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Data-Driven Colormap Adjustment for
Exploring Spatial Variations in Scalar Fields

Qiong Zeng, Yongwei Zhao, Yinqiao Wang, Jian Zhang, Yi Cao,
Changhe Tu, Ivan Viola, and Yunhai Wang

Abstract—Colormapping is an effective and popular visualization technique for analyzing patterns in scalar fields. Scientists usually
adjust a default colormap to show hidden patterns by shifting the colors in a trial-and-error process. To improve efficiency, efforts have
been made to automate the colormap adjustment process based on data properties (e.g., statistical data value or histogram distribution).
However, as the data properties have no direct correlation to the spatial variations, previous methods may be insufficient to reveal the
dynamic range of spatial variations hidden in the data. To address the above issues, we conduct a pilot analysis with domain experts and
summarize three requirements for the colormap adjustment process. Based on the requirements, we formulate colormap adjustment as
an objective function, composed of a boundary term and a fidelity term, which is flexible enough to support interactive functionalities. We
compare our approach with alternative methods under a quantitative measure and a qualitative user study (25 participants), based on a
set of data with broad distribution diversity. We further evaluate our approach via three case studies with six domain experts. Our method
is not necessarily more optimal than alternative methods of revealing patterns, but rather is an additional color adjustment option for
exploring data with a dynamic range of spatial variations.

Index Terms—Colormapping, Scientific visualization
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1 INTRODUCTION

Colormapping is one of the most effective techniques for visual-
izing scalar fields, such as temperature in meteorology, density in
physics, and diffusion in aerodynamics [3], [4]. A good colormap
clearly reveals patterns of interest in data, while an improper
one produces vague and even misleading effects [5], [6]. When
designing a good colormap, analytical tasks (e.g., locating values
and understanding data trends) need to be considered [1], [2],
[7]. A good colormap is typically customized for specific tasks
by manually adjusting the colors of a default colormap using
existing visualization tools (e.g., ParaView [8]). However, this
design process is often tedious and time-consuming.

The most challenging issue for colormap design is that data
distribution does not always match well with color distribution.
For example, most of the values in Fig. 1(a) are located in the
lower data range, but the encoding colors there are limited. To
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improve the efficiency of colormap design, several automated
colormap adjustment methods have been proposed. These methods
automatically shift more colors to a specific range of values based
on the data properties (e.g., statistical data value or histogram
distribution [1], [2]). In this way, more information in those data
ranges can be revealed. However, meaningful information is not
always consistent with the data properties, e.g., higher values
in the data may be noises rather than meaningful features (see
Fig. 1(c)). In our study, we use the phrase “meaningful features” to
refer to gradual spatial variations, which indicate data transitions
between different materials or regions [9]. The highlighted regions
of Fig. 1 cover gradual spatial variations that are located in multiple
data ranges and are not necessarily correlated to data properties
such as statistical data values. Additionally, existing methods may
cause noticeable color changes when the majority of the data is
distributed within a very limited data range. In this case, the most
representative colors are condensed to the data ranges with high
quantities, leaving the less discernible colors to encode to other
data ranges.

To address the above issues, we revisit the colormap adjustment
process under the guidance of domain experts who advised
three requirements: spatial gradual variations (R1), colormap
preservation (R2), and flexible interactive explorations (R3). We
formulate a mathematical energy function under the constraints of
gradual spatial variations (R1) and color consistency (R2), with
the parametric positions of the control points on a colormap being
independent variables. Control points refer to several sampled
constant colors and their corresponding parametric positions on
the input colormap. More specifically, we leverage a classic
boundary model [9] to calculate spatial variations, since it has
the advantage of correlating spatial variations to parametric data
values. Benefiting from this model, our approach enables users to
explore different spatial variations through a controllable boundary-
emphasis function. To minimize color changes between the input
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Fig. 1: Computer tomography (CT) data of the lower extremity visualized with different colormaps. (a) A gray colormap used in medical
visualization, where the boundary characteristics in the highlighted regions are not clearly revealed. (b) By shifting the input colormap
according to statistical metadata (mean) [1], information in the middle of the data range is lost. (c) By applying histogram equalization [2]
to shift the colormap in (a), soft tissues in the lower extremity are emphasized; however, variations in the patella and shin bones are
depressed, and the noisy background is overemphasized. (d) By adjusting the colormap in (a) with our method, the variations in the soft
tissues and bone structures of the lower extremity are revealed.

and the adjusted colormap, we calculate color consistency with
a cumulative arc length function and preserve color orders using
a nonlinear bounding constraint. Our formulation is very flexible
and supports interactive functionalities (R3), including boundary
exploration, regions-of-interest, and control point customization.

We evaluate our method with quantitative and qualitative
comparisons to existing methods, and conduct three case studies
to demonstrate its effectiveness in revealing spatial variations. We
demonstrate that introducing spatial variations into the colormap
adjustment process can help resolve hidden gradients, especially for
data with high-dynamic-range gradients and skewed distributions.
Our automatic approach serves as a good starting point for color
design, and its interactive functionalities are necessary for further
data exploration. Compared with existing methods, our method is
not offered as more optimal for revealing spatial variations, but
rather is an additional color adjustment option for exploring data
with a dynamic range of spatial variations.

The core method was briefly introduced in Zeng et al. [10].
In this study, we refine the problem formulation with well-
defined parameters, provide thorough quantitative and qualitative
evaluations, and demonstrate an extension on time-varying scalar
fields. The main contributions of our approach are as follows:

• We formulate the colormap adjustment process as an opti-
mization problem for exploring spatial variations, under the
guidance of requirements analyzed by domain experts.

• We demonstrate the flexibility of our approach to support in-
teractions, including boundary exploration, regions-of-interest
exploration, and control point customization.

• We conduct a quantitative comparison with alternative meth-
ods for revealing gradual spatial variations. We also conduct a
user study and three case studies to qualitatively analyze the
performance of our approach.

2 RELATED WORK

In this section, we review prior work in colormap design and
boundary measures.

2.1 Colormap Design in Visualization

The colormap is among the most important visual encodings for
scalar data. To observe patterns of interest, scientists either select
a colormap by preference, or adjust a colormap in a trial-and-
error process. However, an inappropriate colormap may lead to
poor performance in visualization [11] or even produce misleading
artifacts [6]. The visualization community has established vast
amounts of color design guidelines and measures. In this section,
we investigate colormap design guidelines and data-aware colormap
design measures. We refer readers to prior literature [12], [13],
[14] for a complete review of colormap design in visualization.

Colormap Design Guidelines. As stated above, there is a wide
body of empirical and well-verified colormap design guidelines es-
tablished by the visualization community [15], [16], [17], [18], [19].
These design rules were unified in nomenclature and integrated into
a theoretical framework recently by Bujack et al. [20]. The authors
categorize design rules as perceptual, mathematical, or operational
(such as order, discrimination, and uniformity), and provide an
online tool to help users assess the quality of a colormap.

Those guidelines can be leveraged for colormap design.
Moreland [18] provides a diverging colormap, which performs
well in general scientific visualization by incorporating perceptual
uniformity and continuity rules. They also provide an intuitive
tool for interpolating control points, by which users can manually
design a colormap to show patterns of interest. In addition, some
methods make use of existing or user-assigned design rules to
automatically select or optimize colormaps. Sisneros et al. [21]
refine a colormap in a perceptually uniform CIELUV colorspace
under the guidance of a user-defined luminance function. Nuñez et
al. [22] propose an automated colormap optimization scheme that
addresses color vision deficiency by maximizing and linearizing
the perceptual uniformity rule. However, those methods mainly
focus on the colormap itself, with less or even no consideration of
the data characteristics.

Data-Aware Colormap Design Measures. Data play an indis-
pensable role in colormap design. This role has been well-
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studied by existing experimental methods [7], [23], [24]. Reda
et al. [24] investigate correlations between a continuous colormap
and spatial frequency through quantitative experiments on three
representative tasks: quantity estimation, gradient perception, and
pattern perception. They find that the spatial frequency of the data
has a great impact on the effectiveness of colormap encoding, but
the precise effect is task-dependent.

Previous methods have leveraged the importance of data and
tasks to guide the colormap design. The colormap design rules are
established by grouping data types and tasks into well-organized
categories. The most pioneering work was proposed by Bergman
et al. [4], who build a taxonomy by considering the spatial data
frequencies and representative tasks. They leverage this taxonomy
to implement an intuitive system, PRAVDAColor, for guiding
colormap design. Similar ideas can be found in ColorBrewer [15]
and ColorCAT [25]. Those methods apply similar colormap design
rules to the same category of data. Due to the limited number of
categories, data with noticeably different patterns may be assigned
the same colormap.

The simplest way to view patterns of interest is to scale data
using mapping functions. Classic data normalization methods (e.g.,
logarithmic normalization [26]) could be directly leveraged to
scale data values, but they cannot ensure an appropriate mapping
for different tasks. Instead, Eisemann et al. [27] build up four
perceptual goals (equality, ordering, discrimination, and similarity)
to ensure a perceptual transformation. They achieve those goals by
projecting data values to a diagonal axis defined by the minimum
and maximum data values. Thompson et al. [28] extract prominent
values from data, depict them using perceptually distant colors,
and then generate a perceptually uniform colormap for other data
values. However, these methods do not take the colormap itself
into account. Even though transforming the data distributions may
enhance specific structures in the data, the selected colormap plays
an important role in the graphical perception of patterns [5], [7].

Several methods use image processing operators to enhance
colormap design [29], [30], [31], [32], so that the improved
visualization resolves more information. Zhou et al. integrate view
distance into the contrast enhancement process [30], and then
propose a visualization sharpening scheme based on the power
spectrum [31]. However, their methods directly enhance images
and, thus, cannot preserve one-to-one mappings between the data
and colormap. Following their previous work, Zhou et al. [32]
propose a color enhancement method for high-dynamic-range data
based on tone mapping techniques and glare simulation. Though
they leverage a global tone mapping scheme to ensure one-to-one
mappings between the data and colors, their modification of the
input data may hinder accurate understanding of the data values.

Our main idea is to automatically shift the parametric positions
of the control points in a colormap to achieve a richer visualization
of boundary structures, while preserving one-to-one mappings
between the data values and colors. Modulating control points
is extensively utilized in visualization for interactive colormap
exploration. Several semi-automatic and automatic methods have
been proposed to modify positions for colormap exploration. For
example, Maciejewski et al. [33] propose a semi-automatic method
that scales a colormap according to a well-designed histogram
transformation. The automatic methods proposed by Schulze-
Wollgast et al. [1] and Tominski et al. [2] share similar goals with
us: They leverage the data distribution to modulate the parametric
positions of the control points in a colormap. Specifically, Schulze-
Wollgast et al. [1] extract statistical metadata (e.g., median, mean,

or a user-defined value) and adjust the colormap by shifting
a control point to the corresponding position of the inferred
metadata. Tominski et al. [2] propose using histogram equalization
to improve color encoding for highlighting and segmentation tasks,
aiming to shift more colors to the data range with high quantities.
Instead of adjusting the colormap to emphasize a specific statistical
metadata [1] or to equalize global data distribution [2], we adjust
the input colormap for exploring continuous structures in data by
taking into account the boundary characteristics [9].

2.2 Boundary Measures

Many approaches have been proposed in computer vision for
detecting boundaries between regions in the spatial domain from
digital images, such as the classic Canny operator [34]. However,
there are no direct mappings between colors and boundary positions.
Therefore, it is difficult to shift the colors in a colormap under
the guidance of position-based image boundaries. Since the data
values are closely related to both the colors and boundary positions,
first we will associate the spatial boundary positions with the data
values; then we will utilize them to guide the colormap adjustment
process.

A pioneering work in volume rendering proposed by Kindlmann
and Durkin [9] addressed the significant role of boundary structures
in representing data variations among disparate materials. Their
basic idea is to measure the relationships between the data values
and their derivatives using a histogram structure, and then build
correlations between the data values and boundary positions.
Based on this mapping of the boundary positions to the data,
users can assign a boundary-emphasis function to set a boundary
opacity for intuitive exploration. Following this work, many
measures in volume rendering have been proposed for enhancing
boundary structures that achieved better visualization and effective
classifications among multiple materials [35], [36], [37], [38].
Therefore, we leverage Kindlmann and Durkin’s model to calculate
boundary structures and analyze gradual spatial variations. To
our best knowledge, no previous work leverages the Kindlmann
and Durkin model to enhance the visual effects of gradual spatial
variations in color design.

3 REQUIREMENT ANALYSIS

We consulted with domain experts on an analysis of the require-
ments for automatic color design. From this analysis, we identified
three requirements for colormap adjustment.

3.1 Interviews with Domain Experts

We invited three experts from the visualization community, in-
cluding one expert with 30 years of experience in meteorology
visualization (E1), one with 10 years of experience in medical
visualization (E2), and the other with four years of experience
in general visualization (E3). We also invited three experts from
the science community, including one scientist with five years of
experience in combustion simulations (E4), one oceanologist with
18 years of experience in physical oceanography (E5), and one
cardiologist with three years of experience in analyzing computer
tomography (CT) and ultrasound cardiograms (E6).

During the interview stage, we described our basic idea of
adjusting a colormap and presented several prototype results to the
experts. Then, we required them to answer two five-point Likert-
scale questions and give feedback to each question in one to five
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sentences. The answers were gathered through a forced-choice task
to quantify their preference:
• Would you find it beneficial for the visualization users (e.g.,

designers, scientists) to have an “Auto Adjust” button next to
a colormap, so that it automatically tries to match the data and
provide a richer visualization?
(1) strongly not beneficial (2) not beneficial (3) neutral
(4) beneficial (5) strongly beneficial

• Would you expect desired results of such “Auto Adjust” to be
similar to the prototype results?
(1) strongly dissimilar results expected (2) dissimilar results
expected (3) neutral (4) similar results expected (5)
strongly similar results expected

The majority of the domain experts, except E2 and E4, agreed
with the potential benefits of an automatic colormap adjustment
approach and expected similar effects as the prototype results we
provided. E2 chose “neutral” for both questions, as sometimes
the benefit depends on the users and tasks. E4 did not choose
answers because of incomplete interactive functionalities, though
he provided inspiring feedback, as shown in R3 (Sec. 3.2).

3.2 Requirements for Colormap Adjustment
Based on the domain experts’ feedback and literature research,
we identified the following three requirements for colormap
adjustment.

R1: Colormap adjustment under the guidance of gradual
spatial variations. Gradual spatial variations indicate transitions
between different regions, which play an important role in distin-
guishing the spatial variations hidden in data. To reveal spatial
variations, sufficiently discernible colors are required to encode the
corresponding data ranges. Our domain experts (E1 and E3) pointed
out that they often manually clip unimportant values in order to
observe continuous features in a specific data range. Resolving
hidden gradual spatial variations automatically will be a good
starting point in understanding patterns in the underlying data.

R2: Colormap preservation of the default colormap. Scientists
often prefer to encode data with familiar colormaps [5], [11], [14],
e.g., the rainbow colormap is still popular despite its tendency
to introduce misleading patterns [39], [40]. Our domain expert
E6 expressed that her user experience working with a familiar
colormap can improve the efficiency of her data analysis, and
unexpected changes in the appearance of a colormap may reduce
efficiency. Therefore, we propose to preserve the key colors in an
input colormap as much as possible during the adjustment process.

R3: Flexible interactive color exploration. During the colormap
adjustment process, when shifting more colors to the targeted
data ranges, less representative colors would be left for other data
ranges (see examples in Fig. 1). To mitigate this disadvantage,
interactive color exploration would be an ideal way to resolve
patterns in different data ranges. In addition, the domain experts
E2, E4, and E5 stated that they favor a controllable visualization
rather than a static one because different domain fields have their
own usage preferences and analysis tasks. Therefore, interactive
color exploration should be a necessary function for colormap
adjustment.

4 COLORMAP ADJUSTMENT APPROACH

Motivated by the requirements identified above and previous
studies, we propose adjusting a colormap under the constraints
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Fig. 2: An illustration of the colormap definition. (a) A synthetic
dataset produced by the Langermann function [41] and encoded
with a perceptual linear viridis colormap. The colormap is defined
by a list of control points with constant colors and parametric
positions. The data histogram (on the right of the input colormap
and indicated by light gray bars) illustrates their relationship. (b)
By shifting the parametric position of the input colormap and
interpolating the colors between every two control points, a new
colormap is produced to reveal spatial variations.

of gradual spatial variations and color changes. In this section,
first we formulate the problem mathematically, and then introduce
technical details and corresponding optimization solvers. While
we demonstrate our approach in static 2D scalar fields, it can be
extended to dynamic 2D scalar fields (Sec. 6.4).

4.1 Problem Formulation
Given a 2D scalar field vvv with m data samples and an input
colormap with a list of 3D colors from the CIELAB colorspace, our
goal is to obtain a new colormap, such that the new color-encoded
visualization can better reveal spatial variations hidden in the data.

Colormap Definition. To associate discrete colors with contin-
uous parametric data values, we define the input colormap as
a set of control points and an interpolating function. Control
points in our definition refer to w sampled constant colors
CCC = {ccc111,ccc222, ...,cccwww} and their corresponding parametric positions
ppp = {p1, p2, ..., pw} (0≤ p∗ ≤ 1) on the colormap. The interpolat-
ing function aims to build a smooth transition between every two
neighboring control points. We utilize a piecewise linear mapping
function to interpolate the colors [42], as illustrated in the equation
below:

ĉcc =
cccw− cccw−1

pw− pw−1
∗ (p̂− pw−1)+ cccw−1, pw−1 < p̂ < pw. (1)

By iteratively applying the interpolating function to neighboring
control points, we can recover the entire colormap yyy(vvv; ppp,CCC). Then,
we reformulate our goal to target obtaining w new parametric
positions p̄pp = { p̄1, p̄3, ..., p̄w} for the control points (with the
two endpoints constant by default). We recover the colors on
the parametric data values vvv by yyy(vvv; p̄pp,CCC). As the colors of the
control points remain constant during the adjustment process, the
annotation is abbreviated as yyy(vvv; p̄pp).

Fig. 2 illustrates the definition of a colormap and color-encoded
visualizations on a synthetic ripple dataset produced by the Langer-
mann function [41]. Fig. 2(a) shows the synthetic dataset encoded
by a perceptual linear viridis colormap, where its peripheral ripples
are represented by indistinguishable colors between (p4,ccc444) and
(p7,ccc777). By moving the parametric positions of the control points
(p5,ccc555) and (p7,ccc777), patterns hidden in the peripheral regions are
revealed, indicating that well-designed parametric positions for the
control points can effectively emphasize hidden data variations (see
Fig. 2(b)).



SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND GRAPHICS 5

Fig. 3: Illustration of the boundary term. (a) The relationship between the derivatives (vertical direction) and the data values (horizontal
direction). (b) A Gaussian-filtered circle encoded by an input viridis colormap and its corresponding local color difference. (c) A
boundary probability map inferred from the input data, in which yellow indicates values with higher boundary probability. (d) By
applying our algorithm to the input, the underlying data patterns close to the inner and outer circle margins are clearly shown.

Problem Formulation. To meet requirements R1 and R2, we
formulate the shifting parametric positions of the control points p̄pp
as a nonlinear constrained optimization problem with the objective
function E(vvv; p̄pp):

argmin
p̄pp

E(vvv; p̄pp) = B(vvv; p̄pp)+βF(p̄pp). (2)

The objective function consists of a boundary term B (Sec. 4.2) and
a fidelity term F (Sec. 4.3), balanced by a parameter β (Sec. 5).

4.2 Boundary Term
The basic idea of the boundary term is to emphasize gradual spatial
variations hidden in the underlying data and accordingly update
them in the color encoded data. We leverage Kindlmann’s boundary
model [9] to calculate gradual spatial variations in the original data,
and estimate perceived data variations in the visualization with
local color differences. The mathematical model of the boundary
term is defined below:

B(vvv; p̄pp) =−
m

∑
i=1

q(vi)∗ ∑
j∈ΩΩΩ

∥∥yyy(vi; p̄pp)− yyy(v j; p̄pp)
∥∥ , (3)

where q(vi) denotes the boundary probability map (see more details
below), which measures the probability of a data value vi belonging
to the boundaries; ΩΩΩ denotes the neighbors of a data value vi in
the 2D scalar grid;

∥∥yyy(vi; p̄pp)− yyy(v j; p̄pp)
∥∥ is the normalized local

color difference in CIELAB colorspace. We set ΩΩΩ as a 3× 3
neighborhood in our implementation by default.
Boundary Probability Map. The boundary probability map q(v)
represents the probability of a data value v belonging to the
boundaries. We assume that a data value with a smaller relative
distance to a boundary has a higher boundary probability, meaning
that it has greater potential to reveal more spatial variations.
Considering that the gradients in small-quantity regions are hard
to observe, we penalize assigning high gradients to small-quantity
regions. Then, we can model the boundary probability map as the
function below:

q(v) = r ∗b(x),

b(x) = e−η |x|,
(4)

where r is a penalizing factor that can be calculated with
nv

max(nv1 ,...,nvm ) ; nv is the number of samples with data value v;
x indicates the relative distance to a boundary; b(x) is a boundary-
emphasis function, which can be replaced by other boundary-
emphasis functions (see Sec. 5.1)); and η is the empirical boundary-
emphasis factor. More lower gradients would be emphasized with
a smaller η ; by default, we set it to 5.

The core difficulty in solving Eq. 4 is associating a boundary x
with a data value v, so that we can further control the boundaries

with parametric colors. To address this problem, Kindlmann and
Durkin [9] introduced a boundary model to build a bridge between
the boundaries and data values, based on an ideal boundary model
and a novel histogram volume structure.

The ideal boundary model is a function of the relative distance
to a boundary:

v = f (x) = vmin +(vmax− vmin)
1+ er f ( x

σ
√

2
)

2
, (5)

where v means the data value at a position x under the ideal
boundary model represented by a standard error function er f [43];
σ is the standard deviation to control the amount of boundary
blurring; and vmax and vmin are the corresponding maximum and
minimum data values. More specifically, x indicates the directional
relative position to a boundary and is equal to zero when it is
an inflection point in the boundary. The position x can be either
positive or negative: positive means that the function value is close
to vmax, while negative indicates it is close to vmin. Accordingly, we
can deduce a mapping between an approximate boundary position
x and the derivative of f (x):

f ′′(x)
f ′(x)

=− x
σ2 , (6)

where σ can be estimated according to the maximum first and
second derivatives on the entire data: σ = max( f ′(x))

max( f ′′(x))
√

e [9].
As Eq. 6 models the relationship between the data derivatives

and a boundary, now we must connect the data values and their
derivatives. Kindlmann and Durkin [9] proposed the 3D histogram
volume structure, which consists of three axes, f (x), f ′(x), and
f ′′(x), with a number of discrete bins. The quantities in each bin
of the three axes are counted, combined, and assigned to each
histogram volume. Then, the first and second derivative functions
g(v) and h(v) can be approximately calculated by slicing the 3D
histogram volume at a data value v and counting the average of the
corresponding first and second directional derivatives. Thus, we get
the mapping function p(v) from the data value v to an approximate
position x along a boundary:

p(v) =
−σ2h(v)

g(v)
≈ −σ2 f ′′(x)

f ′(x)
= x. (7)

On the basis of this equation, the distance to a boundary x can
be calculated with the data value v. Data values with higher first
derivatives are located closer to the boundary.

Fig. 3 shows the accompanying products of the boundary term,
based on a synthetic Gaussian-filtered circle dataset (D1). Fig. 3(a)
illustrates the relationship of f ′ versus f and f ′′ versus f . The
horizontal direction indicates the data values, while the vertical
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direction indicates the first and second derivatives. The color of
each dot depicts the data quantities. In this figure, most of the
data values have extremely low gradients; a few of them have high
gradients. Fig. 3(b) shows the input dataset and its corresponding
local color difference, both encoded by a perceptual linear viridis
colormap. Fig. 3(c) shows the boundary probability map, where
the gradients of the small-quantity regions are de-emphasized.
By adjusting the colormap under the guidance of the boundary
probability map, low gradients close to the outer and inner margins
are resolved. Therefore, the Gaussian-filtered region in Fig. 3(d)
seems wider than the input.

4.3 Fidelity Term
Motivated by requirement R2, we propose a fidelity term to avoid
significant color changes during the colormap adjustment process.
We use color changes to refer to changes from the input colormap
in terms of the color order and color similarity. Color order means
the ordering of parametric positions in the input colormap, while
color similarity (or difference) refers to the appearance of the
input and adjusted colormaps. To avoid significant color changes,
we propose preserving the order of the parametric positions, and
minimizing the color differences between the input and adjusted
colormaps.

A simple way to model the fidelity term is to calculate the
Euclidean distances between the parametric positions and the
corresponding colormaps. However, this increases the searching
space for the overall optimization function (Eq. 2). Instead,
we propose modeling the fidelity term with a cumulative arc
length function defined on the input colormap, making use of
its monotonically increasing attribute as an intrinsic constraint to
facilitate convergence.

Specifically, we model the color similarity as a Euclidean
distance between the cumulative arc lengths at the corresponding
input and adjusted parametric positions. We model the color order
as first derivatives of the arc length function at the adjusted
parametric positions; thus, color order serves as a nonlinear
constraint to the color similarity formulation. The fidelity term
is defined below:

F(p̄pp) =
w

∑
i=1
|ζ (p̄i)−ζ (pi)| , s.t. ζ̄

′(p̄i)> 0 (8)

where ζ is the cumulative arc length function of the input colormap
in the 3D CIELAB colorspace; ζ̄ is a piecewise linear function
built from ζ at the new parametric positions; and ζ̄ ′(p̄i) is the
corresponding first derivative at position p̄i.

The cumulative arc length function ζ (pi) is the arc length
between every parametric position pi and the starting position p1
along a given section of a curvy input colormap in the 3D CIELAB
colorspace (see Fig. 4(a)). As we keep the colors of the control
points constant during the adjustment process (see Fig. 4(b)), the
input and adjusted colormaps share the same curvy shape in the 3D
CIELAB colorspace. We approximate the cumulative arc length
function with z discrete colors along the input colormap. Thus, the
cumulative arc length function can be modeled as below:

ζ (t) =
∫ t

1
‖c′(t)‖dt ≈

{
0, i = 1
∑

i=zt
i=2

√
(c(ti)− c(ti−1))2,

(9)

where c is a 3D color in the CIELAB space at a specific parametric
position t,0≤ t ≤ 1; and zt is the number of sampled colors between
the parameter position t and the starting position. We set z = 256
for the whole input colormap by default. Consequently, zt = z∗ t
for each control point with a parametric position t. The top row of
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Fig. 4: Illustration of a fidelity term. (a) The input colormap in the
3D CIELAB colorspace. Black dots indicate input control points.
(b) An overview of the differences between the input colormap
(with black control points) and adjusted colormap (with red control
points). The vertical axis indicates the colors in the input colormap,
while the horizontal axis shows the parametric positions. (c) The
accumulative arc length function ζ and its constructed piecewise
linear function ζ̄ . The horizontal axis indicates the parametric
position of the control points, while the vertical axis shows the
corresponding accumulative arc length (top) and a newly built
piecewise linear function (bottom).

Fig. 4(c) shows the monotonically increasing cumulative arc length
function of the input colormap, where the parametric positions pi
of the control points are highlighted with black dots. The values
of ζ (t) at new parametric positions t = p̄i (red dots) are used
to produce the piecewise linear function ζ̄ , indicated by dashed
lines in Fig. 4(c). The first derivatives of ζ̄ are modeled as color
order constraints in the color adjustment process. Since the first
derivatives of ζ̄ at disorderly parametric positions are negative,
such parametric positions will not satisfy our bounding constraint
in Eq. 8.

4.4 Optimization Solver
Our method takes w control points from a colormap and 2D
scalar field vvv as input, then iteratively updates to find the optimal
parametric positions of the control points for revealing hidden
spatial structures. This process is mathematically formulated as an
objective function in Eq. 2, which is a quadratic function under the
constraint of nonlinear conditions (see Eq. 3 and Eq. 8). To find
the optimal parametric positions with minimal energy with respect
to Eq. 2, we use sequential quadratic programming (SQP) [44],
a classic and effective method for finding optima in nonlinear
quadratic optimization problems.

Basically, SQP transforms the nonlinear quadratic problem into
a sequence of quadratic programming (QP) subproblems based
on derivatives of the objective function. At each iteration, the
QP subproblem is approximated using the Taylor series and the
Hessian of the Lagrangian function. Then, the solution to the
corresponding QP subproblems is calculated and used to form a line
search direction for the optimization until convergence. We adopt a
commercial SQP solver provided by Artelys Knitro [45] to optimize
the energy function, with the input parametric positions of the
control points as an initial guess. The efficiency of the SQP solver
depends on the number of iterations for calling our energy function
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Fig. 5: Illustration of the boundary exploration. (a) Input visualization. (b) Influence of the balancing weight β . With an increasing value
of β , the results are more likely to produce the input visualization. All the results in (b) are produced under η = 1. (c) Influence of the
boundary-emphasis function b(x). With an increasing number of boundary-emphasis factors η , fewer data variations along the margins
are resolved. With new boundary-emphasis functions (the rightmost three images), various hidden details can be represented. All the
results in (c) are produced under β = 0.0001.

in intermediate energy evaluations. In this process, about 98%
percent of the time is spent on calculating local color difference
and mapping colors to data. Therefore, we further facilitate the
algorithm with a GPU implementation. More details about the CPU
and GPU comparison can be found in the supplementary materials.

5 INTERACTIVE EXPLORATION

Our formulation is flexible enough to support color exploration by
fine-tuning simple parameters. We first demonstrate how to leverage
these parameters to explore gradual variations in data. Then, we
illustrate a regions-of-interest (ROI) functionality, providing an
intuitive way to explore specific regions of the underlying data
(R3). We further develop additional functionality that allows users
to customize the constant control points.

5.1 Boundary Exploration

Balancing Weight β . As defined in Eq. 2, the balancing weight β

can be used to modulate the conflict between the boundary term
and the fidelity term in our formulation. A smaller β results in
more resolved hidden spatial variations, but causes greater changes
in appearance between the input and adjusted colormaps. Fig. 5(b)
illustrates the influence of the balancing weight β , which results in
different color-encoded visualizations of D1. Without the fidelity
term (β = 0), the data variations are enhanced but the colors of the
adjusted colormap are disordered. The reason is that the parametric
positions are randomly set during the optimization process. With
an increase in the balancing weights, the influence of the boundary
term is reduced. For example, the visualization produced under
β = 0.01 shows wider and sharper margins, while that of β =
0.3 is more similar to the input visualization (Fig. 5(a)). We set
β = 0.0001 by default to emphasize variations and simultaneously
preserve the color order.

Boundary-Emphasis Function. By tuning the boundary-emphasis
factor η in the default boundary-emphasis function (Eq. 4), users
can intuitively control the patterns resolved in the color-encoded
visualization. A smaller η enhances hidden boundaries, while a
larger η weakens boundary effects. Fig. 5(c) shows the influence
of the boundary-emphasis function on D1 with different boundary-
emphasis factors. With an increasing number of η from 1 to 100,
fewer gradients would be resolved.

Instead of using the default boundary-emphasis function b(x),
users can provide their own desired boundary-emphasis functions.
The rightmost three visualizations of Fig. 5(c) show the influences
of different boundary-emphasis functions. By moving the default
boundary center closer to the outside (e.g., |x+ 1|), the outside
margins are dilated, but the inside margins are narrowed down. A
reverse effect is produced by moving the boundary center closer
to the inside (e.g., |x− 1|). By replacing the boundary-emphasis
function with a step function (the rightmost image in Fig. 5(c)),
the gradients in data ranges with high quantities are emphasized
dramatically, while others are de-emphasized.

5.2 Regions-of-Interest Exploration
As mentioned R3, users prefer to keep control over a visualization
system and explore ROI. Thus, we provide ROI functionality to
support personalized exploration.

The ROI functionality begins with a simple “outside” lasso
tool. By using this tool, users can label their interested regions.
Corresponding boundaries will be exaggerated by multiplying an
emphasis weight in our boundary term:

B(vvv; p̄pp) =−
m

∑
i=1

ωi ∗q(vi)∗ ∑
j∈ΩΩΩ

.
∥∥yyy(vi; p̄pp)− yyy(v j; p̄pp)

∥∥ . (10)

For samples inside the ROI region, an exaggeration weight ωi > 1
is multiplied, while ωi = 1 for samples outside the region.
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Fig. 6: Radiotherapy dose data encoded by a rainbow colormap is
shown in (a). Our optimized results before and after applying the
ROI exploration tool are shown in (b) and (c), respectively.

Fig. 6(a) shows our ROI exploration functionality with ra-
diotherapy dose data encoded by a rainbow colormap. With our
adjusted colormap, variations along the tumor borders are revealed,
but those inside the tumor region are not visible (see Fig. 6(b)).
By labeling the interested tumor region with the lasso tool, our
method shifts more representative colors to encode values inside
the tumor (see Fig. 6(c)). We conduct a case study to evaluate the
ROI exploration functionality in Sec. 6.3.

5.3 Control Point Customization

Diverging colormaps are widely used to encode data with a
semantic median point [18]. For example, temperature values are
often encoded by a diverging coolwarm colormap to keep a color-
concept association, where negative values are encoded by blue
colors and positive values are encoded by red colors. However, as
the parametric positions are freely shifted, our colormap adjustment
may destroy such color-concept association. To avoid this issue,
we provide a control point customization functionality that allows
users to label the constant control points. With this functionality,
users can manually add or delete constant control points, and then
the corresponding parametric positions will be kept unchanged
during the adjustment.

Fig. 7 demonstrates this functionality with ocean salinity
data, collected in southwestern Europe, encoded by a coolwarm
colormap. The left image shows the input visualization in which the
spatial variations inside the Mediterranean Sea are invisible. The
top right image of Fig. 7 shows our adjusted visualization with two
default constant endpoints. In this adjusted colormap, more colors
are moved to the higher data-value range to emphasize hidden
patterns inside the Mediterranean Sea, but the centric control point
is shifted. By labeling the centric point as a constant control point,
the parametric position will not be changed during the colormap
adjustment process; see the bottom-right image of Fig. 7.

6 EVALUATION

We implemented our method in C++ and tested it with an Intel
Core i5-8250U (1.8 GHz CPU) with 8 GB memory. To accelerate
the performance, we also developed a GPU implementation in
CUDA that runs on an NVIDIA GeForce MX150 graphics card
with 4 GB memory. We performed a thorough evaluation of our
method’s quality of spatial-variation visualization through three
assessments: (i) a quantitative comparison with the alternatives
(statistical metadata [1] and histogram equalization [2]) based
on a mathematical measure; (ii) a user study with 25 non-expert
participants; and (iii) three case studies with six domain experts.

Two Constant Control Points 

Three Constant Control Points 

(input)

(input)

(output)

(output)

Fig. 7: Illustration of the control point customization tool. The input
ocean salinity data is visually encoded by a coolwarm colormap,
as shown in the left image. On the right are visualizations with two
or three constant control points.

6.1 Quantitative Measures

We compare our approach with two alternative methods: statistical
metadata [1] and histogram equalization [2]. Similar to our method,
both alternatives adapt a colormap to the data by moving the
parametric positions. To evaluate the ability of the methods to reveal
gradual spatial variations, we introduce a quantitative measure and
conduct a comparison analysis with the alternatives.
Measure. In our study, we refer to gradual spatial variations as
continuous data value transitions between different materials or
local regions. The higher the more local variations hidden in
the data should be resolved in the color-encoded visualization.
Motivated by the pattern perception task introduced in [24], we
formulate a metric called variation dissimilarity, which measures
the dissimilarity of variations in longitudinal or latitudinal local
regions between the input data and the color-encoded visualization.

First, we sample a set of random longitudinal and latitudinal lo-
cal regions, and then calculate variation dissimilarity as the average
dissimilarity between the input and color-encoded visualizations
for all the sampled regions. The dissimilarity in each sampled
region, called the local variation dissimilarity (LoS), is defined as
the average of the Euclidean distances between the samples in the
input data and in the color-encoded visualization:

LoS =
1
S

S

∑
i=1

√
‖v̄i−υ i‖2, (11)

where v̄∗ is the data value of a sample point in a local sample
region, and S is the total number of samples within the sample
region. In order to emphasize the hidden local variations in the data,
we normalize v̄∗ into the range of [0,1] based on the maximum
and minimum values in the sampled region. The perceptual
local variation in the color-encoded visualization, determined by
comparison with its adjacent data sample, is denoted by υi and
defined below:

υi =


0 , i = 1
υi−1 +∆ε(yyyi−1,yyyi) , i > 1 & v̄i−1 ≤ v̄i
υi−1−∆ε(yyyi−1,yyyi) , i > 1 & v̄i−1 > v̄i,

(12)

where yyyi is the 3D CIELAB color of vi in the adapted colormap, and
∆ε is the CIEDE2000 distance [46] between every two samples.
Variation dissimilarity is calculated as the average of LoS on all
sampled regions, and is equal to zero when the spatial variations
in the color-encoded data are the same as those in the original
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Fig. 8: We measure the effectiveness of our method using 16 datasets encoded by eight colormaps. (a) The selected colormaps contain
different colormap properties. (b) The 16 datasets are either synthetic or scientific 2D scalar fields with a variety of data distributions;
at the bottom of each color-encoded dataset, we show the corresponding f (horizontal) versus f ′ (vertical) image to illustrate the
relationship between the data values and their gradients.

data. For each colormap, the smaller the variation dissimilarity, the
stronger its ability to reveal local spatial variations.
Colormap. We used eight continuous colormaps for the evaluation,
including three perceptual linear colormaps (gray, viridis, inferno),
two sequential colormaps (blue, afmhot), one diverging colormap
(coolwarm), one spiral colormap (cubehelix), and one fully sat-
urated hue colormap (rainbow). The selected colormaps have
different properties in luminance and chroma channels. Fig. 8(a)
shows the colormaps and their corresponding CIELAB components.

Data. We selected 16 datasets for the quantitative comparison,
including 11 synthetic datasets and five scientific datasets. We
generated the synthetic datasets either by common functions
(Gaussian-filtered circle (D1), function z = (1−x2 +y3)e−(x

2+y2)/2

(D8), digital elevation from Perlin noise [24] (D13)) or the testing
functions introduced in [41] (concave gradient function (D2),
little bit variation function (D3), saddle function (D4), steep
threshold variation function (D5), frequency variation function
(D6), ridge and valley lines (D7), ripples from Langermann
Function (D9,D10)). The scientific datasets were provided by
our domain experts: CT data of the lower extremity (D11), side
view of UAV electromagnetic radiation (D12), positron emission
tomography of the torso (D14), ocean velocity magnitude (D15),
and ocean salinity (D16).

Our testing datasets cover a broad diversity of data distributions,
aiming to decrease biases caused by specific data and gradient
distributions. For example, D1-D8 have approximately uniform data
distribution, while D9-D12 and D14-D16 are unevenly distributed
with large quantities of data values distributed in a relatively small

data range. All the experimental datasets are represented in Fig. 8(b)
encoded by a viridis colormap. Below each color-encoded data,
we show the corresponding f ′ versus f plots to illustrate the
relationship between the data values and gradients.
Procedure. Based on the colormaps and datasets, we produced
16× 8× 3 = 384 color-encoded visualizations by our method,
histogram equalization [2], and statistical metadata [1]. The results
from our method were produced under parameters η = 5,β =
0.0001 with 9 control points; the results of histogram equalization
were produced with 8 bins (9 control points); and those of
statistical metadata were produced under the guidance of mean
value. We assessed the ability of each method to reveal gradual
spatial variations with the variation dissimilarity measure. To
calculate variation dissimilarity, we randomly selected 150 sample
positions from each dataset, and then produced two local regions
(longitudinal and latitudinal) with 50 samples following each
sample position. In order to reduce random errors, we replicated
the sampling process five times, and each time different 150 sample
positions were generated.
Results. Fig. 9 shows the comparative bar chart, where each bar
shows the mean variation dissimilarity and corresponding 95%
confidence interval. Orange bars show the performance of our
method, blue bars show that of histogram equalization, and green
bars, statistical metadata. Lower bars indicate better performances.
Through a comparative analysis of the results, we conclude the
following:
(1) The variation dissimilarities of highly unevenly distributed data
(e.g., D9-D11) are relatively higher for all of the three methods. The
reason is that all three methods have correlations to data quantities.



SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND GRAPHICS 10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16
0

0.05

0.1

0.15

0.2

0.25

OursHistogram Equalization

Va
ria

tio
n 

D
is

si
m

ila
rit

y

Statistical Metadata (Mean)

Fig. 9: Quantitative comparison results. We illustrate the mean variation dissimilarity for each dataset and the corresponding 95%
confidence interval (CI) among the colormaps. The smaller the variation dissimilarity, the better the performance. Orange bars indicate
the performance of our method, blue ones are the results of the histogram equalization, and green ones are those of the statistical
metadata.

Fig. 10: Qualitative comparisons of the input visualization and results produced by histogram equalization [2], statistical metadata [1],
and our method. From left to right, we show five examples: D7, D12, and D14 are examples in which our method performs slightly
better than the alternatives on the variation dissimilarity measure; D11 and D15 are examples in which our method performs worse, but
visually our visualization resolves a wider range of gradients.

Thus, when more colors are shifted to the high-quantity regions,
fewer colors are left to resolve variations in the low-quantity data
range. For highly unevenly distributed data, the variations in the
low-quantity regions cannot be well resolved.
(2) Our current parameter setting is not optimal for all the
experimental datasets. As shown in Fig. 9, although our method
outperforms the alternatives on the majority of the experimental
datasets, it performs worse than the alternatives on four unevenly
distributed datasets (D9-D11 and D15). The reason is that both our
boundary-emphasis factor and balancing weight are correlated to
gradients, but different experimental datasets have dynamic ranges
of gradients. Therefore, when we emphasize the low gradients, the
high gradients in other data ranges might be overemphasized. This
disadvantage can be reduced by using our interactive operators and
controllable parameters.

Fig. 10 shows five comparative visualizations encoded by a per-

ceptually linear viridis colormap. The visually perceived variations
are not exactly the same as the quantitative measures. For example,
our method is worse than the alternatives in D11, but visually it
shows higher contrast effects. This contradiction is caused by the
fact that no human perception factors (e.g., color discriminability)
are considered in the variation dissimilarity measure. It will be an
interesting future direction to model perceptual spatial variations
mathematically in color-encoded visualizations.

6.2 User Study

Because of the aforementioned contradiction between quantitative
measures and visual effects, it is natural to ask the question:
How many spatial variations do people perceive in different
visualizations? Accordingly, we conducted a user study in a
controlled laboratory setting to assess how human subjects perceive
spatial variations in our visualization and the alternatives.
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Fig. 11: User study results. We show the average percentage of participants that perceived more spatial variations in our results with 95%
confidence intervals compared with alternatives. (a)-(c) show different statistics, including an overview of all the visualizations with a
violin graph (a), statistical analysis from perspectives of each colormap (b), and each dataset (c). Blue graphics illustrate comparisons to
the results produced by histogram equalization (abbreviated as “Ours/HE”) [2], while green graphics indicate comparisons to statistical
metadata (abbreviated as “Ours/Mean”) [1]. Results above the orange dashed lines correspond to cases where the spatial variations were
easier to perceive in our method by the majority of the participants.

Task. Each participant was required to choose a color-encoded
visualization with more perceived spatial variations from two
side-by-side visualizations: one produced by our method, and the
other produced by either histogram equalization [2] or statistical
metadata [1].

Participants. We recruited 25 participants (12 males and 13
females), all Computer Science majors, from the local university.
Participants first attended a color blindness test with 14 Ishihara
plates, and all participants recognized the plates with accuracy
higher than 85%. In our experiment, participants were seated at
a distance of approximately 60cm from a 23.8-inch monitor with
a resolution of 1920x1080, in a constantly illuminated room. The
horizontal visual angle of one off-center stimuli was approximately
15.9 degrees. After the experiment, each participant received a
reward of $7.25.

Procedure. There are three main steps in our experiment: (1) a
training process to introduce the experimental task; (2) the main
section of the experiment; and (3) a short interview after the study
to help analyze the results. All the experimental visualizations can
be found in our supplementary material.

During the main experiment, each participant was shown 128
pairs of visualizations, where one was produced by our method
and the other was produced by histogram equalization. After a
two-day break, each participant was shown another 128 pairs of
visualizations, where one was ours and the other was produced
by statistical metadata. In order to avoid learning effects, all pairs
were displayed in a random order, and the positions of the two
visualizations in each pair were randomly set. Participants were
required to select the visualization that revealed more perceived
spatial variations. Their response time and selection were recorded.
In total, each participant took about 45 minutes to complete the
main experiments (without considering the two-day break) on
average (min: 22 minutes; max: 94 minutes).

Results. We collected 6,400 valid results in the experiments,
including 3,200 for our method compared with histogram equal-
ization (“Ours/HE”) and 3,200 for our method compared with
statistical metadata (“Ours/Mean”). The results are summarized
in Fig. 11. We show the average percentage of participants that
perceived more spatial variations in our results with 95% confidence
intervals. Values above the orange dashed lines (equal to 50%)
indicate cases where the majority of participants perceived more
spatial variations in our method.

Fig. 11(a) demonstrates the overall percentage distribution
from all the visualizations. The majority of participants perceived
more spatial variations in our visualizations compared with the
alternatives, with the advantages more obvious compared to
histogram equalization (avg: 84.7%) than statistical metadata (avg:
62.1%). To study the influence of different colormaps and data on
the performance of our method, we further analyze the average
percentage separately for colormaps and data:
(1) As shown in Fig. 11(b), our method outperforms the alternatives
for all the experimental colormaps. Though the colormaps have
different properties (linear or nonlinear luminance, and a variety
of chromatic distribution), our results do not show significant
differences among them (“Ours/HE”: around 80%; “Ours/Mean”:
60%), indicating the robustness of our method to the variety of
colormap properties.
(2) As shown in Fig. 11(c), our method performs better than
histogram equalization [2], but shows comparative results to
statistical metadata [1]. The fluctuating bars indicate that all three
methods are susceptible to data distributions. To overcome this
issue, interactive functionalities should be provided as an auxiliary
means for automatic color design tools.

6.3 Domain Scientist Feedback
To evaluate the effectiveness and usefulness of our algorithm in the
scientific community, we invited five domain experts to answer a
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Fig. 12: Visualizing ocean salinity with different colormaps. (a) A blue colormap used by domain scientists, where the boundary
characteristics in the highlighted areas are not clearly revealed. (b) Colormap produced by our domain expert, who limited the data
range between 31 and 41 psu. (c) Colormap produced by applying histogram equalization [2] to shift the input colormap. (d) Colormap
generated by adjusting the input with our method.

five-point Likert scale questionnaire on different evaluation goals.
We presented the experts with two categories of questions:
• Comparison with alternatives: Does the left visualization

reveal more reasonable data variations than the right one?
• ROI exploration: Do you think the ROI tool has provided an

appropriate control for the colormap optimization?
Besides answering the questionnaire, the domain experts were

required to label exemplar regions that revealed more variations
and explain their reasons in one to five sentences.
Case I: Computer Tomography Data. Fig. 1 shows different
colormap visualizations of CT data of the lower extremity (D11).
Fig. 1(a) shows the visualization encoded by a gray colormap. By
applying histogram equalization [2] to shift the input colormap
in Fig. 1(c), more colors are moved to the low data range,
and fewer colors are used to encode larger values (especially
those between 2392 and 4784 in Fig. 1(c)). Consequently, noises
are overemphasized and gradual variations inside the bones are
suppressed. In our visualization, more colors are shifted to the data
ranges with stronger boundaries, thus the spatial variations inside
the bones are clearly resolved.

We invited E6 and an orthopedic surgeon with 12 years of
clinical experience in sports injuries (E7) to evaluate the four
visualizations in Fig. 1. Each expert was required to answer six
comparison with alternative questions, label supportive regions, and
explain reasons for their answers. Compared with the alternatives,
both E6 and E7 voted for our result. E6 thought that our result
“resolves the fat pads between the patellar and shin bone, as well
as the high-density joint cartilage” and shows the low density part
in the center of the patellar.” E7 held that our result “resolves
both bone structure and soft tissues, thus is more reasonable.”
Furthermore, E7 expressed great interest in collaborating with us
on quick diagnosis of ACL injuries with CT images.
Case II: Ocean Salinity. Fig. 12 shows visualizations of ocean
salinity data (D16) simulated with the high-resolution global ocean

circulation model (MPIOM TP6M) at a depth of 75 m. As the
histogram at the bottom of each colormap shows, salinity dissolved
in the ocean is unevenly distributed: most values are in a range from
31 to 34 psu, and very low salinity values are located in the Baltic
Sea and Black Sea (indicated by red arrows). Therefore, the global
spatial variations are hard to see with the sequential blue colormap
in Fig. 12(a). Fig. 12(b) illustrates the visualization manually
tuned by E1, in which values lower than 31 psu are clipped in
order to resolve the structures in a higher data range. By applying
histogram equalization [2] to adjust the input colormap, more colors
are moved to values between 31 and 36 (see Figure. 12(c)), but
the value transitions in the low-salinity part disappear. Fig. 12(d)
illustrates our adjusted visualization.

We invited E1 and E5 to evaluate the four visualizations. Each
expert was required to answer six comparison with alternative
questions. According to E1 and E5’s feedback, the input visualiza-
tion in Fig. 12(a) is insufficient to resolve variations between the
different water masses, and thus it is difficult to identify the global
flow patterns. Compared with histogram equalization, both E1 and
E5 voted for our result, for the reason that “the Black Sea and
the Baltic Sea are visible, and all large scale patterns, as well as
local variations within large ocean basins, can be depicted”. Even
though E1 chose our result as a better one, he mentioned that in
our visualization, “areas with lower salinity are problematic (e.g.,
the North of the Pacific Ocean).” Because of this, E1 voted for his
manual adjustment compared with our visualization, and E5 held
a neutral opinion on the comparison. It is unavoidable that when
we move more colors into specific data ranges, fewer colors are
assigned to the remaining ranges. Our method provides a starting
point for understanding data variation in the global data range, but
an intuitive ROI exploration is necessary for further analysis.

Case III: Radiotherapy Dose. Visualizations of specific regions
for radiotherapy dose data, captured from a head cancer patient, are
illustrated in Fig. 6. The radiotherapy dose data is superimposed
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Fig. 13: Visualizations of the temperature variable in the Hurricane Isabel dataset1. (a) to (f) show visualizations of the 1st, 8th, 16th,
24th, 32nd, 40th, and 48th time steps, respectively. Top: the input visualizations encoded by a gray colormap. Bottom: our visualizations
(η = 5, β = 0.01).

on an anatomical CT head image with 75% opacity. We invited
E2 and E6 to assess the effectiveness and usefulness of our ROI
exploration tool. Two comparison with alternative questions and
one ROI exploration question were posed to them.

E1 mentioned that “real” high values within the tumor region
can be observed in our visualization, as well as significant radiations
around the right eye of the patient. E6 pointed out that in
our visualization, the boundary of the tumor region was more
discernible. For our visualization under a ROI constraint in Fig. 6(c),
E2 expressed that “It is really nice what you can do within a ROI”
and “looking only at the high values area is great, since ‘true’ high
values within the specified area can be observed.” E6 mentioned
that the ROI result helped her focus on data variations inside the
tumor region. Furthermore, E2 commented that a doctor would
not like the useless homogeneity up to 38 and a tool for hiding
uninteresting areas will be useful.

6.4 Extension in Time-Varying 2D Scalar Data

Here we demonstrate an application to time-varying 2D scalar data.
To encode time-varying 2D scalar fields with colors, one typical
solution is to encode data values in each time step separately with a
colormap. Another solution is to encode data values in all time steps
with a colormap (global data normalization). Since data ranges
may change across different time steps, the former solution cannot
ensure consistent value perception, e.g., the same color might be
used to encode different values in each time step. Though the latter
solution enables consistent value perception across time steps, it
may result in higher dynamic ranges of values, especially when the
data ranges change dramatically across different time steps. Our
method enables color adjustment for time-varying 2D scalar data
with highly dynamic data ranges.

When applying our method, the core issue is how to define the
boundary probability map and local difference. One brute force
way is to calculate them in each time step separately and average
the values. However, this cannot measure global spatial structures
through time series. Instead, we propose organizing the 2D time-
varying data in a 3D array by stacking each time step in the depth
direction, and then estimating a global boundary probability map
and corresponding local differences in the 3D space. Fig. 13 shows
seven time steps of the temperature variable from the Hurricane
Isabel dataset1, encoded by a gray colormap and our adjusted
colormap in each row. Compared with the input visualizations, our
visualizations emphasize the hidden gradients in the middle data

ranges without losing the gradients in the lower data range, but the
gradients in the higher data range are de-emphasized.

7 CONCLUSION

We presented a data-driven colormap adjustment method for explor-
ing continuous spatial variations in 2D scalar field visualization. We
conducted a pilot study under the guidance of six domain experts,
and summarized three requirements for an automated colormap
adjustment method. Following these requirements, we formulated
the colormap adjustment as a nonlinear constrained optimization
problem, by integrating Kindlmann’s boundary model [9] to reveal
spatial variations and a minimal shifting scheme to preserve features
of the input colormap. We also developed an effective GPU-based
implementation to enable interactive exploration. To assess the
ability of our method to resolve gradual spatial variations, we
conducted a thorough qualitative and quantitative analysis, based
on data with different distributions and colormaps with a variety of
properties.

Limitations: In this study, we concentrated on colormap adjust-
ment by tuning the parametric positions of control points. Due
to the limited number of distinct colors in the input colormap,
when we shift more colors to emphasize the spatial structures
in specific data ranges, fewer colors will be left to represent
features in other data ranges. This issue becomes more severe
if our highlighted spatial structures are not located in the users’
regions-of-interests (e.g., the Baltic Sea in Fig. 12). Our ROI
interactive functionality is a way to address this problem, but it
requires manual operations. Two possible automatic solutions are
either introducing visibility analysis [47], or adding new colors
into the colormap adjustment framework [28], [32]. We provided a
fidelity term to avoid significant color changes between the input
and adjusted colormaps, whose effect on the final visualization
can be tuned through a balancing weight. However, it might be
difficult for users to quickly understand how to set an appropriate
balancing weight for the fidelity term. A possible future solution
is to introduce JND (Just Noticeable Difference) [48] into the
fidelity term. If color changes are within the JNDs, users will not
be concerned about the color changes in the process of spatial
variation exploration.

Future Work: Automatic colormap adjustment in visualization is
a challenging and unsolved problem. There exist many interesting

1. This dataset was produced by the Weather Research and Forecast (WRF)
model, courtesy of NCAR and the U.S. National Science Foundation (NSF).
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topics in this field. We summarize several future research directions
below. First, we demonstrated the extensions of our approach in
2D time-variant data. It will be interesting to incorporate problem-
specific constraints (such as dynamic opacity and light) into the
colormap adjustment process for wider and more complex appli-
cations (e.g., 3D scalar fields). Second, we designed our method
for participants with normal color vision, but without consideration
of color vision deficiencies (CVDs). We leave it as future work to
customize colormaps for CVDs by adding optimization constraints
on colormaps (e.g., perceptual uniformity [22]). Third, our study
focuses on a single visual task – exploring gradual spatial variations.
We would like to extend this framework to support more applicable
analytical tasks in the future, such as quantity estimation [24], value
comparison [2], feature detection [7], and graphical inference [40].
Fourth, colormap design for dynamical exploration of multi-scale
data has been addressed in several previous works [49], [50] that
introduced interactive factors (e.g., viewing direction) into the
categorical color design. How to incorporate dynamic multi-scale
explorations into a continuous color adjustment framework would
be an interesting future direction. Last but not least, incorporating
perceptual factors (e.g., JND and color distinctness) into automatic
colormap adjustment may produce more accurate visualization re-
sults. Accordingly, developing perception-driven evaluation metrics
to assess the effectiveness of automatic algorithms also deserves
further research.
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