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This supplemental material file includes five additional results for our submitted paper: (i) detailed comparisons of the automatic
lighting setup vs. the default setting across 10 tested datasets, (ii) more illumination results under different settings, (iii) engagement
checks with accompanying questions and answers, (iv) a case study comparing VIDP with existing density plot enhancement
techniques, and (v) the images of density plots used in the experiment and the associated results of each task.

Comparison Between Automatic and Default Lighting Setup. In our submitted paper, we conducted a comparative analysis of
automatic and default lighting setups using the Hertzsprung-Russell diagram dataset. Here, we present the overall variances for ten
tested datasets under both lighting setups in Table 1. The results indicate that our automatic lighting setup outperforms the default
configuration (azimuth=120°, elevation=60°) in 9 out of 10 tested datasets. Notably, even in the one dataset where the automatic
setup performed slightly worse, the difference was minimal. For details on the calculation process, the code can be found in the file
“verifying_automatic_lighting_setup.ipynb” within the “experiment.zip”.

Dataset ‘ Credit card fraud  Diabetes  Facial expressions ~ Person activity ~ Satimage Synthesisl ~ Synthesis2 ~ Synthesis3  Synthesis4  Synthesis5
Automatic lighting 0.023083 0.043872 0.018502 0.066057 0.007121  0.014273  0.045813  0.063650  0.078243  0.132787
Default lighting 0.022966 0.043474 0.018495 0.065749 0.007073  0.014240  0.045703  0.063604  0.078143  0.132795

Table 1: The overall variances for the ten tested datasets under automatic and default lighting setups. Higher variances are highlighted with a red background.

Ilumination Results. In our submitted paper, we conduct a parameter analysis employing a light background alongside a
perceptually uniform colormap, Magma [5]. Here, we provide additional illumination results under the dark versions of a
perceptually uniform colormap Plasma (Figure 1) and a single-hue sequential colormap Reds (Figure 2). Note that, we use positive
¢ to lighten structures in the dark background. In addition, we provide illumination results on the real-world datasets used in our
experiment and find that 1 = 5,¢ = —25 achieves a good balance between the visibility of outliers and color distortion.

Engagement Checks. In our user study, we included an engagement check trial for each task. Figure 8 displays the screenshots of
these trials along with the corresponding questions, where the answers are readily apparent.

Additional Case Study: Diamonds. We collected this classic dataset from Kaggle [6], which contains the records of 53,940
diamonds. By mapping the length and price properties to the x and y axes and encoding the result using the Plasma color map [5],
we obtained the scatterplot in Figure 9a. It clearly shows the outliers in the red box but obscures high-density regions due to
overplotting. As shown in Figure 9b-9f, details of the highest-density region (green box) can be discerned in all techniques except
SPP. However, Figure 9d shows IDP would produce shading on one side of the ridge and interfere with the density estimation,
while Figure 9e shows SUP would introduce artificial white colors, preventing to perceive absolute density values accurately. In
contrast, VIDP changed the luminance but did not result in conspicuous artifacts (Figure 9f). As for the outliers in the red box, we
can find them in Figure 9c,9¢,9f, but not in Figure 9b,9d. Nevertheless, SSP and SUP paid the price of color ambiguity [7] to reveal
outliers, while our VIDP preserved the relative density in terms of color. Overall, our VIDP technique is still effective even in a
dark background.

Density Plots in the Evaluation. In the end, we present the density plot images used in our controlled user study of ten datasets,
comprising five real-world and five synthetic ones. The abbreviations for three existing techniques and our technique used to
generate these images are as follows:

e X. Chen, H. Bao are with Shandong University, CN. E-mail: {chenxinl99634,bhuaiwei}@ gmail.com.

e K. Lu is with Renmin University of China, CN. E-mail: lukecheng0407 @ gmail.com

e J. Jo is with Sungkyunkwan University, KR. E-mail: jmjo @ skku.edu.

e C.-W. Fu is with the Chinese University of Hong Kong, Hong Kong, CN. Email: cwfu@cse.cuhk.edu.hk

e J.-D. Fekete is with University Paris-Saclay, CNRS, Inria, LISN, FR. E-mail: Jean-Daniel. Fekete @inria.fr

* Y. Wang is with Renmin University of China, CN, and is the corresponding author. E-mail: wang.yh@ruc.edu.cn

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx. 201x. For information on obtaining
reprints of this article, please send e-mail to: reprints@ieee.org. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx



* CDP: Continuous density plot

 IDP: Illuminated Density Plot [§]

* SUP: Sunspot plot [10]

* VIDP: Visualization-driven Illuminated Density Plot (Ours)

In addition, the average error rates of individual datasets for the three tasks (density comparison (T1), density estimation (T2), and
outlier identification (T3)) are shown below the corresponding images. The technique with the lowest error rate among the four is
highlighted in bold. As we can see, VIDP performs best in 9, 5, and 6 of the 10 datasets for T1, T2, and T3, respectively. When it

is not ranked first, it consistently ranks second. Such results indicate the robustness of our approach across different datasets.

The full evaluation results, including the user study website and the analysis code, are available at https://osf.io/5xpsw/

?view_only=0445046dad574d4a90d7138e94547ada.
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Fig. 1: Parameter analysis on the Hertzsprung-Russell diagram dataset [1] using the perceptually uniform colormap, Plasma.
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Fig. 2: Parameter analysis on the Hertzsprung-Russell diagram dataset [1] using the single-hue sequential colormap, Reds.
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Fig. 3: The effects of the parameters on the Credit card fraud dataset [3].
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Fig. 4: The effects of the parameters on the Diabetes dataset [2].
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Fig. 5: The effects of the parameters on the Facial expressions dataset [4].
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Fig. 6: The effects of the parameters on the Person Activity dataset [11].
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Fig. 7: The effects of the parameters on the Satimage dataset [9].
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Fig. 8: Screenshots of engagement check trials for the three tasks in our user study and the corresponding questions we asked participants.
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(e) SUP (f) VIDP

Fig. 9: Density plots of the classic diamonds dataset [6] in a dark background. (a) The original scatterplot clearly shows outliers (red box) but obscures the highest-density
region (green box). (b-f) Results generated by continuous density plot (CDP), Splatterplot (SSP), illuminated density plot (IDP), sunspot plot (SUP), and our visualization-
driven illuminated density plot (VIDP).
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