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A Additional Results

This appendix provides supplementary material for the main pa-
per, including: (i) a detailed illustration of the query mechanism
Q, (ii) comprehensive results for initialization overheads, and (iii)
additional results for interaction scenarios.

A.1 Detailed Illustrations

While Figure 5 in the main paper demonstrates the core mechanism
of the transformation-aware query, the detailed illustrations pro-
vided here offer a more comprehensive view of the query process.

Figure 1 shows the full version of the example in Figure 5, ex-
panded to three pixel columns. In this illustration, the first and
third pixel columns require three iterations to reach convergence
between the valid results (o) and the extreme scores (f). In contrast,
the second column (C2) converges after only one iteration, leaving
twelve nodes unqueried.
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To demonstrate the performance of PIVOT on a realistic cross-
series transformation, we construct a sophisticated cross-series op-

composed of three component functions:
e Cumulative Return: g; (X;, 1) = (X;[t] — X;[0])/X;[0]
e Cross-Series Average: g2(X;, ..., Xj,t) = ﬁﬁ Zi:i X [t]
¢ Point-wise Subtraction: g3(Xj, Xj, t) = X;[t] — X;[¢]

Figure 2 illustrates the query evaluation process for this compo-
sitional operator applied to three time series. For the first pixel col-
umn (C1), the initial valid result range, computed from its boundary
nodes as [allnin, o] = [-2.40,0.80], already covers the maximum
scores of all inner-column nodes (i.e., 54 and 729). Consequently,
the upper bound of the result is already completed, and the sub-
sequent iteration only needs to retrieve nodes to refine the lower
bound. This targeted refinement prunes 14 nodes from the query
process entirely. This example demonstrates that rapid convergence
and effective node pruning are maintained even when evaluating
complex, compositional functions.

A.2 Comprehensive Results for Initialization
Overheads

Rather than using the original OM? preprocessor implemented
in JavaScript, PIVOT employs a reimplementation in C++, which
significantly improves preprocessing efficiency. Figure 3 presents
the initialization overheads for all tested datasets on log-log scales.
The results confirm that both initialization time and peak memory
usage scale linearly with data size.

Upon closer inspection, a secondary observation emerges for
initialization time: real-world datasets tend to require more pro-
cessing time than synthetic datasets of a comparable point count.
This performance difference can be attributed to the greater com-
plexity in real-world data distributions. For instance, the Soccer
dataset (19.10s) takes approximately 3X longer to initialize than
the similarly-sized Syn40M dataset (6.39s). Despite these variations,
the overall performance remains practical, with the largest dataset
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Figure 1: Detailed illustration of the query mechanism Q using
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three pixel columns for the non-monotonic function f(x) =

(x? - 1)/2. Each column maintains its query status independently. (a) TAT representing the search paths of Q, with node scores

indicated below. (b) Evolution of the candidate node lists (o and f)

during the query process, shown alongside the corresponding

progressive visualizations. The gray ground truth visualization is provided for reference.

(Syn5B) completing initialization in approximately 11 minutes. In
contrast, peak memory usage is less affected by data complexity,
showing no significant disparity between real-world and synthetic
datasets. This indicates that memory consumption is primarily
driven by data volume rather than its underlying distribution.

A.3 Additional Results for Interaction Scenarios
We present the detailed results for the two datasets used in the
interaction scenario. Compared to Figure 10 in the main paper, Fig-
ure 4 also includes memory usage. As the query plan progresses,

DuckDB [1] gradually consumes more memory, while PIVOT main-
tains a consistently low and stable memory footprint. Although
DuckDB performs active memory release, this process may intro-
duce performance fluctuations, as observed in Figure 4e and 4f.
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Figure 2: Illustration of the query mechanism Q applied to the compositional operator g(Xj, Xz, X3, t). (a) Visualization of the
input time series. (b) The corresponding TATs for the first pixel column under this operator. (c) Evolution of the candidate

node lists (o and f) during the query process.
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Figure 3: Performance of PIVOT’s offline preprocessing stage in terms of (a) initialization time and (b) peak memory usage.
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Figure 4: Performance of the three systems in interactive exploration scenarios on the real-world dataset Taxi (a—c) and the
synthetic dataset Syn5B (d-f): (a, d) SSIM scores, (b, €) response times, and (c, f) memory usage.
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