing the tree structure also incurs significant storage overhead, requiring approximately

2𝑛 space.

4 PIVOT
In this section, we present PIVOT, a progressive interactive visualization-oriented transformation

system PIVOT enables real-time, user-driven exploration of large-scale multivariate time series

through efficient point-wise transformations. Common notations used throughout this section are

listed in Table 1.

4.1 Overview
PIVOT builds on top of TAT, a hierarchical structure constructed on the server at runtime. By

avoiding repeated full data scans, PIVOT supports efficient reuse and accommodates dynamic

updates of TATs during interaction. The system follows a client-server model, proceeding in two

stages: offline preprocessing and online querying (see Figure 4).

Offline Preprocessing. We apply the OM
3
preprocessor to convert each time series into an ordered

multi-level min-max coefficient tree via a forward transform. We reduce storage by compressing

the detail coefficients with the ALP algorithm [2], which is also adopted by DuckDB [3].

Online Querying. PIVOT uses visualization parameters (e.g., the canvas width𝑤 , height ℎ, time

range ⟨𝑡start, 𝑡end⟩, and user-specified analysis function 𝑓 to reconstruct essential TAT nodes from

the precomputed OM
3
coefficients and then applies the requested point-wise transformations on

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:10 Xin Chen et al.

the server. Once the necessary coefficients are retrieved, they are decompressed and inverted to

recover the raw values via the inverse transform. PIVOT then applies point-wise transformations

and aggregates the results by pixel column before progressively transmitting them to the client. To

maintain interactive performance, PIVOT queries on-demand nodes incrementally, so that users

can pan, zoom, resize, or otherwise explore the data seamlessly.

During query execution, PIVOT dynamically constructs partial TATs for fast access to relevant

transformation samples. By performing transformation-aware, tree-based querying, PIVOT selec-

tively retrieves TAT nodes likely to contain perceptually significant samples in each pixel column

regarding function 𝑓 . Each non-leaf node in TAT carries two scores: the theoretical minimum

and maximum function values over its domain. Leaf nodes store the actual function values in 𝑌 .

These scores guide the query to the next nodes of interest, while the scores and the leaf-node

values collectively determine when the query process can stop. As discussed in the subsequent

section, our transformation-aware query progressively gathers the aggregated function values

𝑌𝑘,𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑘,𝑒𝑛𝑑 , 𝑌𝑘,𝑚𝑖𝑛, 𝑌𝑘,𝑚𝑎𝑥 needed for both error-free and error-bounded visualizations.

4.2 Transformation-awareQueries using TAT
For a display window of width𝑤 , the server processes the request by executing the transformation-

aware query mechanism 𝑄 , which consists of three stages: identifying boundary points for each
pixel column, scoring nodes within the current TAT structure, and performing a depth-first traversal
to query and insert additional nodes as needed. The full procedure is detailed in Algorithm 1, with

an illustrative example shown in Figure 5.

Identifying Boundary (lines 1-2). First, the server identifies TAT nodes corresponding to boundary

timestamps of each pixel column 𝑘 , using the canvas width𝑤 and time range ⟨𝑡start, 𝑡end⟩:
𝑡𝑘,𝑠𝑡𝑎𝑟𝑡 = 𝑡start + 𝑘 · 𝛿, 𝑡𝑘,𝑒𝑛𝑑 = 𝑡start + (𝑘 + 1) · 𝛿 − 1,

where 𝛿 =
𝑡end−𝑡start

𝑤
. Due to the full binary tree structure of the TAT, node IDs can be uniquely

determined by these timestamps, making the detection of boundary nodes to be both deterministic

and accurate. The relevant node IDs for these timestamps across all levels are combined into a

single query, excluding the global 𝑡start and 𝑡end, as they do not contribute to the generation of

inter-column lines. From the retrieved nodes, the server constructs a partial TAT for each time

series corresponding to an attribute in the input multivariate dataset. Since both children of a

parent node are reconstructed together, two types of nodes are distinguished: nodes that contain at

least one boundary timestamp (𝑡𝑘,𝑠𝑡𝑎𝑟𝑡 or 𝑡𝑘,𝑒𝑛𝑑 ) are defined as boundary nodes, while the remaining

nodes that cover timestamps within column are referred to as inner-column nodes. A boundary

node can be a leaf node, corresponding to a data point located at the boundary of pixel columns.

For example, in Figure 5a, all retrieved nodes outlined in red are constructed during this stage.

Among them, the red dashed boxes indicate boundary nodes and the lowest node with timestamp

21 is a leaf, corresponding to the last data point of pixel column 𝐶1.

By design, inner-column nodes obtained in this stage precisely cover the time intervals between

the boundaries. As a result, the identified nodes are sufficient to derive not only 𝑥𝑘,𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑘,𝑒𝑛𝑑
but also 𝑥𝑘,𝑚𝑖𝑛 and 𝑥𝑘,𝑚𝑎𝑥 for each pixel column. Together, they suffice for error-free visualizations

of the input time series. However, unlike OM
3
, which prunes certain boundary nodes when their

value ranges are fully contained within the overlap of adjacent pixel column ranges, we retain all

boundary leaf nodes to ensure that all inter-column segments remain connected, as the applied

transformation may cause their actual function value ranges to extend beyond those of the adjacent

inner-column segments.

Scoring Nodes (lines 3-13). In this stage, for each boundary leaf node, we compute the function 𝑓

directly to obtain valid results, which serve as the start and end values in the aggregated function

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:11

Algorithm 1 Transformation-aware Query Mechanism

Input: Canvas width𝑤 , time range ⟨𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ⟩, dataset 𝐷 , function 𝑓

Output: M4 aggregation of transformation results 𝑌

1: N = QueryDB(𝐷 , CalTimeRangeofAllCols(𝑤, 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ))

2: TAT 𝑡𝑟 = initializeTAT(N )

3: Initialize candidate node lists {𝑙𝑘,𝑚𝑖𝑛}𝑤𝑘=1, {𝑙𝑘,𝑚𝑎𝑥 }𝑤𝑘=1
4: for each pixel column 𝑘 ∈ [1,𝑤] do
5: [𝑌𝑘,𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑘,𝑒𝑛𝑑 , 𝛼𝑘,𝑚𝑖𝑛, 𝛼𝑘,𝑚𝑎𝑥 ] = calFuncVals(𝑓 , 𝑡𝑟𝑘 .leaves)

6: NS = calNodeScores(𝑓 , 𝑡𝑟𝑘 .innerColumnNodes)

7: 𝑙𝑘,𝑚𝑖𝑛 .heappush(NS), 𝑙𝑘,𝑚𝑎𝑥 .heappush(NS)
8: 𝛽𝑘,𝑚𝑖𝑛 = 𝑙𝑘,𝑚𝑖𝑛 .top().score, 𝛽𝑘,𝑚𝑎𝑥 = 𝑙𝑘,𝑚𝑎𝑥 .top().score

9: end for
10: if IsUnivariateMonotonic(𝑓 ) then
11: Set 𝑌𝑘,𝑚𝑖𝑛, 𝑌𝑘,𝑚𝑎𝑥 by 𝛽𝑘,𝑚𝑖𝑛, 𝛽𝑘,𝑚𝑎𝑥 for each column 𝑘

12: return 𝑌 ⊲ Return exact results

13: end if
14:

15: while CheckTermination(𝛼, 𝛽) do
16: for each pixel column 𝑘 ∈ [1,𝑤] do
17: 𝑖𝑑𝑚𝑖𝑛 = 𝑙𝑘,𝑚𝑖𝑛 .pop().𝑖𝑑, 𝑖𝑑𝑚𝑎𝑥 = 𝑙𝑘,𝑚𝑎𝑥 .pop().𝑖𝑑
18: while 𝑡𝑟 .isNonLeafNode(𝑖𝑑𝑚𝑖𝑛) do
19: [𝜂𝑙 , 𝜂𝑟 ] = 𝑡𝑟 .split(𝑖𝑑𝑚𝑖𝑛,QueryDB(𝐷, 𝑖𝑑𝑚𝑖𝑛))
20: [𝑛𝑠large, 𝑛𝑠small] = calNodeScores(𝑓 , 𝜂𝑙 , 𝜂𝑟 )

21: 𝑖𝑑𝑚𝑖𝑛 = 𝑛𝑠small .𝑖𝑑

22: 𝑙𝑘,𝑚𝑖𝑛 .heappush(𝑛𝑠large)
23: end while
24: while 𝑡𝑟 .isNonLeafNode(𝑖𝑑𝑚𝑎𝑥 ) do
25: [𝜂𝑙 , 𝜂𝑟 ] = 𝑡𝑟 .split(𝑖𝑑𝑚𝑎𝑥 ,QueryDB(𝐷, 𝑖𝑑𝑚𝑎𝑥 ))
26: [𝑛𝑠large, 𝑛𝑠small] = calNodeScores(𝑓 , 𝜂𝑙 , 𝜂𝑟 )

27: 𝑖𝑑𝑚𝑎𝑥 = 𝑛𝑠large .𝑖𝑑

28: 𝑙𝑘,𝑚𝑎𝑥 .heappush(𝑛𝑠small)
29: end while
30: 𝛼𝑘,𝑚𝑖𝑛 =min(calFuncVals(𝑓 , 𝑡𝑟 .val(𝑖𝑑𝑚𝑖𝑛)), 𝛼𝑘,𝑚𝑖𝑛)
31: 𝛼𝑘,𝑚𝑎𝑥 =max(calFuncVals(𝑓 , 𝑡𝑟 .val(𝑖𝑑𝑚𝑎𝑥 )), 𝛼𝑘,𝑚𝑎𝑥 )
32: 𝛽𝑘,𝑚𝑖𝑛 = 𝑙𝑘,𝑚𝑖𝑛 .top().score, 𝛽𝑘,𝑚𝑎𝑥 = 𝑙𝑘,𝑚𝑎𝑥 .top().score

33: 𝑌𝑘,𝑚𝑖𝑛 = 𝛼𝑘,𝑚𝑖𝑛, 𝑌𝑘,𝑚𝑎𝑥 = 𝛼𝑘,𝑚𝑎𝑥

34: end for
35: yield 𝑌 ⊲ Return progressive results

36: end while

values 𝑌 . These valid results initialize the minimum and maximum values of each pixel column 𝑘 ,

denoted 𝛼𝑘,𝑚𝑖𝑛 and 𝛼𝑘,𝑚𝑎𝑥 .

For every inner-column non-leaf node, we apply 𝑓 to its domain to determine the node’s minimum

and maximum scores. Each scored node then goes into a candidate list, stored in a heap ordered

first by score and then by node ID (see Figure 5b). In the corresponding minimum and maximum

lists, the top entry in each denotes the most extreme scores, 𝛽𝑘,𝑚𝑖𝑛 and 𝛽𝑘,𝑚𝑎𝑥 .

Based on these values, the true minimum and maximum of the transformed data, 𝛾𝑘,𝑚𝑖𝑛 and

𝛾𝑘,𝑚𝑎𝑥 , must satisfy

𝛽𝑘,𝑚𝑖𝑛 ≤ 𝛾𝑘,𝑚𝑖𝑛 ≤ 𝛼𝑘,𝑚𝑖𝑛 and 𝛼𝑘,𝑚𝑎𝑥 ≤ 𝛾𝑘,𝑚𝑎𝑥 ≤ 𝛽𝑘,𝑚𝑎𝑥 . (7)

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:12 Xin Chen et al.

0.00

10.00

30.00

20.00

40.00
0 21 42 63

0.00

6.00

18.00

12.00

24.00
0 21 42 63

(a)

Database

C
an

d
id

ate
N
od

e Lists

. . .

Min
id: 4


s: -0.50
id: 20

s: 0.00

Max
id: 20


s: 24.00
id: 4


s: 24.00

C1 C2 C3
Min

id: 16

s: -0.50

id: 9

s: 1.50

id: 20

s: 0.00

Max
id: 4


s: 24.00

. . .

C1 C2 C3
Min

id: 20

s: 0.00

id: 9

s: 1.50

Max
id: 4


s: 24.00

. . .

C1 C2 C3

0.00

10.00

30.00

20.00

40.00
0 21 42 63

Iteration 1 Iteration 2 Iteration 3
9-7

6-2 5161-1-3 7442 52-5-7

0

...

...

... ...-5 -7 2 -3 5 3 5 4 13 7 -24 -1 2 2 4 6 66 4 6 51X

5-3

5-7

4-7

62

6-7 7-2

6-7

24.00 24.0012.00

24.00

24.00

17.50

-0.50 0.00-0.50

-0.50

-0.50

1.50

17.501.50

1.50

7.50

7.50

0.00 12.000.00

0.00

24.00

24.00

4.00

4.00

12.00

12.00

12.00

12.00

1.501.50

1.50

24.00

24.00

7.50

7.50

0.00

0.00

17.50

17.50

id:1

id:17

id:8

id:16

id:9

id:4 id:5

id:2

C1 C2 C3

6-2

7-2

71 id:21

id:10

id:20

42 60 53 7

40

8

0

0

3 7

0 7

1 22201816

63

23211917

16 24

16

15 23 31

32 63

15 31

31

2016 19 23

x_min x_max unqueried

 f(x) = (x2-1)/2 (Box-Cox:   =2)

C3C2C1 C3 C3C2 C2C1 C1
(b)

 =1.50,          =17.50
      =-0.50,         =24.00

 =0.00,          =24.00  =0.00,          =24.00
      =-0.50,         =24.00       =0.00,          =24.00

Fig. 5. Illustration of the query mechanism 𝑄 on a time series of length 64 over a canvas with three pixel
columns. (a) For the non-monotonic function 𝑓 (𝑥) = (𝑥2 − 1)/2, 𝑄 retrieves aggregated values from the TAT,
with node scores shown below. (b) Evolution of candidate lists 𝛼 and 𝛽 over the query process, alongside
corresponding progressive visualizations. The ground truth 𝑓 (X), shown in gray, is for reference only; it is not
computed during execution.

Here, 𝛼𝑘,𝑚𝑖𝑛 and 𝛼𝑘,𝑚𝑎𝑥 come from boundary leaf nodes that are already computed, and by Theo-

rem 1, unqueried nodes cannot provide valid results below 𝛽𝑘,𝑚𝑖𝑛 or above 𝛽𝑘,𝑚𝑎𝑥 .

For a univariate monotonic function, one can simply set 𝛾min = 𝛽min and 𝛾max = 𝛽max and thus

obtain exact aggregated outcomes 𝑌 without querying additional data points. As an example, the

Box–Cox transform [9] with 𝜆 = 3, 𝑓1 (𝑥) = (𝑥𝜆 −1)/𝜆, can be applied directly to the M4-aggregated

samples from the first pixel column in Figure 5a, 𝜂4 .𝑥𝑚𝑖𝑛 = −7, 𝜂20.𝑥𝑚𝑎𝑥 = 7, 𝑥1,𝑒𝑛𝑑 = 6, yielding

𝑌1,𝑚𝑖𝑛 = −114, 𝑌1,𝑚𝑎𝑥 = 114, 𝑌1,𝑒𝑛𝑑 = 71.67.

In contrast, for non-monotonic or multivariate functions that still satisfy Theorem 1, tree traversal

is still required to retrieve additional nodes and iteratively update 𝛼 and 𝛽 , progressively refining the

client-side visualization until it converges to the correct result. For instance, in the first pixel column

of Figure 5a, the function values computed from the minimum value −7 and the maximum value 7

both yield 24.00, which is insufficient to determine the true range of the transformation results;

further traversal is therefore required. To minimize redundant computation and data transfer, TAT

structures are cached on the server for reuse.

DFS Traversal (lines 15-36). To finalize the actual minimum and maximum function values 𝛾𝑘,𝑚𝑖𝑛

and 𝛾𝑘,𝑚𝑎𝑥 for each pixel column 𝑘 , we perform a depth-first traversal guided by the current TATs

and two lists (one for minimum, one for maximum). Consider the process of finding 𝛾𝑘,𝑚𝑖𝑛 as

an example. In each iteration, we pop out the top node from the minimum list and query the

database to reconstruct its two child nodes and compute their scores. If a child node has a higher

minimum score or the same score but a smaller ID, it is inserted into the candidate list; otherwise,

we continue expanding its child nodes until reaching a leaf, where valid results can be computed.

Afterward, we update 𝛼𝑘,𝑚𝑖𝑛 and 𝛽𝑘,𝑚𝑖𝑛 . Once 𝛼𝑘,𝑚𝑖𝑛 ≤ 𝛽𝑘,𝑚𝑖𝑛 , the minimal aggregated result 𝛾𝑘,𝑚𝑖𝑛

is determined by 𝛼𝑘,𝑚𝑖𝑛 , as 𝛽𝑘,𝑚𝑖𝑛 is the smallest score in the candidate list and all un-queried nodes

are descendants that cannot yield a lower score, according to Theorem 1. The same procedure

is used to update 𝛼𝑘,𝑚𝑎𝑥 and 𝛽𝑘,𝑚𝑎𝑥 to determine 𝛾𝑘,𝑚𝑎𝑥 for each pixel column. Throughout this

process, we combine the valid results 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 across all columns with the 𝑌𝑠𝑡𝑎𝑟𝑡 and 𝑌𝑒𝑛𝑑 , to

yield progressively transformation results. The query mechanism terminates until 𝛼 and 𝛽 for all

pixel columns converge at 𝛾 , ensuring that the requirement in Problem I is met.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:13

Figure 5 illustrates the evolution of the candidate node lists for the first pixel column 𝐶1 during

the query process. In the Scoring Nodes stage (Iteration 1), the function values of boundary leaf

nodes are used to initialize 𝛼1,𝑚𝑖𝑛 = 1.50 and 𝛼1,𝑚𝑎𝑥 = 17.50, and we push the inner-column nodes

𝜂4 and 𝜂20 into both lists. In Iteration 2, popping 𝜂4 from the minimum list brings in 𝜂4, 𝜂8, and 𝜂17
are split to form a path to a new valid result, updating 𝛼1,𝑚𝑖𝑛 to 0.00 at 𝜂34 and 𝛽1,𝑚𝑖𝑛 to -0.50 at

𝜂16. For the maximum value, 𝜂20 is popped out due to its larger ID, causing 𝛼1,𝑚𝑎𝑥 and 𝛽1,𝑚𝑎𝑥 to

converge at 𝛾1,𝑚𝑎𝑥 = 24.00. Yet, determining 𝛾1,𝑚𝑖𝑛 requires one more iteration to pop out and split

𝜂16, ensuring that 𝛼1,𝑚𝑖𝑛 ≤ 𝛽1,𝑚𝑖𝑛 . Throughout the process, 𝜂9 remains unsplit, leaving six nodes

unqueried.

For the second pixel column𝐶2, an extreme case arises where the minimum and maximum input

values are 1 and 5. Since the scores of all inner-column nodes fall within the range [𝑓 (1), 𝑓 (5)] =
[0.00, 12.00], the correct function value range can be determined without retrieving additional

nodes, thereby significantly reducing response latency. The full example with all three pixel columns

is provided in the appendix due to space constraints.

Algorithm 1 supports any point-wise transformation composition, including both per-series and

cross-series operators. For example, the use case in Figure 1 defines a composite transformation

𝑔(𝑋1, 𝑋2, 𝑋3, 𝑡), which comprises three component functions: cumulative return computation, aver-

aging across multiple series, and point-wise subtraction. According to Equation 1, multiple input

values aligned by the same timestamp are combined into a single output value. Hence, the query

mechanism 𝑄 retrieves all required nodes with the identical ID across the involved time series

and calculates a single pair of minimum and maximum scores. Therefore, auxiliary data structures

like 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥 remain applicable without modification, following the same usage described in

Section 4.2 and the query process for 𝑔(𝑋1, 𝑋2, 𝑋3, 𝑡) is shown in the appendix.

Acceleration Strategies. Although shown step by step for clarity, making a separate database

query for each node expansion is expensive. We address this inefficiency in two ways. First, we

batch the retrieval of child nodes by aggregating the IDs of all split candidates from 𝑙𝑚𝑖𝑛 and 𝑙𝑚𝑎𝑥

across pixel columns into a single query. Second, we balance performance and memory usage

by using a three-level cache. Since the upper levels of the tree are traversed more frequently,

the top 2
12

nodes are both decompressed and decoded to allow fast access. The next 2
20

nodes

are decompressed into coefficients but remain undecoded, while the remaining nodes stay fully

compressed in memory and are decompressed on demand. This caching design supports efficient

in-memory processing of billion-scale time-series datasets.

Time Complexity. Given a canvas width 𝑤 , the query process has a time complexity of 𝑂 (𝑖 ·
𝑤 · log𝑛), where 𝑛 is the number of data points within the global time range, and 𝑖 is the number

of iterations, determined by the distribution of the input time series. In the worst case, all inner-

column nodes may have scores higher than the actual extreme values 𝛾 , triggering full splits and

resulting in a time complexity of𝑂 (𝑛). Although such cases are rare, they highlight the importance

of incorporating an error-bound guarantee to balance visual accuracy and response latency.

4.3 Query with Pixel Error-bound Guarantees
In this section, we propose a pixel-based error-bound guarantee to enable users to dynamically

balance interaction latency and visualization accuracy.

Pixel Error-bound Guarantees. The score-based DFS traversal naturally supports progressive

refinement, gradually converging towards the actual extrema 𝛾 . However, it lacks a mechanism

for early termination, as there is no metric to assess the accuracy of intermediate visualizations.

For instance, in the first iteration of Figure 5b, 𝛼1,𝑚𝑖𝑛 is initialized at 1.50, which overlaps with

𝛾1,𝑚𝑖𝑛 = 0.00 within the same pixel, yet this information is not visible to the user. To address this

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:14 Xin Chen et al.

-0.50

9.63

29.88

19.75

40.00
0 21 42 63

12.00

24.00

12.00

17.50

1.50 0.00 -0.50

9.63

29.88

19.75

40.00
0 21 42 63

12.00

24.0024.00

12.00

17.50

1.50 0.00-0.5 -0.5

40.00

0.00

8.00

24.00

16.00

32.00
0 21 42 63

12.00

24.00

20.75

12.00

17.50

1.50 0.000.5

11.75

32.00
0 21 42 63

12.00

24.0024.00

12.00

17.50

1.50 0.000.00

6.00

18.00

12.00

24.00

0.00

6.00

18.00

12.00

24.00
0 21 42 63

E1

E2

E3

E4 E5

E1

E6 E6

12.00

24.00

12.00

17.50

1.50 0.00

(e) (gRavg, Rk,avg)(d) (gR , Rk,  )(c) (gR  , Rk,  )(a) (gR  , Rk,   ) (b) (gR , Rk,   )

Fig. 6. Illustration of pixel errors under different combinations of 𝑅𝑘 and 𝑔𝑅. (a-d) The four extreme raster-
ization cases and (e) our average estimation approach using 𝛼 and 𝛽 values obtained in the first iteration.
Red and blue boxes indicate erroneous pixels relative to the final visualization in Figure 5b and consistently
rasterized pixels across all four cases, respectively. Black dashed lines serve as virtual guides for rasterization
between 𝑅𝑘 that do not correspond to valid results.

limitation, we propose an error-bound guarantee based on the 𝛼 and 𝛽 values across all pixel

columns. Before introducing the guarantee, we first define the actual pixel error rate 𝜁 as the ratio of

the number of erroneous pixels, which differ from the error-free visualization, to the total number

of pixels on the canvas.

Following MinMaxCache [29], our visualization-oriented error bound is defined as the proportion
of total pixels in the canvas that could be incorrect, which differs from metrics that require the final

visualization to be an exact reference image (e.g. SSIM [45]). Unlike MinMaxCache, where the input

time series’ global minimum and maximum values can be easily identified from the TAT, the global

minimum and maximum function values remain unknown during the query process. Consequently,

we must estimate both the value range for each pixel column, 𝑅𝑘 , as well as the range of 𝑦-axis

limits, 𝑔𝑅. These estimates jointly determine how data points are mapped to the visualization and

influence the pixel errors.

To render the resulting time series 𝑌 on the 𝑤 × ℎ canvas, the client can receive the pairs of

(𝛼𝑘,𝑚𝑖𝑛, 𝛼𝑘,𝑚𝑎𝑥 ) and (𝛽𝑘,𝑚𝑖𝑛, 𝛽𝑘,𝑚𝑎𝑥 ) for each pixel column. According to Equation 7, the range 𝑔𝑅

must lie between the range of

𝑔𝑅𝛼 = [
𝑤

min

𝑘=1
𝛼𝑘,𝑚𝑖𝑛,

𝑤
max

𝑘=1
𝛼𝑘,𝑚𝑎𝑥 ] (8)

and

𝑔𝑅𝛽 = [
𝑤

min

𝑘=1
𝛽𝑘,𝑚𝑖𝑛,

𝑤
max

𝑘=1
𝛽𝑘,𝑚𝑎𝑥 ] . (9)

Similarly, the range 𝑅𝑘 of each pixel column must lie between 𝑅𝑘,𝛼 = [𝛼𝑘,𝑚𝑖𝑛, 𝛼𝑘,𝑚𝑎𝑥 ] and 𝑅𝑘,𝛽 =

[𝛽𝑘,𝑚𝑖𝑛, 𝛽𝑘,𝑚𝑎𝑥 ].
As a result, there are four possible extreme ways to rasterize the canvas, determined by different

combinations of 𝑔𝑅 and 𝑅𝑘 values: (𝑔𝑅𝛼 , 𝑅𝑘,𝛼 ), (𝑔𝑅𝛽 , 𝑅𝑘,𝛼 ), (𝑔𝑅𝛼 , 𝑅𝑘,𝛽 ), and (𝑔𝑅𝛽 , 𝑅𝑘,𝛽 ). Given that

𝛼𝑘 ≤ 𝛾𝑘 ≤ 𝛽𝑘 , the cases (𝑔𝑅𝛼 , 𝑅𝑘,𝛽 ) and (𝑔𝑅𝛽 , 𝑅𝑘,𝛽 ) may introduce false foreground pixels, while

the case (𝑔𝑅𝛽 , 𝑅𝑘,𝛼 ) may result in missing pixels. In contrast, the case (𝑔𝑅𝛼 , 𝑅𝑘,𝛼 ) can lead to both

false and missing pixels, where 𝑔𝑅 and 𝑅𝑘 are simultaneously compressed. Figure 6(a-d) shows

an example, where 𝛼𝑘 and 𝛽𝑘 are obtained in the first iteration in Figure 5b. Taking the final

visualization shown in the bottom right of Figure 5b as the ground truth, the erroneous pixels in

each of the four cases are highlighted with red boxes for comparison.

During the progression of visual analysis, the accurate minimum and maximum values of each

pixel column 𝛾𝑘,𝑚𝑖𝑛 and 𝛾𝑘,𝑚𝑎𝑥 remain unknown. Consequently, an accurate reference visualization

is unavailable, and potential erroneous pixels are identified as the ones with high uncertainty,

which are rasterized in some extreme cases but not others, as defined below.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:15

Definition 2. The pixel errors 𝐸𝑈 represent the difference between the union and intersection of

the pixel ranges rasterized by four combinations of 𝑔𝑅 and 𝑅𝑘 .

Theorem 2. 𝐸𝑈 includes all erroneous pixels in the line chart visualization, ensuring that no errors

occur outside 𝐸𝑈 , regardless of the actual maximum and minimum function values 𝛾𝑘 .

Proof. We separately analyze the erroneous pixels that occur when the values of 𝑔𝑅 or 𝑅𝑘 are

fixed, although 𝑔𝑅 depends on 𝑅𝑘 .

When 𝑔𝑅 is fixed, only one variable 𝑦 is present in Equation 3. Since 𝛾𝑘 lies between 𝛼𝑘 and 𝛽𝑘 ,

pixels rasterized in both cases of 𝑅𝑘 , namely 𝑅𝑘,𝛼 and 𝑅𝑘,𝛽 , will also be rasterized for any value of

𝛾𝑘 . Therefore, the difference between the pixels rasterized by 𝑅𝑘,𝛼 and 𝑅𝑘,𝛽 must cover all potential

pixel errors when 𝑔𝑅 is fixed.

When the range values of 𝑅𝑘 for each pixel column are fixed, 𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥 in Equation 3 are

determined by 𝑔𝑅 and we have the following projection:

𝑝⊥ (m,M) = ℎ · 𝑦 −m
M −m ,

where 𝑦 is one of range values of any 𝑅𝑘 , and m and M represent 𝑔𝑅𝑚𝑖𝑛 and 𝑔𝑅𝑚𝑎𝑥 , implying

𝑦 ≥m and 𝑦 ≤M. Differentiating this projection with respect tom andM gives:

𝜕𝑝⊥
𝜕m

= ℎ · 𝑦 −M
(M −m)2 ,

𝜕𝑝⊥
𝜕M

= ℎ · −(𝑦 −m)
(M −m)2 ,

which indicates that 𝑝⊥ is continuous and monotonic. Since 𝑔𝑅 must also lie between 𝑔𝑅𝛼 and 𝑔𝑅𝛽 ,

its projected pixels are in the ranges of the ones projected by using 𝑔𝑅𝛼 and 𝑔𝑅𝛽 . In other words,

pixels rasterized in both 𝑔𝑅𝛼 and 𝑔𝑅𝛽 cases remain rasterized for any 𝑔𝑅, and pixels rasterized in

only one of these cases must cover all potential pixel errors when the range values of 𝑅𝑘 are fixed.

Combining the above two scenarios, pixels rasterized in all four extreme cases will be rasterized

in the final visualization, whereas the difference set 𝐸𝑈 among these four cases covers all pixel

errors, regardless of 𝛾𝑘 . □

To illustrate this theorem, consider the third pixel column in the extreme cases shown in Figure 6a

and 6c under a fixed global range (𝑔𝑅). This column includes several potential pixel errors, such as

{E2, E6}, yet the top two pixels are always rasterized regardless of the value of 𝛾3. In contrast, under

a fixed column range (𝑅𝑘 ), the third pixel column in Figure 6a and 6b consistently rasterizes the

second pixel from the top and never the bottom one, regardless of how the 𝑦-axis range compresses

or shifts the line segment [12, 24].
Based on Theorem 2, 𝐸𝑈 in Figure 6 is obtained by taking the union of rasterized pixels excluding

those that remain consistent (blue boxes) across all extreme cases. This result corresponds to the

union of pixel errors highlighted by red boxes, confirming Theorem 2. Accordingly, we define pixel
error rate upper bound as:

𝜀 =
|𝐸𝑈 |
𝑤 × ℎ

. (10)

By using a pixel error rate threshold 𝜏 to guide the query mechanism𝑄 , a tunable trade-off between

visual fidelity and response latency, as required in Problem II, is enabled. For example, in Figure 6,

𝜀 is 0.5, which exceeds the actual pixel error rates 𝜁 in the four extreme cases: 1/6, 1/6, 1/4, and

1/12, respectively.

Query with Early Termination. To implement the error-bounded visualization (Problem II), we

integrate the condition 𝜀 ≤ 𝜏 into the CheckTermination(𝛼, 𝛽) step (line 15) of Algorithm 1. Instead

of checking the convergence of 𝛼𝑘 and 𝛽𝑘 for each pixel column 𝑘 , 𝜀, which depends on all pixel

columns, is evaluated once per iteration. To optimize performance, we implement Definition 2 by

calculating only the minimum and maximum endpoints of pixel ranges for each column under the

four extreme cases, thus avoiding the need to rasterize the four visualizations. By differencing these

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:16 Xin Chen et al.

endpoints, we directly compute the number of potential pixel errors, |𝐸𝑈 |, as defined in Equation 10,

without explicitly determining the error set 𝐸𝑈 . Once 𝜀 falls below 𝜏 , the query process terminates.

The default value for 𝜏 is set to 0.05, which provides a practical balance between accuracy and

performance across the tested datasets.

In addition to providing strict error bounds, minimizing the actual error rate 𝜁 in intermediate

results is critical for effective progressive visualization [7]. A key challenge lies in estimating the

value range of 𝑌 within each pixel column. Rather than using any of four combinations of 𝑔𝑅 and

𝑅𝑘 values shown in Figure 6(a–d), we adopt the average estimators:

𝑌𝑘,𝑚𝑖𝑛 = (𝛼𝑘,𝑚𝑖𝑛 + 𝛽𝑘,𝑚𝑖𝑛)/2, 𝑌𝑘,𝑚𝑎𝑥 = (𝛼𝑘,𝑚𝑎𝑥 + 𝛽𝑘,𝑚𝑎𝑥 )/2.
as the mean generally provides a better estimate than the endpoints (𝛼𝑘 and 𝛽𝑘 ) for unknown

distributions [10]. Accordingly, we update line 33 in Algorithm 1, so that the value ranges are

computed as:

𝑔𝑅𝑎𝑣𝑔 = [
𝑤

min

𝑘=1
𝑌𝑘,𝑚𝑖𝑛,

𝑤
max

𝑘=1
𝑌𝑘,𝑚𝑎𝑥 ], 𝑅𝑘,𝑎𝑣𝑔 = [𝑌𝑘,𝑚𝑖𝑛, 𝑌𝑘,𝑚𝑎𝑥 ] .

This modification helps the resulting line chart converge more quickly to an accurate visualization,

as illustrated in Figure 6e. A comparison of the four combinations and average estimators across

all tested datasets is provided in Figure 10c.

5 Evaluation
In this section, we evaluate the performance of PIVOT in terms of visualization accuracy, response

time, and memory usage. We first describe the experimental setup, then compare it with competing

methods in both cold-start and interaction scenarios under various parameter settings.

5.1 Experimental Setup

Competitors. We compare our system with a conventional pipeline that first performs transfor-

mations in the database, followed by visualization-driven aggregation using techniques like M4 to

extract representative samples for rendering. Since our focus is on interactive analysis, all com-

pressed coefficients are preloaded into server memory. Accordingly, we primarily compare against

DuckDB [36], a state-of-the-art in-memory analytical database that uses the same compression

algorithm as our system. To improve baseline performance, we incorporate AM4 [24], an optimized

M4 variant tailored for analytical database architectures like DuckDB. We refer to this baseline

as DkM4. We do not compare with the pipeline that first applies OM
3
[44] before performing

transformations, since it only guarantees correct visualizations for monotonic univariate functions,

as discussed in Section 3.1. For comparison, we evaluate two versions of our system: the exact

version (PIVOT) and an error-bounded version with 𝜏 = 5%, denoted as PIVOT-0.05.

Datasets. As summarized in Table 2, we use 16 datasets with diverse sizes and distributions,

ranging from 5.26 million to 5.05 billion data points. Among the five real-world datasets, Power [20],

Soccer [33], and Stock [39] have been used in prior studies such as M4 [21] and OM
3
[44]. The

Taxi [42] and Flow datasets come from the transportation domain, where point-wise transformations

like computing transaction rates are common in visual analysis. Following the approach of Maroulis

et al. [29], we generated 11 synthetic datasets using random walks, ranging from 5 million to 5

billion data points. Each dataset covers a 4-year time span, with sampling intervals adjusted to

successively double the size of the previous dataset. We refer to this collection as Syn5M–5B.
Transformations. To ensure a comprehensive evaluation, we tested 13 representative transforma-

tions covering univariate, bivariate, and multivariate scenarios:

• Univariate functions include the monotonic function ln(𝑥) and the non-monotonic function

𝑔1 (𝑥) = 0.001 · 𝑥3 − 3 · 𝑥 .

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:17

Table 2. Dataset basic characteristics

Name # Fields # Data points
Flow 10 8,615,200

Power 7 226,733,542

Soccer 6 39,454,980

Stock 10 9,035,210

Taxi 11 52,066,080

Syn5M-5B 5 5.26M-5.05B

• Bivariate functions include the four basic arithmetic operations (+,−,×,÷) and the squared L2

norm, defined as 𝐿2
2
(𝑥1, 𝑥2) =

√︃
𝑥2
1
+ 𝑥2

2
.

• Multivariate functions span a variety of common aggregations across all time series in the dataset:

average (𝑎𝑣𝑔), variance (𝑣𝑎𝑟 ), weighted sum (𝑤𝑠𝑢𝑚), maximum (𝑚𝑎𝑥), L2 norm, and a more

computation-intensive variant 𝐿ln
2
(X) =

√︁∑𝑚
𝑖=1 ln(𝑥𝑖 + 1)2.

Since ln(𝑥) and the division operator (÷) are undefined for negative inputs, we filtered the datasets

to ensure all values were strictly positive, as noted in Section 3.

Measures. Following prior work [21, 44], we evaluate both visualization quality and system

performance using three measures:

• Visual Quality: Measured by the Structural Similarity Index (SSIM) [45], which quantifies the

similarity between visualizations generated by each method and the ground truth (full data

rendering). Higher values indicate better fidelity.

• Response Time: The total time from issuing a visualization request to rendering the result.

• Memory Usage: The peak memory consumed during query execution to generate the visualization,

including the OM
3
coefficients, TAT, and other intermediate variables.

Hardware. The system follows a client-server architecture. The client, implemented in JavaScript,

runs on Chrome (v131.0.6778.205) on a MacBook Pro with a dual-core 2.7 GHz processor and 8

GB of RAM. The middleware, developed in C++, runs on a server equipped with two 12-core Intel

Xeon Silver 4410Y CPUs, 512 GB RAM, a 1 TB disk, and Ubuntu 20.04.

Scenarios. We evaluate system performance in two typical usage scenarios: cold-start and interac-

tion. The cold-start scenario simulates the initial rendering of a static line chart based solely on

user-defined parameters, without any cached data. In contrast, the interaction scenario reflects

ongoing analysis, where cached results are reused to speed up frequent operations such as resizing,

panning, zooming, and modifying variables or transformation functions.

5.2 Performance in Cold-start Scenarios
This section examines initialization overhead and how key parameters affect system performance

in cold-start scenarios. Specifically, we analyze the influence of the transformation function, the

number of input variables (𝑙), the number of data points (𝑛), the canvas width (𝑤 ), as well as the

error threshold (𝜏 ). To assess effectiveness, we compare our system against the DkM4 baseline under

consistent conditions. Unless otherwise specified, the default settings are𝑤 = 600 and ℎ = 600.

Initialization Overheads.We evaluated the preprocessing cost of PIVOT by measuring execution

time and peak memory usage across all datasets. As expected, both metrics scale linearly with

input size. For example, the smallest dataset (Syn5M) required 1.08 seconds and 0.08 GB of memory,

while the largest (Syn5B) took 688.52 seconds (≈11 minutes) and 61.11 GB. Although preprocessing

introduces additional cost and must be performed offline, this one-time overhead is amortized

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:18 Xin Chen et al.

10-2

10-1

101

100

ln g1 av
g

va
r

wsu
m

maxL22 L2 L2ln

V
is

ua
l Q

ua
lit

y 
(S

S
IM

)

Biv. Biv. Biv.Univ. Univ. Univ.Multiv. Multiv. Multiv.

R
es

po
ns

e 
T

im
e 

(s
)

M
em

or
y 

U
sa

ge
 (

G
B

)

0

1

2

3

4

5

6

7

(a) (b) (c)

0.5

ln g1 av
g

va
r
wsu

m
m

axL22 L2 L2ln

DkM4 PIVOT PIVOT-0.05

0.95

0.96

0.97

0.98

0.99

1.00

Fig. 7. Performance comparison of three systems using 13 representative transformation functions covering
univariate, bivariate, and multivariate cases evaluated on all datasets: (a) SSIM, (b) response time, and (c)
memory usage.

over repeated use and enables sub-second interaction latency. Detailed results for each dataset are

provided in the appendix.

Types of Transformations. To assess how different types of transformation functions affect

system performance, we evaluate 13 representative functions spanning univariate, bivariate, and

multivariate cases. As shown in Figure 7, we report the visual quality, response time, and memory

usage for each function.

The boxplots in Figure 7a summarize SSIM scores across all datasets. As expected, both DkM4 and

PIVOT achieve perfect SSIM scores of 1.0 in all cases, as they are specifically designed to identify

M4-aggregated samples of the transformation results. PIVOT-0.05 also achieves SSIM scores of 1.0

for all univariate functions, except for the piecewise monotonic function 𝑔1 (𝑥) on the Flow dataset,

where the score slightly decreases to 0.998. For bivariate and multivariate functions, PIVOT-0.05

maintains median SSIM scores around 0.985, regardless of the number of input variables. This

result aligns with expectations. For example, the monotonic function ln(𝑥), discussed in Section 3.1,

allows for precise identification of essential samples. Similarly, although 𝑔1 (𝑥) is only piecewise

monotonic, accurate sampling is still possible when nodes fall within monotonic subranges. In

contrast, bivariate and multivariate transformations depend on the pixel error threshold 𝜏 = 0.05,

producing approximate but consistently high-quality visualizations.

Figure 7b shows the response times for all transformation functions across the datasets. Both

PIVOT and PIVOT-0.05 consistently remain below the interactive latency threshold of 0.5 seconds

(green dashed line), while DkM4 often exceeds this limit, especially for bivariate and multivariate

functions, and exhibits higher variability with more outliers. This aligns with our expectation that

DkM4 incurs high latency on the largest datasets due to its linear time complexity, whereas PIVOT

benefits from a tree-based query mechanism with logarithmic complexity. PIVOT-0.05 achieves the

fastest performance due to its error-bounded strategy, which avoids computing exact values when

unnecessary. On average, PIVOT and PIVOT-0.05 complete under 0.09 seconds and 0.05 seconds,

whereas DkM4 takes 1.19 seconds. PIVOT achieves a mean speedup of 13.9× over DkM4, with

PIVOT-0.05 improving further by 1.7× while maintaining high visual fidelity. This balance makes

PIVOT-0.05 particularly suitable for exploratory analysis where speed is critical and slight visual

approximations are acceptable.

Figure 7c presents the memory usage confidence intervals (CIs) for DkM4, PIVOT, and PIVOT-

0.05 across all datasets across three categories of transformation. DkM4 consistently shows the

highest memory consumption with noticeable variability and frequent outliers. In contrast, both

PIVOT and PIVOT-0.05 maintain significantly lower and more stable memory usage, remaining well

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:19

106 107 108 109 106 107 108 109
10-2

10-1

101

100

Number of Data Points Number of Data Points

Number of Variables

R
es

po
ns

e 
T

im
e 

(s
)

(b)(a)

(c) (d)

2 4 6 8 10 12 14 16

2.5

2.5

5.0

7.5

10.0

12.5

0.0

5.0

7.5

10.0

12.5

15.0

15.0

17.5

20.0

DkM4 PIVOT PIVOT-0.05

M
em

or
y 

U
sa

ge
 (

G
B

)
M

em
or

y 
U

sa
ge

 (
G

B
)

Number of Variables

R
es

po
ns

e 
T

im
e 

(s
)

2 4 6 8 10 12 14 16

10-1

100

0.5

0.5

Fig. 8. Response time (a,c) and memory usage (b,d) of the three systems under varying (a,b) numbers of data
points and (c,d) numbers of input variables when applying the transformation 𝐿ln

2
(X) to the synthesized

time-series datasets.

below 1 GB across all transformation types. Specifically, PIVOT reduces memory usage by 5.21×
for univariate, 6.97× for bivariate, and 9.03× for multivariate transformations compared to DkM4.

PIVOT-0.05 achieves slightly lower memory usage than PIVOT, although the difference is marginal.

Upon careful inspection of the DuckDB configuration, we found that it applies compression only

to persistent on-disk databases, not to in-memory instances [25]. In contrast, PIVOT stores data in

compressed form in memory and decompresses them on demand, leading to significantly improved

memory efficiency. These results highlight the efficiency of our method in handling large-scale time-

series data with low memory overhead, making it particularly suitable for resource-constrained

environments.

Number of Data Points and Variables. To evaluate how the number of data points𝑛 in Equation 1

affects system performance, we applied the most computationally intensive transformation, 𝐿ln
2
(X),

to 11 synthetic datasets (Syn5M–5B) ranging from 5 million to 5 billion records, each with 5 fields.

As shown in Figure 8a and Figure 8b, both response time and memory usage increase as the dataset

size grows. DkM4 shows the highest and steepest increase in response time, surpassing 500 ms at

32M points and reaching 13.97 s at 5B points. In contrast, PIVOT maintains a stable response time of

around 305 ms even for 5B points, while PIVOT-0.05 further reduces it to under 153 ms. All methods

exhibit increased memory usage with larger datasets, particularly beyond 200M points. However,

PIVOT and PIVOT-0.05 show nearly identical and significantly slower memory growth compared

to DkM4. At 5B points, DkM4 consumes around 16.62 GB, while both PIVOT and PIVOT-0.05 use

only about 3.45 GB. For smaller datasets (e.g., 5M points), DkM4 requires 4.02 GB, whereas PIVOT

and PIVOT-0.05 use only 0.14 GB and 0.10 GB, respectively.

Similarly, we evaluate how the number of input variables 𝑙 in Equation 1 affects system perfor-

mance by synthesizing a time-series dataset with 128 million time points and 16 fields. We apply the

transformation, 𝐿ln
2
(X), and progressively increase 𝑙 from 2 to 16 by randomly selecting different

fields. As shown in Figure 8c and Figure 8d, both response time and memory usage rise as more

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:20 Xin Chen et al.

200 400 600 80010001200 200 400 600 800 1000 1200

R
es

po
ns

e 
T

im
e 

(s
)

0.95

0.96

0.97

0.98

0.99

1.00

V
is

ua
l Q

ua
lit

y 
(S

S
IM

)

(b)(a)
Canvas width Canvas width

10-2

10-1

100

101

DkM4 PIVOT PIVOT-0.05

Fig. 9. Results of evaluation metrics on the largest real-world dataset Power as the canvas width varies: (a)
SSIM scores and (b) response time.

variables are involved in the transformation. DkM4 exhibits the highest and most rapidly increasing

response times, exceeding 1 second even for a small number of variables and approaching 3 seconds

at 𝑙 = 16. In contrast, PIVOT consistently outperforms DkM4, with response times increasing more

gradually and remaining below approximately 1 second. PIVOT-0.05 achieves the best performance,

maintaining latency under 300 ms across all settings. In terms of memory usage, DkM4 grows

significantly with the number of variables, reaching 20.9 GB due to the overhead from SQL-based

intermediate results. Conversely, PIVOT and PIVOT-0.05 maintain a stable memory footprint

around 1.669 GB. Of this, approximately 1.666 GB is used to store compressed coefficients, and only

a small fraction (0.002 GB) is needed for temporary node construction. As a result, both variants of

our system demonstrate consistent memory efficiency regardless of the number of variables.

Canvas Width. We evaluate system performance on the largest real-world dataset, Power, using
13 transformation functions across six canvas widths ranging from 200 to 1200 pixels. Memory

usage is omitted, as PIVOT and PIVOT-0.05 consistently consume significantly less memory than

DkM4, as shown in Figure 8d.

Figure 9a shows that both DkM4 and PIVOT achieve perfect visual quality (SSIM = 1.0), while

PIVOT-0.05 maintains high accuracy with median SSIM around 0.99 across all canvas widths. As

illustrated in Figure 9b, response time increases with canvas width. At 1200 pixels, PIVOT maintains

a median response time below 200 ms, though some outliers reach 793 ms. DkM4’s median rises to

around 300 ms, with outliers up to 16 s. In contrast, PIVOT-0.05 consistently achieves the lowest

latency, with a median around 60 ms and all values under 250 ms.

Overall, PIVOT and PIVOT-0.05 deliver highly accurate visualizations while using significantly

less memory than DkM4 across all types of transformations. Although response time increases

moderately with transformation complexity and the number of variables, PIVOT-0.05 consistently

maintains response times under 250 ms, even for transformations involving 1 billion data points

and five variables.

Error Bound.We evaluate the effect of the pixel error-bound guarantee by running PIVOT with

four user-specified thresholds of 𝜏 : 0% (error-free), 1%, 5%, and 10%. As shown in Figure 10a,

average SSIM scores decrease with larger 𝜏 values, indicating a strong correlation between the

threshold and perceived visual similarity. These results suggest that the proposed upper error

bound 𝜀 (Equation 10) effectively quantifies visual quality.

Figure 10b illustrates the relationship between the pixel error rate upper bound 𝜀 (purple points)

and the actual pixel error rate 𝜁 (green points) under different 𝜏 settings (black horizontal lines),

measured on the Power dataset. Results across 13 representative functions consistently show that

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:21

0% 1% 5% 10%

V
is

ua
l Q

ua
lit

y 
(S

S
IM

)

(a)
P

ix
el

 E
rr

or
 R

at
e

0%

2%

4%

6%

8%

10%

0% 1% 5% 10%
(b)

Actual Pixel Error Rate

Pixel Error Rate Upper Bound

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(gRavg, Rk,avg)

(gR  , Rk,   )

(gR  , Rk,   )

(gR  , Rk,   )

(gR  , Rk,   )

V
is

ua
l Q

ua
lit

y 
(S

S
IM

)

0.975

0.980

0.985

0.990

0.995

1.000

ln g1 L2 L2lnav
g

va
r

wsu
m

maxL22

(c)
Fig. 10. Performance under varying pixel error rate thresholds 𝜏 . (a) The boxplots summarize the SSIM
scores across all datasets. (b) The dot plot shows the relationship between pixel error rate upper bound 𝜀

and the actual pixel rate 𝜁 on the Power dataset. (c) The dot plot displays the mean SSIM scores for various
configurations with a fixed 𝜏 = 5%.

the actual error rate stays below the corresponding upper bound, confirming the effectiveness of

our error-bound guarantee.

We further compare intermediate visualizations generated using either one of the four extreme

value combinations or the average estimators (see Figure 6) under the default 𝜏 = 5%. As shown

in Figure 10c, the average estimator achieves the highest mean SSIM scores in 8 out of 13 repre-

sentative functions. For the remaining cases, all configurations perform nearly identically on the

two univariate functions, while the average estimator closely approximates the best-performing

configuration in the other three functions (÷, 𝑎𝑣𝑔,𝑚𝑎𝑥), with only slightly lower scores. These

results demonstrate that the average estimator produces highly accurate intermediate visualizations

for approximating the final output.

5.3 Performance in Interaction Scenarios
To simulate interactive exploration scenarios, we begin by applying the addition operation to the

first two time series from one real-world dataset (Taxi) and one synthetic dataset (Syn5B) using
an initial canvas size of 600 × 600 pixels. This is followed by a sequence of 50 interactions, each

generated randomly according to a predefined query plan. Each interaction falls into one of the

following three categories, selected with equal probability:

• Transformation change: a new transformation is randomly chosen from the 13 representative

functions, ensuring it differs from the current one;

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:22 Xin Chen et al.

10-2

10-1

100

101

10-2

10-1

100

101

101 20 30 40 50

101 20 30 40 50101 20 30 40 50

101 20 30 40 50

R
es

po
ns

e 
T

im
e 

(s
)

R
es

po
ns

e 
T

im
e 

(s
)

0.95

0.96

0.97

0.98

0.99

1.00

0.95

0.96

0.97

0.98

0.99

1.00
(a)

(c)

(b)

(d)

V
is

ua
l Q

ua
lit

y 
(S

S
IM

)
V

is
ua

l Q
ua

lit
y 

(S
S

IM
)

DkM4 PIVOT PIVOT-0.05

Fig. 11. Interactive performance on the real-world dataset Taxi (a, b) and synthetic dataset Syn5B (c, d): (a, c)
SSIM scores; (b, d) response times.

• Variable change: a new combination of time-series fields is randomly selected from the dataset;

• Visual interaction: following the setup in [29], including Panning (shift the query window left or

right by a random offset between 10% and 50% of the current time interval), Zooming (zoom in

or out by a factor of 2), and Resizing (increase or decrease the canvas width by 50 pixels).

Each new interaction is executed immediately after the previous one completes, and the results

are summarized in Figure 11. We omit memory usage here, as both of our systems maintain stable

memory consumption, while DkM4 gradually increases over time; detailed memory usage results

are provided in the appendix.

From Figure 11a,11c, both DkM4 and PIVOT achieve perfect visual quality (SSIM = 1.0), while

PIVOT-0.05 maintains consistently high accuracy, with most SSIM scores above 0.98 and occasional

dips to 0.95 on the Taxi dataset. In terms of latency (Figure 11b,11d), DkM4 exhibits the highest

and most variable response times, often exceeding 1 second and peaking near 10 seconds. PIVOT

reduces latency significantly, staying within 0.1–0.4 seconds, while PIVOT-0.05 performs best,

consistently completing interactions in under 0.2 seconds and many within 0.05 seconds.

Comparing the two datasets, the synthetic data yields more stable results overall. PIVOT-0.05

maintains SSIM above 0.98 throughout on synthetic data, while on the Taxi dataset, SSIM occasion-

ally dips to 0.95. Response times are also lower on the synthetic dataset for all methods: DkM4 stays

below 8 seconds, PIVOT under 0.25 seconds, and PIVOT-0.05 under 0.15 seconds. On the real-world

Taxi dataset, response times increase slightly, likely due to greater data complexity and noise.

In summary, both PIVOT and PIVOT-0.05 provide consistently low-latency and high-quality

visualizations, with PIVOT-0.05 offering the fastest performance. While DkM4 struggles with

higher latency, especially on real-world data, our systems remain robust across diverse interaction

scenarios.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



Visualization-Oriented Progressive Time Series Transformation 376:23

6 Related Work
Time-Series Transformation. A fundamental step in the exploratory analysis of time-series data

is point-wise transformation [47], commonly used to normalize values or deriving new metrics

through custom formulas. These operations can be applied to individual series (e.g., Box-Cox

transformation, z-score normalization) or across multiple aligned series (e.g., point-wise subtraction

or multiplication). Although widely adopted in commercial tools and research systems [4, 34, 36,

47], most existing approaches perform these transformations entirely on the server side before

visualization. This design introduces two key limitations: (i) it requires complete computation of the

transformed result before users can begin interacting with it, which delays feedback; and (ii) it lacks

support for incremental refinement or early visual updates, making it difficult to support responsive,

exploratory workflows. As time-series datasets continue to grow and are increasingly stored on

remote or cloud-based platforms, these limitations become more pronounced, impeding real-time

analysis. In contrast, our work introduces a visualization-oriented approach that tightly integrates

transformation and visualization. Instead of waiting for the complete transformation, we enable

progressive visualization by selecting only the most informative data samples for early visualization,

significantly improving both the responsiveness and scalability of time-series exploration.

Progressive Visual Analytics. Progressive visual analytics (PVA) [11, 32, 41, 46] scales interactive
systems by showing meaningful partial results during computation, allowing users to refine analysis

in real time. Systems such as Falcon [31] and Sample+Seek [13] progressively render visual outputs

as data becomes available. Some PVA systems also support time-series data [15, 19, 26, 40], but

their capabilities are often limited to basic statistical summaries.

Sampling-based PVA methods [4, 13, 18, 23, 37] provide error-bound guarantees for aggregate

queries (e.g., SUM, COUNT, AVG), enabling approximate yet reliable visualizations. For example,

Kim et al. [23] proposed a rapid sampling algorithm for generating bar chart visualizations with

probabilistic guarantees on the correctness of ordering, which is a critical visual property. However,

these methods are not designed for point-wise transformations—operations applied to individual

values at aligned timestamps—and typically overlook perceptual fidelity in the visual output.

Although Plato [27] offers deterministic error guarantees for approximate analytics on compressed

time series, its metrics (e.g., L2-norm) are disconnected from visualization quality. To bridge this gap,

our work integrates transformation-aware sampling with progressive visualization, introducing

a pixel-based error-bound guarantee specifically designed for time-series transformations. This

enables responsive, high-fidelity visual analysis with interactive latency, while accounting for both

computational efficiency and perceptual accuracy.

Visualization-driven Time Series Reduction. The rapid growth of time-series data has driven a

few reduction techniques aimed at improving query efficiency and minimizing data size. Traditional

methods [5, 12, 22] reduce dimensionality but often distort visual outputs, while line simplification

techniques [14, 37] preserve shape but not perceptual fidelity (e.g., SSIM [45]). Visualization-driven

approaches like M4 [21] preserve pixel-accurate charts by selecting key points per pixel column,

but suffer from high query costs and lack reuse strategies. Recent systems such as OM
3
[44],

MinMaxCache[29], and M4-LSM [38] improve performance via hierarchical indexing, caching, or

log-structured storage, but require precomputed results and assume static transformations. Our

method complements these efforts by enabling progressive, on-the-fly transformation of time-

series data with pixel-based error-bound guarantees, supporting interactive exploration with both

real-time responsiveness and transformation flexibility [47].

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.



376:24 Xin Chen et al.

7 Conclusion
In this paper, we presented PIVOT, a progressive transformation system for interactive visual analy-

sis of multivariate time series. Unlike traditional pipelines that separate visualization-driven aggrega-

tion and point-wise transformation into two distinct stages, PIVOT employs a transformation-aware

query mechanism on time-series aggregation trees (TAT) to directly identify essential data samples

for progressive refinement toward an error-free visualization. We further introduced a pixel-based

error-bound guarantee that lets users balance visual accuracy and response latency. Experiments

show that PIVOT outperforms existing methods with up to a 10× speedup.

Despite its advantages, PIVOT has limitations. It currently supports only point-wise trans-

formations and relies on OM
3
’s offline preprocessing, making it unsuitable for streaming data.

Future work includes extending support to multi-timestamp operations (e.g., cross-correlation),

constructing TATs using dynamic caching strategies such as MinMaxCache to eliminate the need

for preprocessing, and evaluating system performance under realistic cross-series workloads.

Acknowledgments
This work is supported by the grants of the National Key R&D Program of China under Grant

2022ZD0160805, NSFC (No.62132017 and No.U2436209), the Shandong Provincial Natural Science

Foundation (No.ZQ2022JQ32), the Beijing Natural Science Foundation (L247027), the Fundamental

Research Funds for the Central Universities, the Research Funds of Renmin University of China,

and Big Data and Responsible Artificial Intelligence for National Governance, Renmin University

of China.

References
[1] Robert A Adams and Christopher Essex. 2018. Calculus: A Complete Course. Pearson, Boston.
[2] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive Lossless Floating-Point Compression. Proc.

ACM Manag. Data 1, 4, Article 230 (Dec. 2023), 26 pages. doi:10.1145/3626717
[3] Azim Afroozeh, Leonardo X Kuffo, and Sven Hepkema. 2024. ALP in DuckDB. https://github.com/cwida/ALP

[4] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica. 2013. BlinkDB:

Queries with Bounded Errors and Bounded Response Times on Very Large Data. In Proceedings of the 8th ACM European
Conference on Computer Systems (Prague, Czech Republic) (EuroSys ’13). Association for Computing Machinery, New

York, NY, USA, 29–42. doi:10.1145/2465351.2465355

[5] Rakesh Agrawal, Christos Faloutsos, and Arun Swami. 1993. Efficient Similarity Search in Sequence Databases. In

Foundations of Data Organization and Algorithms, David B. Lomet (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

69–84.

[6] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. 2011. Visualization of Time-Oriented
Data. Vol. 4. Springer, London.

[7] Marco Angelini, Giuseppe Santucci, Heidrun Schumann, and Hans-Jörg Schulz. 2018. A Review and Characterization

of Progressive Visual Analytics. Informatics 5, 3 (2018). doi:10.3390/informatics5030031

[8] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015. Time Series Analysis: Forecasting and
Control. John Wiley & Sons, Hoboken, NJ.

[9] G. E. P. Box and D. R. Cox. 1964. An Analysis of Transformations. Journal of the Royal Statistical Society: Series B
(Methodological) 26, 2 (1964), 211–243. doi:10.1111/j.2517-6161.1964.tb00553.x

[10] George Casella and Roger Berger. 2024. Statistical Inference. 2nd Edition. CRC press, New York, NY, USA. doi:10.1201/

9781003456285

[11] Xin Chen, Jian Zhang, Chi-Wing Fu, Jean-Daniel Fekete, and Yunhai Wang. 2022. Pyramid-Based Scatterplots Sampling

for Progressive and Streaming Data Visualization. IEEE Transactions on Visualization and Computer Graphics 28, 1 (Jan.
2022), 593–603. doi:10.1109/TVCG.2021.3114880

[12] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. 2011. Synopses for Massive Data Samples,

Histograms, Wavelets, Sketches. Foundations and Trends® in Databases 4, 1–3 (2011), 1–294.
[13] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and Chi Wang. 2016. Sample + Seek: Approximating

Aggregates with Distribution Precision Guarantee. In Proceedings of the 2016 International Conference on Management
of Data (San Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.

https://doi.org/10.1145/3626717
https://github.com/cwida/ALP
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.3390/informatics5030031
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1201/9781003456285
https://doi.org/10.1201/9781003456285
https://doi.org/10.1109/TVCG.2021.3114880


Visualization-Oriented Progressive Time Series Transformation 376:25

679–694. doi:10.1145/2882903.2915249

[14] David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the Reduction of the Number of Points Required to

Represent a Digitized Line or its Caricature. Cartographica: the international journal for geographic information and
geovisualization 10, 2 (1973), 112–122.

[15] Michael Glueck, Azam Khan, and Daniel J. Wigdor. 2014. Dive in! Enabling Progressive Loading for Real-Time

Navigation of Data Visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’14). Association for Computing Machinery, New York, NY, USA, 561–570. doi:10.1145/2556288.2557195

[16] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos, and Themis Palpanas. 2020. Data

Series Progressive Similarity Search with Probabilistic Quality Guarantees. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing

Machinery, New York, NY, USA, 1857–1873. doi:10.1145/3318464.3389751

[17] Jeffrey Heer and Dominik Moritz. 2023. Mosaic: An Architecture for Scalable & Interoperable Data Views. IEEE
Transactions on Visualization and Computer Graphics 30, 1 (2023), 436–446. doi:10.1109/TVCG.2023.3327189

[18] Marius Hogräfer and Hans-Jörg Schulz. 2024. Tailorable Sampling for Progressive Visual Analytics. IEEE Transactions
on Visualization and Computer Graphics 30, 8 (2024), 4809–4824. doi:10.1109/TVCG.2023.3278084

[19] Jean-François Im, Félix Giguère Villegas, and Michael J. McGuffin. 2013. VisReduce: Fast and Responsive Incremental

Information Visualization of Large Datasets. In 2013 IEEE International Conference on Big Data. IEEE, Silicon Valley,

CA, USA, 25–32. doi:10.1109/BigData.2013.6691710

[20] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung, and Nenad Stojanovic. 2012. The DEBS

2012 Grand Challenge. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems
(Berlin, Germany) (DEBS ’12). Association for Computing Machinery, New York, NY, USA, 393–398. doi:10.1145/

2335484.2335536

[21] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014. M4: A Visualization-Oriented Time Series

Data Aggregation. Proc. VLDB Endow. 7, 10 (June 2014), 797–808. doi:10.14778/2732951.2732953
[22] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. 2001. Dimensionality Reduction for Fast

Similarity Search in Large Time Series Databases. Knowledge and information Systems 3 (2001), 263–286.
[23] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, SamMadden, and Ronitt Rubinfeld. 2015. Rapid Sampling for

Visualizations with Ordering Guarantees. Proc. VLDB Endow. 8, 5 (Jan. 2015), 521–532. doi:10.14778/2735479.2735485
[24] André Kohn, Dominik Moritz, and Thomas Neumann. 2023. DashQL – Complete Analysis Workflows with SQL.

arXiv:2306.03714 [cs.HC] https://arxiv.org/abs/2306.03714

[25] DuckDB Labs. 2025. Storage Versions and Format. https://duckdb.org/docs/1.2/internals/storage

[26] Jianping Kelvin Li and Kwan-Liu Ma. 2020. P5: Portable Progressive Parallel Processing Pipelines for Interactive Data

Analysis and Visualization. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 1151–1160.
doi:10.1109/TVCG.2019.2934537

[27] Chunbin Lin, Etienne Boursier, and Yannis Papakonstantinou. 2020. Plato: Approximate Analytics over Compressed

TimeSeries with Tight Deterministic Error Guarantees. Proc. VLDB Endow. 13, 7 (March 2020), 1105–1118. doi:10.

14778/3384345.3384357

[28] Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on Exploratory Visual Analysis. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 2122–2131. doi:10.1109/TVCG.2014.2346452

[29] Stavros Maroulis, Vassilis Stamatopoulos, George Papastefanatos, and Manolis Terrovitis. 2024. Visualization-Aware

Time Series Min-Max Caching with Error Bound Guarantees. Proc. VLDB Endow. 17, 8 (May 2024), 2091–2103.

doi:10.14778/3659437.3659460

[30] Dominik Moritz, Danyel Fisher, Bolin Ding, and Chi Wang. 2017. Trust, but Verify: Optimistic Visualizations of

Approximate Queries for Exploring Big Data. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 2904–2915.

doi:10.1145/3025453.3025456

[31] Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Balancing Interactive Latency and Resolution Sensitivity

for Scalable Linked Visualizations. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11. doi:10.1145/

3290605.3300924

[32] Thomas Mühlbacher, Harald Piringer, Samuel Gratzl, Michael Sedlmair, and Marc Streit. 2014. Opening the Black Box:

Strategies for Increased User Involvement in Existing Algorithm Implementations. IEEE Transactions on Visualization
and Computer Graphics 20, 12 (2014), 1643–1652. doi:10.1109/TVCG.2014.2346578

[33] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. 2013. The DEBS 2013 Grand Challenge. In Proceedings of
the 7th ACM International Conference on Distributed Event-Based Systems (Arlington, Texas, USA) (DEBS ’13). Association
for Computing Machinery, New York, NY, USA, 289–294. doi:10.1145/2488222.2488283

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.

https://doi.org/10.1145/2882903.2915249
https://doi.org/10.1145/2556288.2557195
https://doi.org/10.1145/3318464.3389751
https://doi.org/10.1109/TVCG.2023.3327189
https://doi.org/10.1109/TVCG.2023.3278084
https://doi.org/10.1109/BigData.2013.6691710
https://doi.org/10.1145/2335484.2335536
https://doi.org/10.1145/2335484.2335536
https://doi.org/10.14778/2732951.2732953
https://doi.org/10.14778/2735479.2735485
https://arxiv.org/abs/2306.03714
https://arxiv.org/abs/2306.03714
https://duckdb.org/docs/1.2/internals/storage
https://doi.org/10.1109/TVCG.2019.2934537
https://doi.org/10.14778/3384345.3384357
https://doi.org/10.14778/3384345.3384357
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.14778/3659437.3659460
https://doi.org/10.1145/3025453.3025456
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1145/2488222.2488283


376:26 Xin Chen et al.

[34] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. 2017. Time Series Databases and InfluxDB. Studienar-
beit, Université Libre de Bruxelles 12 (2017).

[35] Nicola Pezzotti, Boudewijn PF Lelieveldt, Laurens Van Der Maaten, Thomas Höllt, Elmar Eisemann, and Anna Vilanova.

2016. Approximated and User Steerable tSNE for Progressive Visual Analytics. IEEE Transactions on Visualization and
Computer Graphics 23, 7 (2016), 1739–1752. doi:10.1109/TVCG.2016.2570755

[36] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical Database. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing

Machinery, New York, NY, USA, 1981–1984. doi:10.1145/3299869.3320212

[37] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie Karahalios, Aditya Parameswaran, and

Ronitt Rubinfield. 2017. I’ve Seen “Enough”: Incrementally Improving Visualizations to Support Rapid Decision Making.

Proceedings of the VLDB Endowment 10, 11 (2017), 1262–1273. doi:10.14778/3137628.3137637
[38] Lei Rui, Xiangdong Huang, Shaoxu Song, Yuyuan Kang, Chen Wang, and Jianmin Wang. 2024. Time Series Represen-

tation for Visualization in Apache IoTDB. Proc. ACM Manag. Data 2, 1 (March 2024), 35:1–35:26. doi:10.1145/3639290

[39] Debashis Sahoo. 2022. Stock Market Data. https://www.kaggle.com/datasets/debashis74017/stock-market-data-nifty-

50-stocks-1-min-data

[40] Shilpika, Takanori Fujiwara, Naohisa Sakamoto, Jorji Nonaka, and Kwan-Liu Ma. 2022. A Visual Analytics Approach

for Hardware System Monitoring with Streaming Functional Data Analysis. IEEE Transactions on Visualization and
Computer Graphics 28, 6 (June 2022), 2338–2349. doi:10.1109/TVCG.2022.3165348

[41] Charles D. Stolper, Adam Perer, and David Gotz. 2014. Progressive Visual Analytics: User-Driven Visual Exploration

of In-Progress Analytics. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 1653–1662. doi:10.
1109/TVCG.2014.2346574

[42] New York City Taxi and Limousine Commission. 2024. TLC Trip Record Data. https://www.nyc.gov/site/tlc/about/tlc-

trip-record-data.page

[43] Cagatay Turkay, Nicola Pezzotti, Carsten Binnig, Hendrik Strobelt, Barbara Hammer, Daniel A. Keim, Jean-Daniel

Fekete, Themis Palpanas, Yunhai Wang, and Florin Rusu. 2019. Progressive Data Science: Potential and Challenges.

arXiv:1812.08032 [cs.HC] https://arxiv.org/abs/1812.08032

[44] Yunhai Wang, Yuchun Wang, Xin Chen, Yue Zhao, Fan Zhang, Eugene Wu, Chi-Wing Fu, and Xiaohui Yu. 2023. OM3:

An Ordered Multi-level Min-Max Representation for Interactive Progressive Visualization of Time Series. Proc. ACM
Manag. Data 1, 2, Article 145 (June 2023), 24 pages. doi:10.1145/3589290

[45] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to

Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612. doi:10.1109/TIP.2003.819861

[46] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete, and Tim Kraska. 2016. How Progressive

Visualizations Affect Exploratory Analysis. IEEE Transactions on Visualization and Computer Graphics 23, 8 (2016),
1977–1987. doi:10.1109/TVCG.2016.2607714

[47] Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and Ravin Balakrishnan. 2011. Exploratory Analysis of Time-

Series with ChronoLenses. IEEE Transactions on Visualization and Computer Graphics 17, 12 (Dec. 2011), 2422–2431.
doi:10.1109/TVCG.2011.195

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 376. Publication date: December 2025.

https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.14778/3137628.3137637
https://doi.org/10.1145/3639290
https://www.kaggle.com/datasets/debashis74017/stock-market-data-nifty-50-stocks-1-min-data
https://www.kaggle.com/datasets/debashis74017/stock-market-data-nifty-50-stocks-1-min-data
https://doi.org/10.1109/TVCG.2022.3165348
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1109/TVCG.2014.2346574
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://arxiv.org/abs/1812.08032
https://arxiv.org/abs/1812.08032
https://doi.org/10.1145/3589290
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TVCG.2016.2607714
https://doi.org/10.1109/TVCG.2011.195

	Abstract
	1 Introduction
	2 Problem Formulation and Background
	2.1 Problem Formulation
	2.2 Background: M4 and Its Variants

	3 TAT: Time-series Aggregation Tree
	3.1 M4-based Transformation Approach
	3.2 TAT and Its Property

	4 PIVOT
	4.1 Overview
	4.2 Transformation-aware Queries using TAT
	4.3 Query with Pixel Error-bound Guarantees

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance in Cold-start Scenarios
	5.3 Performance in Interaction Scenarios

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

