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Authoring Data-Driven Chart Animations through
Direct Manipulation

Yuancheng Shen* (i), Yue Zhao* (), Yunhai Wang

Abstract—We present an authoring tool, called CAST+ (Canis
Studio Plus), that enables the interactive creation of chart
animations through the direct manipulation of keyframes. It
introduces the visual specification of chart animations consisting
of keyframes that can be played sequentially or simultaneously,
and animation parameters (e.g., duration, delay). Building on
Canis [1], a declarative chart animation grammar that leverages
data-enriched SVG charts, CAST+ supports auto-completion for
constructing both keyframes and keyframe sequences. It also
enables users to refine the animation specification (e.g., aligning
keyframes across tracks to play them together, adjusting delay)
with direct manipulation. We report a user study conducted
to assess the visual specification and system usability with its
initial version. We enhanced the system’s expressiveness and
usability: CAST+ now supports the animation of multiple types
of visual marks in the same keyframe group with new auto-
completion algorithms based on generalized selection. This enables
the creation of more expressive animations, while reducing the
number of interactions needed to create comparable animations.

We present a gallery of examples and four usage scenarios to
demonstrate the expressiveness of CAST+. Finally, we discuss
the limitations, comparison, and potentials of CAST+ as well as
directions for future research.

Index Terms—Chart animation, chart animation authoring,
chart animation specification, data visualization, interactive system.

I. INTRODUCTION

Chart animations are a powerful means for communicat-
ing data-driven insights: they are effective in attracting and
retaining audiences’ attention. Hans Rosling’s animated bubble
charts [2], [3] and numerous compelling examples [4], [5]
from practitioners gained huge popularity from the public,
demonstrating a competitive advantage over static charts in
increasing audience engagement.

Today, several commercial and research tools allow people
without programming skills to create chart animations. However,
most interactive tools for authoring chart animations (e.g.,
DataClips [6], Flourish [7], Adobe Stock [8]) ask users to
choose from a set of predefined templates. They cover only
a small number of standard chart types, such as bar charts,
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line charts, and pie charts, and provide limited support for
customization in sequencing keyframes and pacing between
them. As a result, these tools preclude expressive chart
animations, preventing users from leveraging the wide range
of charts that can be created with bespoke chart creation tools.
Although general animation creation tools (e.g., Adobe After
Effects [9]) can be used to author expressive chart animations,
they often require tedious and time-consuming manipulation
due to the lack of data-driven abstractions.

Besides interactive tools, people can use programming
libraries like D3 [10] and gganimate [11] to author highly
sophisticated chart animations. This approach, however, is only
accessible to people with advanced programming skills and
requires significant efforts in fine-tuning the animation factors,
such as transition and pacing. To address this issue, Ge et al.
recently introduced Canis [1], the first high-level language for
the declarative specification of chart animations. In contrast to
D3, Canis employs a simpler syntax for creating expressive
animations by focusing on chart animations and leveraging
data-enriched scalable vector graphics (SVG) charts as the
input. However, it still requires people to write code to define
keyframes and handle some timing factors.

In a previous paper [12], we presented CAST (Canis
Studio), a web-based authoring tool that enables people to
create chart animations with a wide range of chart designs
without programming. Building on Canis, CAST works with
the charts created by existing chart construction tools. To
facilitate the authoring and understanding of chart animations,
it introduces a visual specification approach that explicitly
represents keyframe-based chart animations with the major
visual components: keyframes. Combined with a sequence-
based timeline and storyboard, the specifications consist of
keyframes that can be played sequentially or simultaneously,
and animation parameters (e.g., duration, delay). To support the
easy construction of keyframe-based animations, CAST offers
data-driven auto-completion that suggests candidates for both
keyframes and keyframe sequences. Specifically, CAST takes
data-enriched SVG charts as the input and enables authors to
craft animations using three key features: keyframe construction,
keyframe sequencing, and keyframe synchronizing. After
constructing keyframes and sequences with auto-completion
through a few selection operations, authors can refine the
animation specification (e.g., aligning keyframes across tracks
to play them together, adjusting gaps between frames) with
direct manipulation. The easy-to-understand visual specification
of chart animations and this simple form of user interaction
powered by auto-completion make CAST accessible to novices
who cannot program chart animations.
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Fig. 1: CAST+ enables the interactive construction of a variety of data-driven chart animations. Its interface consists of four
panels: (a) data panel; (b) chart panel; (c) animation panel; and (d) keyframe panel. In this case, the system is about halfway
through the animation of a ‘diverging bar chart,’ showing the distribution of the population by gender in different age groups.
Please visit the CAST+ website (https://canisstudio.github.io/CASTPlus) to see the animation.

This paper presents CAST+ (Canis Studio Plus; Figure 1)
that enhances the old system’s expressiveness and enables the
easier creation of animations featuring diverse visual marks
within a keyframe group. We accomplish this by extending the
Canis grammar and enhancing the auto-completion algorithms
based on generalized selection [13]. This results in fewer
interactions to achieve comparable animations and allows for
the production of more expressive ones. In addition, we refined
the user interface and interaction to provide more consistent
interactions for both individual keyframes and keyframe groups
and to offer data-driven timing specifications.

In summary, the main contributions of this work are:

« We introduce a visual specification for chart animations that
explicitly represents keyframe-based animations, facilitating
the direct manipulation of keyframes for authoring chart
animations.

« Based on our visual specification, we design and develop
CAST+, a web-based system that enables the interactive
construction of chart animations. CAST+ enhances auto-
completion by employing generalized selection to reduce
the effort required in constructing keyframes and keyframe
sequences, and direct manipulation to facilitate the easy
specification of chart animations.

« We present three forms of evaluations. Our gallery (Figure 2)
demonstrates the expressiveness of CAST+. Our two-part
user study with 18 participants assesses if participants could
learn and understand our visual specification, and evaluates
the learnability and usability using CAST, the initial version

of the system. A comparison of keyframe specification
interactions between CAST and CAST+ demonstrates the
improvements of CAST+ in reducing low-level interactions
and minimizing users’ cognitive load.

II. RELATED WORK

CAST+ builds on visualization system research spanning
perceptual guidelines, tools for authoring chart animations,
visual programming language, and the underlying chart ani-
mation language, Canis [1]. In this section, we focus on the
creation of chart animations and the reader can refer to previous
studies [14]-[16] for the effectiveness of chart animations.

A. Perception of Animations

A complete review of general perception of animations is
beyond the scope of this paper (refer to Tversky et al. [17]
and Chevalier et al. [18]). We restrict our discussion to the
perception of data-driven chart animations, where motion is
used as a preattentive visualization technique [19]. Previous
studies show that appropriately-designed animations not only
reveal complex data relations (e.g., causal relations [20]) but
also support filtering and brushing [21] as well as facilitate
decision making [22].

Following the Gestalt law of common fate [23], the animated
visual marks moving with the same velocity are perceived as
the same group. A few studies investigated the human abilities
in perceiving the changes of speed [24], direction [25], or
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Fig. 2: Eight example chart animations demonstrating the expressiveness of CAST+, where the ones in (a-g) can be created
by both CAST and CAST+. We used the first seven chart animations (a-g) as tasks in our user study (Section IV). More
examples can be found with the input charts, descriptions, and videos illustrating the creation processes in the website

(https://canisstudio.github.io/CASTPlus).

both [26] in animated visualization. Weiskopf [27] found that
color plays an important role in the perception of motion
direction and velocity. Romat et al. [28] introduced three
motion variables (speed, frequency, and pattern) for defining
animated edge textures in node-link diagrams and assessed
their effectiveness. Recently, Chalbi [29] suggested that not
only the motion but also the change in luminance and size
all have a strong grouping effect. Although CAST+ does not
fully guarantee the perceptual effectiveness of chart animations,
we were mindful about the previous research on animation
perception: CAST+’s auto-completion ensures the perceptual
grouping by analyzing the visually encoded data attributes.

B. Chart Animation Design Space

Animation is a promising way for conveying the changes in
visualizations, although its effectiveness is still controversial for
data analysis [17]. To promote effective animation design, a few
guidelines have been proposed. Tversky et al. [17] suggest two
high-level principles: congruence and apprehension, namely,
requiring that the animation should be accurately perceived with
respect to user’s mental representation. While adhering to these
principles, Heer and Robertson [13] and Fisher [30] recommend
a few specific design guidelines for crafting effective chart
animations including “consistent semantic-syntactic mappings”
and “meaningful motion.” Through carefully examining a
corpus of data videos, Amini et al. [4] characterize the elemen-
tal units of data videos as the combinations of visualization
types X animation types. More recently, Thompson et al. [5]
characterize the design space by four dimensions: object,
graphic, data, and timing. The object dimension refers to which
marks undergo an animation, the graphic and data dimensions

describe the change of visual states of the marks, and the time
dimension specifies the pace sequences of the animation. These
dimensions can be combined into compositions of animated
transitions and pacing techniques. While not perfectly aligned
with Thompson et al.’s design space, CAST+’s design can
be projected onto their space. CAST+ enables users to select
graphic objects, such as marks, (title) text, axis, and legend, to
be animated, and use them to construct keyframes and keyframe
sequences by data-driven auto-completion. In addition, users
can specify the animation effects (e.g., appear) and modify the
timing of animation (e.g., duration, delay).

The effectiveness of different aspects of animation transition
design (e.g., staging, staggering, and trajectories) have also
been studied. Bartram and Ware [21] find that objects with
similar motions are preattentively grouped even if they are
otherwise dissimilar. Heer and Robertson [13] show that
carefully designed staged animation improves understanding of
the underlying data, while complex multi-stage transitions are
less favored. Shanmugasundaram et al. [31] find that smooth
animation transitions help in maintaining the connectivity and
overall structure in node-link diagrams. Dragicevic et al. [32]
compare the effects of different temporal distortion strategies on
object tracking and suggest that slow-in/slow-out outperforms
others, although the differences depend on the animation
transition types. Chevalier et al. [33] study another pacing
technique, staggering, where the start time of moving elements
is delayed incrementally and find that it has a negligible, or
even negative impact on multiple objects tracking performance.
Other studies find that bundled trajectories or smooth non-
linear ones [34], [35] are more effective than straight ones
in some conditions. CAST+ is designed to help users easily
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follow these guidelines with a simple and intuitive interface.

C. Chart Animation Authoring Tool

A survey of visualization authoring tools is referred to
Grammel et al. [36] and we focus on the authoring tools for
chart animations, which can be classified into two categories:
programming and non-programming tools.

Programming Tools. A few animation libraries [37], [38]
have been developed for creating general animations, but the
ones specifically for chart animations are scarce. One striking
example is D3 [10], which provides a transition operator and
a collection of interpolation functions for animating the charts
made by D3 itself. By exploiting GPU hardware rendering,
StarDust [39] produces animations with better performance
while providing a similar API as D3. Such expressive low-level
grammars facilitates the creation of highly customized anima-
tions, however, the resulting verbose specification impedes
rapid authoring.

In contrast, gganimate [40] provides a high-level grammar
for easily creating chart animations. However, it can only
animate the charts created by ggplot2 [41] with limited types
of animation transitions. By separating the chart animation
from the creation step, the recently proposed high-level chart
animation language, Canis [1], enables the concise, high-level
specification of chart animations for the input of any data-
enriched SVG (dSVG) chart. Likewise, Gemini [42] provides a
declarative grammar for specifying chart animations but focuses
on creating staged animations between keyframes. Gemini? [43]
automatically recommends intermediate keyframes, which
significantly simplifies the animation specification process.
Animated Vega-Lite [44], an extension of Vega-Lite [45],
provides a unified abstraction for static, interactive, and
animated visualizations. By modeling animated visualizations
as time-varying data queries, authors can seamlessly specify or
move between static, interactive, and animated visualizations.
However, these tools still have a steep learning curve, especially
for people who lack programming skills. To address this issue,
CAST+ takes a visual specification approach for interactive
chart animation specification by building and extending on top
of Canis.

Non-Programming Tools. As discussed by Thompson et al. [5],
there are three approaches for animation authoring: keyframing,
procedural and template-based animations. The procedural
animations are mainly used for showing simulated processes,
while most existing interactive authoring tools are based on
templates. DataClips [6] allows non-experts to craft data
videos by composing a sequence of predefined combinations
of visualization types and animation types. Likewise, Adobe
Stock [8] provides a set of data-driven motion graphics
templates, while Flourish [7] further allows for integrating
audio into chart animations. Such tools enable non-experts to
create chart animations, however, their expressiveness is limited
to the templates. Specifically, they support neither customizing
the pacing or animation effects nor authoring animations for
the visualizations beyond the predefined types.

In contrast, keyframe-based tools, like Adobe After Ef-
fects [9], allow for precise control of visual properties and

behaviors of visual elements with keyframes. Therefore, they
are often used by experienced designers for crafting compelling
chart animations. However, such tools do not provide data-
driven abstractions of chart animations (e.g., their keyframes
use absolute timing), resulting in a time-consuming and error-
prone manual process to specify different chart states and each
keyframe’s timing.

The most closely related work is Data Animator [46],
designed for authoring keyframe-based animations through
direct manipulation. However, it is limited to input charts
created by Data Illustrator [47] and focuses on specifying
animated transitions between keyframes rather than animations
of a chart. Besides, it has three major differences from CAST+
in keyframe manipulation: (1) it uses an abstract representation
(i.e., a circle) of a keyframe on the timeline, while CAST+ has
an explicit representation; (2) it requires users to pre-define all
keyframes for generating automated transitions between two
adjacent ones; and (3) it does not support semantic zooming,
essential for displaying numerous keyframes at different levels
of detail. In contrast, CAST+ allows for visually specifying
animations to the charts created by any visualization tools
and provides data-driven auto-completion based on generalized
selection [48] for authoring expressive chart animations and
semantic zooming for exploring numerous keyframes.

D. Visual Specifications

The visual specification approach describes an abstract
description of an object or a system by using a graphical
vocabulary. Thus, it makes specification easier and more
accessible with no need to know the details of how the system
works [49]. The most notable example is Unified Modelling
Language (UML) [50], which provides a variety of visual
objects for modeling software systems.

Many visualization systems offer interactive visual specifica-
tions of visualization and analysis operations. Polaris [51] and
its commercial successor Tableau [52] allow users to define
visual specifications via drag-and-drop operations, namely,
placing data fields onto “shelves” corresponding to visual
encodings such as position, size, shape, or color. iVoLVER [53]
provides an interactive visual language that enables users to
acquire data from various sources and create interactive visual-
izations and animations. Lyra [54] allows visual specification
of flexible custom visualizations such as force-directed layouts,
trees and word clouds. Wrangler [55] takes a further step
that can automatically suggest applicable data transformations
based on the input visual specifications. Likewise, CAST+
also combines direct manipulation with automatic inference
of relevant visual marks or keyframes, enabling designers to
rapidly author desired chart animations.

E. Canis: CAST+’s Underlying Grammar

CAST+ is built on Canis [1], a high-level grammar to
specify chart animations. Canis specifications can be used
to describe a variety of animations of data-enriched SVG
charts. Here, we briefly explain Canis because we refer
to its core components while explaining the design and
implementation of CAST+. Please refer to the Canis website
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"effects": [{ "type":
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Fig. 3: An example animation specified by Canis. (a) The Canis specification and (b) the resulted animation started with fading
in the title, followed by the staggering animation of dots according to their associated data values in an ascending order.

(https://chartanimation.github.io/canis) for the complete speci-
fications and example animations. Later in Section III-F, we
will briefly explain how we extend Canis to enable interactive
specifications of chart animations.

A Canis specification describes the animation of data-
enriched SVG charts with a sequence of keyframes defined by
animation units aniunits. The input charts are embedded with
the source data, and each aniunit is defined by a quadruple:

ey

aniunit := (selector, timing, grouping, ef fects),

where the selector is used to select marks to be animated
from the input charts using the W3C Selectors API [56], and
timing, grouping, and effect are all properties of a keyframe.
The marks selected via the selector operator can be divided
into a set of elementary units, referred to as mark units, by
grouping them with categorical or nominal data attributes. The
visual properties of the marks within the same mark unit update
together during the animation. Note that grouping can be nested
and thus a mark unit tree can be formed, where each level is
grouped by one unique visually encoded data attribute.

Timing is defined both in aniunit and in each level of
grouping, which controls the pacing of animation. It specifies
when the animation starts using the reference (start with vs.
after the previous) and delay. While the effect component
specifies the type of animation effect, easing function, and the
duration of this effect. If not specified, Canis will automatically
apply default values (e.g., default duration = 300ms).

Figure 3 (a) shows an example of Canis specification. It
consists of two aniunits that describe the animations of the title
and dots. In the dot unit, each dot is a mark unit, and it starts
to animate a short time after the previous one started with
the “circle” effect, according to their “rate” value in ascending
order. The resulting animation is illustrated in Figure 3 (b).

III. CAST+

In this section, we first present our design principles for
CAST+ and introduce its visual specifications. Next, we
describe its user interface and interactions along with four
usage scenarios, while explaining the enhancements we made in
CAST+. We then detail how CAST+ supports auto-completion
for constructing keyframes and keyframe sequences. Finally, we
provide three additional techniques employed for interactivity
and better user experience, as well as implementation details.

A. Design Principles

With CAST+, we aim to enable people who lack program-
ming skills to easily create chart animations through keyframe
direct manipulation with a wide range of chart designs. To
this end, we settled on the following three guiding design
principles:

DP1I: Provide a literal representation for keyframes in a chart
animation. Existing keyframe-based systems represent anima-
tions in an abstract manner in a purely timeline-based interface.
For example, in Adobe After Effects and Adobe Premiere,
a keyframe is represented as a diamond in a timeline. This
abstract representation makes it nearly impossible for people to
understand the animation they created without previewing. In
contrast, to foster the understanding of specifications for chart
animation, CAST+ uses explicit visual elements to represent
animated marks (i.e., chart elements) and animation properties
(e.g., timing, animation effects). Like After Effects, Data
Animator [5] represents a keyframe using abstract/symbolic
diamonds and circles on the timeline.

DP2: Use grouping and semantic zooming to support
keyframe and keyframe sequence reading. While a literal
representation provides many benefits for end-users, it poses
challenges when dealing with a large number of marks and
keyframes. To mitigate this issue, we support keyframe group-
ing, which allows for nesting and grouping at each level based
on a unique visually encoded data attribute. Additionally, we
introduce semantic zooming [57] in the animation specification
panel to ensure the visibility of visual marks while preserving
the hierarchical structures.

DP3: Use grouping and generalized selection to support
keyframe and keyframe sequence authoring. The straightfor-
ward method for constructing a keyframe involves manually
selecting all the necessary visual marks from the (dSVG)
chart. However, this fully manual process is time-consuming,
prone to errors, and becomes impractical as the number of
keyframes increases. CAST+ aims to balance flexible graphics
manipulation with procedural keyframe sequence generation
based on Canis. It enables efficient keyframe construction
through generalized selection [48], which suggests visual
marks based on the data attributes of the user-selected marks.
Additionally, CAST+ recommends specific and meaningful
keyframe sequences based on the constructed keyframes
through speculative generalized selection.
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Fig. 4: The visual representation of the animation of a map showing the polio incidence rates of the United States in 1952. The
title fades in first, then all dots animate according to their rate in an ascending order with the “circle” effect. Such animation
is represented by two keyframe groups with other animation properties including timing bars indicating delay, and iconic
representation of effect type and easing function (all effect types and easing functions are listed at the top left).

B. Visual Specifications

To improve the readability and understandability of the
animation process (DP1), we introduce visual specifications
with four components—keyframe & keyframe group, timing,
and effect—to visually convey the core aspects of animation.

Keyframe and Keyframe group. As described earlier in
Section II-E, a mark unit refers to a collection of marks man-
ually or automatically selected with the underlying ‘selector’
operator in Canis, whose visual properties are changed together
during the animation. Each keyframe contains one such mark
unit to be animated along with other units whose animations
have been completed. These mark units can be grouped and
nested based on different visually encoded data attributes, and
the level of each group is indicated using nested boxes with
different shading intensities (mimicking the treemap [58]).
These keyframes and keyframe groups convey meaningful steps
in the animation, forming a storyboard. Each keyframe and
keyframe group (in CAST+) has a header showing the chart
component (e.g., Title) or data value (e.g., 1952, AK, HI, MA)
that characterizes the animation to facilitate the understanding
of the hierarchical grouping structures. For example, as shown
in Figure 4, the animation of a scatterplot incrementally
revealing the polio incidence rates of the United States in
1952 can be represented with two keyframe groups: the first
group containing one keyframe to display the chart title and
the second group having 51 keyframes (with 48 collapsed into
an ellipsis) to show the corresponding state one at a time.

Timing: Alignment, Duration, and Delay. The relative
timing between keyframes is determined by three attributes—
position, duration time, and delay time—in the storyboard-
incorporated timeline (see the tracks within the animation
specification panel in Figure 1 (d)). The horizontal placement
of keyframes determines the order of their animations. The
adjacent keyframes play sequentially, while the keyframes
vertically aligned across multiple tracks play simultaneously
(vertical alignment is represented with a dark-gray dotted line)'.

IKeyframes and keyframe groups are equivalent in many aspects. For the
sake of simplicity, we describe only keyframes and highlight the cases where
keyframes and keyframe groups behave differently.

To map the ‘timing’ property of keyframes in Canis, CAST+
conveys the timing properties of each keyframe—duration and
delay—using timing bars. The bar width represents the time
length and bar color encodes the type (blue for duration and
orange for delay). The duration bar is placed on the right side
of each keyframe, while the delay bar is placed on the left
side of a keyframe to show the delay before the corresponding
animation starts. As a keyframe group is a logical collection
of keyframes, it does not have a duration bar: its duration is
determined by the duration of keyframes that belong to this
group. On the other hand, each keyframe group (in CAST+) can
have its own delay bar (e.g., see the tall orange bar in Figure 4).

CAST+ allows a keyframe to start before the previous
keyframe finishes. In such case, the delay bar of the next
keyframe and the duration bar of the previous keyframe will
be right-aligned, indicating a negative delay. For example,
in Figure 4, the delay bar of the second keyframe (HI) is
right-aligned with the previous keyframe (AK), conveying that
the animation for the second keyframe will start while the
first keyframe is still animating. To avoid complete occlusion
between them, the delay bar is scaled in the Y direction to be
a bit taller than the duration bar.

All keyframes in the same keyframe group share animation
properties, and thus showing all keyframes in a keyframe group
is redundant, consuming large screen space. Therefore, CAST+
shows only three (first, second, and last)2 keyframes in one
keyframe group and collapses keyframes under the ellipsis
(Figure 4). The number of the collapsed keyframes will be
labeled on the ellipsis.

Animation Effects. CAST+ maps two properties of animation
effects in Canis—effect type and easing function—by using
icons. It currently provides eight types of effects (e.g., fade,
wipe) and four types of easing (Figure 4) drawn from commonly
used tools like PowerPoint. We note that it is straightforward
to add additional translation effects and easing functions.

C. User Interface and Interaction
The CAST+ user interface consists of a data panel, a
chart panel, an animation preview panel, and an animation

2CAST+ shows only two (first and last) when zoomed out to present a
high-level overview of the animation, as illustrated in Figure 9.
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Fig. 5: An example procedure of the keyframe and keyframe sequence construction. (a) a tick label is dragged over the dropzone
ahead of the keyframe group containing visual marks; (b) after creating a keyframe for the selected label, a list of possible
next keyframes is suggested to let the author select to complete the keyframe sequence; (c) dragging one keyframe to make
keyframes animate a short time after the previous one started; (d) binding quantitative data attributes to the start time or duration
of the keyframes and rearranging the animation order of sibling keyframe groups; (e) selecting effect type for keyframe group;

and (f) two ways to update the duration length.

specification panel (Figure 1). We explain CAST+’s interaction
using five example scenarios (open this PDF in Acrobat
Reader to view the animations shown in each scenario). To
see how CAST+ works, please refer to the gallery videos on
the CAST+ website (https://canisstudio.github.io/CASTPlus).

Interaction Mechanisms. When the data-enriched SVG chart
is loaded?, it is assigned to the default animation, which is to
fade in the entire chart: the corresponding representation of
a single keyframe with all visual elements in the chart as a
mark unit is generated on the animation specification panel.

To create the customized animation with the chart, There
are three ways to specify keyframes: constructing keyframes,
selecting the next keyframe, and synchronizing keyframes.
Hence, the author starts the process of creating the mark unit
to be animated by selecting the desired marks on the chart
panel. The data table and the input chart are tightly coupled:
the author can select the marks from the data table when the
marks need to be selected based on the data values that are
not displayed (for example, see Scenario 2). Moreover, when it
is difficult to select marks in a few selection operations, (e.g.,
selecting all blue dots in the faceted dot plot in Figure 2(d)),
the author can first select a small portion of the desired marks
as an example, then they can either select the mark unit which
is automatically suggested by CAST+ through the extended
generalized selection [48] or keep selecting from the input
chart manually.

Once the mark unit is selected, the author can drag and

3The data-enriched SVG chart can be automatically generated with our
online generator (https://chartanimation.github.io/canis/marker/index.html) by
using the SVG charts created either with interactive authoring tools like
Charticulator or using a programming library like D3.

drop them on the animation specification panel to generate
a keyframe (see Figure 5 (a)). Then, the system suggests a
list of potential next keyframes for the author to select (see
the center in Figure 5 (b)). To facilitate the selection of the
desired next keyframe, these suggested keyframes and the
chart panel are linked together (see video in the supplemental
material). Specifically, the mark units associated with the
potential next keyframes are highlighted in the chart panel.
When the author hovers over each suggested keyframe, the
corresponding visual marks are highlighted in the chart panel.
When a suggested keyframe is chosen, the system continues
to suggest the next keyframe until the keyframe sequence is
finalized In doing so, the ‘selector’ concept in Canis is mapped
to the suggestion-selection interaction for creating keyframes
and keyframe sequences in CAST+.

Once the keyframe sequence is generated, the author can
synchronize keyframe groups by rearranging the animation
order of the sibling keyframe groups with the popup panel on
their parent keyframe group (Figure 5 (d)). To synchronize
keyframes, the author can drag the header of one keyframe to a
new location and adjust its relative position to the previous one.
CAST+ hints at the changes to be made while the keyframe
is being dragged (Figure 5 (c)). The author can change the
timing of keyframe groups in the same way. However, CAST
had an interaction inconsistency: the author drags a bar on the
bottom of the keyframe but the tab that appears on the top
left corner of one keyframe group on mouse hover, see the
illustration in the supplemental material.

As for editing the length of duration or delay, the author
can change the width of the timing bar by dragging the end
of it (Figure 5 (f)). To specify precise duration or delay,
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they can enter the number in the popup input box shown
when hovering the timing bar (Figure 5 (f)). As CAST+ now
supports data-driven timing, the author can bind a quantitative

attribute to the start time or duration in CAST+ (Figure 5 (d)).

Likewise, she can also sort the keyframes or keyframe groups
in terms of a quantitative data attribute (Figure 5 (d)). In doing
so, the authored data-driven animations can more effectively
reflect data patterns. Finally, the author can specify the desired
animation effect and easing function by selecting from the

callout list on the top-most level keyframe group (Figure 5 (e)).

CAST+ also supports undo/redo operations, enabling the author
to recover from unintended modifications to the animation.
The change on any keyframe will be automatically applied to

all keyframes within the same top-most level keyframe group.

The result animation can be previewed on the animation preview
panel using the media controllers. (Clicking on a keyframe
will start the preview from the keyframe.)

Scenario 1: Animation of the Faceted Dot Plot.

Sample of Mushrooms

Edible

Fibrous W Feisonous

Scaly

Smooth *

& 3

T T T T
Almaond Creosole Fishy Foul Mone

We will create the animation with a faceted dot plot, as
illustrated in the inset figure above. The chart depicts 170
samples of mushrooms, grouping them by their odor (x-axis)
and surface quality (y-axis). Each dot in the chart corresponds
to one mushroom sample, where its color indicates whether
it is poisonous or not. The animation of this chart starts with
the title, axis, and legend fading in together. Then the dots in
each cell appear together from the cell on the bottom left to
the top right one after another. Meanwhile, there is a short
pause between the animation of cells within the same row and
a longer pause between rows.

To create this animation, we first animate the title, axis,
and legend, which start by selecting and dragging them to the
animation specification panel to create the first keyframe. To
specify the dots in the first cell to animate, we create another
keyframe with the four dots in the bottom left corner. Then
the system provides a list of the next keyframes indicating all
possible keyframe sequences, where each one corresponds to
the unique partition strategy for all dots. We choose the cell with
two red and two blue dots to the right of the four selected blue
dots in the same row, indicating that the attribute isEdible
does not influence the construction of keyframe sequences. As
a result, we obtain the desired keyframe sequence, labeled to
partition first by Surface, then by Odor. Finally, to add

delay between keyframes, we adjust the distance between two
adjacent keyframes by dragging one away from the other. After
inserting a delay between the keyframe groups in the same
manner, we increase the delay by stretching the right border
of the delay bar. Note that the user interaction is almost the
same for creating this animation with CAST and CAST+.

Scenario 2: Animation of the Mekko Chart.

Per Capita Food Supply (Daily Calories) in 2013

Produce

Grain

Australia  China  Congo  Cuba France raq  Japan Pakistan Peru South AfricaUnited States Zambis

We will create an accumulation animation with a Mekko
chart, which shows per capita food supply. In the chart, each
column represents the proportion of calories provided by
different foods in one country, and the color of each rectangle
encodes the type of food. The animation starts by fading
in the title and axes, and then the labels of food types and
corresponding rectangles are interlaced to animate with fade
and wipe effects, respectively.

To first fade in the title and axes, we drag them from the
chart panel to the animation specification panel to create the
first keyframe. Yet, implementing the rest of the animations
is challenging with CAST. Since it can only perform the
auto-completion for the marks shared with the same data
attributes, we have to separately generate the animations of the
rectangles and tick labels. We animate rectangles by food type
by first selecting the rectangles corresponding to Grain to
create another keyframe. In response, the system automatically
completes the animation of accumulating rectangles of other
types of foods since there is only one possible animation
sequence. After that, we change the effect type of rectangles to
“wipe bottom.” To let the labels fade in before the corresponding
rectangles, we first create the staggering animation of labels
in the same manner, then we drag the keyframe group of
rectangles to align it with the labels on the element level,
which is a tedious and time-consuming process.

In contrast, creating this animation using CAST+ is straight-
forward. After creating the keyframe with the title and
axes, we drag the label at the bottom row to the animation
specification panel, and then CAST+ subsequently suggests
the next keyframes including the bars in the same row and the
label in the next row. We select the bars to form a keyframe
group due to the underlying nested selection in Canis, which
includes the y-axis label and all corresponding rectangles (see
more detail in Figure 8), subsequently generating the entire
keyframe sequence. Due to the keyframe group, we do not need
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to synchronize the keyframes. Changing the animation effect
of the bars to “wipe bottom” achieves the desired animation.

Scenario 3: Animation of the Connected Scatterplot.

We will create an animation with Hannah Fairfield’s con-
nected scatterplot [59], which shows the relationship between
driving distance and oil price over time. In this chart, each dot
representing the oil data of a year is positioned according to
miles driven (x-axis) and its price (y-axis), having year as a
text label. Two dots for adjacent years are connected by a link.
The animation starts with both axes fading in, followed by all
dots fading in together. Then each link grows in chronological
order, and the year label fades in once the link reaches the
corresponding dot.

To create the first keyframe of the axis with CAST, we select
several axis ticks with their labels from the input chart. Then the
system recommends the entire axis including ticks, tick labels,
and grids. We drag them to the animation specification panel to
create the first keyframe. Then, we create the second keyframe
with all the dots in a similar way. In response, the system
automatically creates three keyframe groups each containing a
single keyframe. These keyframe groups, placed horizontally
adjacent to each other, depict the animation of three types
of marks: dots, labels, and links with the default effect “fade
in,” respectively. To make the labels fade in one by one, we
drag the first label from the chart panel to the dropzone ahead
of the keyframe group corresponding to labels. To make the
labels fade in when the link reaches the corresponding dot,
we drag the keyframe group of links and align it with the
keyframe group of labels on the element level. Finally, we
change the effect type of links animation to “grow” and extend
their duration.

With CAST, crafting this animation requires users to manu-
ally synchronize different keyframe groups for simultaneously
animating labels and links, which is a time-consuming process.
In contrast, this can be easily achieved with CAST+. After
selecting axis ticks, axis labels, grids, and all dots as the starting
keyframes, we simply need to simultaneously select the link
and year label, with the support of nested selection in Canis, as
a keyframe and drag them to the animation specification panel.
CAST+ then auto-completes all the subsequent keyframes,
given that only one possible sequence remains, without the need

of synchronizing keyframes. Finally, we change the animation
properties of the links as we do in CAST.

Scenario 4: Animation of the Gantt Chart.

event plan gantt chart

ayout logistics

hire event decorators

We will create an animation with a Gantt chart. This
chart visualizes a project schedule, where each horizontal bar
represents a task with a label (task name) having a unique
color. Each task bar is positioned based on when the task is
scheduled to start, with its length encoding the task duration.
The animation of this chart starts by fading in the title and
axis, followed by the gradual unveiling of tasks’ timelines one
by one. By mapping the total project duration to the animation
duration, the label and the bar of each task appear at the project
starting time with fade-in and wipe-left effects, respectively.
The duration of the animation on each bar is proportional to
the corresponding task’s duration.

It was not possible to create this animation with CAST
because the timing bar can only specify a constant duration and
delay to the same keyframe group. To address this limitation,
CAST+ allows for binding quantitative data attributes to
animation timing properties. The animation creation process
begins by selecting the title and axis and dragging them to
the animation specification panel to create the first keyframe.
Then we select the label of the first task and drag it to the
animation specification panel. Subsequently, CAST+ suggests
the next keyframe list consisting of the bar of the first task
and the label of the second task. Here, we select the bar to
generate a keyframe group, including label and all related bars
together, and then CAST+ auto-completes the entire animation.
To consistently reflect the schedule, we bind the group’s start
time with the Begin data attribute and map the bar’s duration
with the Total data attribute. Then we modify the animation
effect of the bars to “wipe left”. Finally, we drag the keyframe
group of bars to align with one of the labels for animating
them simultaneously.

D. Auto-completion of Keyframes and Keyframe Sequences

In this section, we explain how CAST+ supports auto-
completion through generalized selection for constructing both
keyframes and keyframe sequences (DP3). This is achieved
through two major components: mark-type-aware keyframe
auto-completion and bottom-up next keyframe recommendation.
For each component, we first describe how CAST operates
and then compare it with the CAST+ approach.
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Visual Mapping X-level: Country Y-level: Category

S = {Category: Grain} D ={Country} Suggested Mark Unit

(a) (b)

S = {Category: Grain}
T = {yLabel, Rectangle}
() (d)

Fig. 6: Unlike CAST, CAST+ can suggest additional marks
when multiple types of marks are selected by the user. When
two rectangles in yellow from different countries are selected
(a), all yellow rectangles are highlighted as a suggestion result
(b). When a label in the y-axis and its corresponding rectangle
of the first country are selected (c), the system suggests all
other yellow rectangles (d).

Suggested Mark Unit

Mark-type-aware Keyframes Auto-completion. Given the
input chart, CAST infers the underlying mark units based on
the selected visual marks and recommends all marks in the
corresponding unit for completing the selection. Assuming
that users at least made two selections with the set of marks
M = {M;y, My, -+ ,M,}(n > 2), CAST infers the mark unit
by comparing the visually encoded data attributes. Specifically,
CAST constructs two sets: S and D where each item in S is
an attribute attr and the data value val shared by all marks
and each item in D is an attribute with different data values
in the marks M; and M;;;. For example, S only has the
attribute Category with the value Grain in Figure 6(a), while
D includes Country.

Accordingly, the mark unit consists of the visual marks
having the same value for each attribute in S and all different
values of each attribute in D, and all un-selected marks are
suggested. In Figure 6(b), all yellow marks are highlighted
and suggested for selection while the others are translucent.
If multiple visual marks share the same data values for all
attributes in S+D, CAST will randomly select one mark when
M has only one mark. It may prioritize attributes with the most
effective channels, following the visual encoding effectiveness
principle [60].

By embedding the type of visual marks as an additional
data attribute in the input data-enriched SVG file, we can use
the previous algorithm to complete the keyframe construction
once at least two types of visual marks are selected. Treating
mark type as an attribute in D lets the system suggest different
types of visual marks having the same value of the attributes
in S for selection. In doing so, after selecting the dot and label

of the year 1970 from the connected scatterplot in Scenario
3, the corresponding link will be suggested to be animated
together. However, this algorithm requires that all selected
marks are associated with the same data attributes, which limits
its effectiveness. For example, if a user selects the axis label and
rectangle in the Mekko example (Figure 6 (c)), the algorithm
fails since the axis label possesses only the Category attribute
and lacks others like Country associated with rectangles.

To address this issue, we propose a mark-type-aware auto-
completion algorithm in CAST+, which suggests various
types of visual marks for constructing keyframes. Inspired
by generalized selection [48], CAST+ generalizes the selection
to include additional related marks (e.g., “select all marks
like these ones”). Specifically, it examines the encoded data
attributes of the selected visual marks to construct two sets
S and T, where each item in S is an attribute and the data
value shared by all selected marks and T consists of the unique
type names of the selected marks. If S is not empty, all un-
selected marks will be suggested if they meet two conditions:
i) encoding the same data value of each attribute in S and ii)
mark types belonging to one of these in T. This query process
is described in Algorithm 1. Hence, the mark unit consists of
visual marks with the same value for each attribute in S, and
their mark type should match that of the selected marks. In
doing so, the shared attribute of the selected label and rectangle
in Figure 6 (c) is Category, resulting in a keyframe group
that includes the label and all suggested yellow rectangles
in Figure 6 (d).

Algorithm 1 The auto-completion algorithm of CAST+
Input: dSVG C, and two attribute sets S and T
Output: The suggested mark unit MU

1: function FindMarkUnit( C, S, T)

2 MU =10

3: for each mark € C do

4: if A(attrvatyes (mark.attr == val) A mark.type € T
then

5: MU = MU Umark

6: end if

7: end for

8: return MU

9:

end function

Bottom-up Next Keyframe Recommendation. After con-
structing the first keyframe, the system suggests a list of
unique next keyframes for the author to select. Assuming
that each keyframe group consists of the same type of visual
marks, CAST takes a top-down approach that first generates
all potential animation keyframe sequences based on the
permutations of all visually encoded data attributes and then
iteratively filters data attributes. However, this assumption does
not hold, when a mark unit has multiple mark types with
different data attributes. For example, the selected y-axis label
and the yellow bar in Figure 5(b) share only one data attribute
and the next keyframes cannot be recommended.

To address the above issue, we introduce a bottom-up
approach for recommending the next keyframes. Following the
Gestalt principle of Common Fate [61], the visual marks in each
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Category: Produce

Type: Rectangle
Category: Grain

Type: Rectangle
Category: Grain
Country: Australia

recommendations

Category: Grain Type: yLabel
Grain .
Type: yLabel Grain
selected mark Other Grain

=0

Graml:l

(a)

selected labels

suggested next keyframes

Produce

» Grain

completing the keyframe group with attribute "Category"

Other

Produce
: x3

(b)
Fig. 7: The keyframe sequence auto-completion process with CAST+ includes the following steps: (a) Computing suggested
next keyframes involves analyzing the data attributes associated with the selected label (left). This is followed by identifying
three different keyframes (middle) by varying the value of one attribute or mark type, and finally, removing duplicates to form
the suggested next keyframes (right). (b) Constructing the animation sequence begins with selecting a label (left). Next, a
keyframe featuring all yellow bars is chosen from the list of suggested next keyframes (middle). Finally, the entire keyframe
sequence is generated (right) by repeatedly changing the value of the “category” attribute.

keyframe group undergo similar visual changes and we believe
that only one visually-encoded data attribute or mark type
undergoes changes within a keyframe group helping viewers
to understand. Given the selected mark unit in the current
keyframe, we generate the recommendations of next keyframes
using a speculative generalized selection technique. Rather
than relying on a user’s query to contain all the necessary
information, CAST+ guesses possible query relaxations by
considering every possible relaxation of a single attribute in
the selection. We take the following steps to generate the next

keyframes recommendations (as also outlined in Algorithm 2).

1) We first find the set of data attributes S that are commonly
visually encoded by the selected visual marks in each of
the provided keyframes (if there are more than one). The
data attributes that are not encoded by the selected visual
marks are placed into the set of optional attributes O.
For example, the attribute Country is an optional one
in Figure 7 (a). In addition, we place the mark type of each
selected keyframe into a set T, and the mark types included
in the given chart but not in the selected keyframes into
a set nT.

2) We then identify potential mark units that differ from the
current keyframe’s unit by either one attribute value or
by mark type.

o If an attribute in S differs, we find a mark unit with
this attribute having all possible values, while other
attributes match the selected marks. Once a mark unit
is found, we select the mark or marks nearest to the
selected visual marks in the current keyframe, see the
example of the label “Produce” in the middle of Figure 7
(b).

o If the mark type differs, we consider the mark unit with
all possible combinations of visual mark types. Hence,

we construct a power set P(nT) for the set nT which
includes all the corresponding subsets. For each member
in P(nT), we find the mark unit with the attributes
matching to the set S. For example, in Figure 7 (a), when
users select the Grain label, three sets are generated T
= {Label}, nT = {Rectangle}, P(nT) = {{}, Rectangle}.
The mark unit with all yellow bars in the middle is
then suggested. Since all marks in the selected mark
unit might further encode some optional attributes, we
further partition them by using the additional optional
attributes defined in the power set P(O) of the set O
and then find the partitioned mark unit nearest to the
selected marks in the current keyframe. In the middle
of Figure 7(a), the single yellow bar is generated by
using the optional attribute Country to partition the
mark unit containing all yellow bars and finding the
nearest one to the selected label. Note that if only
one suggested mark unit is found, we will continue
to search for the next keyframe(s) until no more can
be suggested. For example, in Figure 7(b), if users
select the corresponding rectangles, only one suggestion
with type T = {Label} will be provided. This process
continues until the final gray rectangles are generated,
after which no further suggestions are available. To
learn how this algorithm works with various types of
visual marks and multiple optional attributes, we refer
to the supplementary material.

3) Finally, we eliminate empty sets and duplicate mark units,
and rank them by measuring the transition visualization
costs between the suggested mark unit and the one in the
current keyframe [62].

Once the user selects one of the suggested next keyframes,
the system automatically generates the next keyframes until
no further suggestions are available. If there are still visual
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Algorithm 2 Next Keyframes Recommendation
Input: dSVG C, the selected keyframes K
Output: Ranked next keyframes
1: function FindNextKfsOrKfGroup(C, K)
2: [S,0] = FindCommonOptional Attr(C,K)
shared and optional attributes

> identify

3: [T,nT] = FindMarkType(C,K) > get present and absent
mark types

4: G=0

5: P(nT) ={S|S CnT} > power set of set nT

6: PO)={S|SCO}

7: for each attr € S do > remove one data attribute

8: restAttr = {(a,v) € S| a # attr}

9: G.push(FindNextKfs(C, K, restAttr, P(O),T, False))

> find keyframes with remaining attrs

10: end for

11: for each Ts € P(nT) do > change the mark type

12: G.push(FindNextKfs(C, K, S, P(0), Ts, True))

13: end for

14: if |G| == 0 then

15: return ()

16: else if |G| == 1 then

17: G.push(FindNextKfsOrKfGroup(C,KU G))

18: return G

19: else

20: result = RemoveDuplicates(G)

21: return Rank(result) > sort by transition cost

22: end if

23: end function
24: function FindNextKfs(C, K, S, P(O), Types, isOptional)
25 nextKfs =)

26: mUs = FindMarkUnit(C, S, Types) > See Alg. 1

27: if isOptional==False then

28: nextKfs.push(GetNearestUnit(mUs)) > get the
closest matching marks

29: else

30: nextKfs.push(mUs)

31: for each attr € P(O) do

32: mUs = PartitionUnit(mUs, attr) > partition
mUs based on optional attributes

33: nextKfs.push(GetNearestUnit(K, mUs))

34: end for

35: end if

36: return nextKfs

37: end function

marks that have not been animated, the user can select them
to construct a keyframe and then the system will continue to
recommend the next keyframes.

E. Keyframe Grouping and Semantic Zooming

In this section, we explain how CAST+ supports exploring
numerous keyframes and keyframe sequences (DP2), and
compare it with the approach used in CAST.

Keyframe Grouping. During the next keyframe selection,
CAST automatically groups adjacent keyframes together by

checking if there is only one common associated attribute
having different values. For example, the dot cells within each
row form a keyframe group in Scenario 1, which can be further
hierarchically grouped.

Yet, each keyframe group in CAST consists of a set of
the same type of visual marks due to the original Canis [1].
As shown in Figure 8 (a,b), the selected visual marks that
encode the same data attributes form a mark unit tree. However,
interlacing these two groups to achieve the animation described
in Scenario 2 requires carefully adjusting the duration and delay
for each keyframe and keyframe group as shown in Figure 8
(c). On the other hand, these two types of visual marks can be
selected as one animation group by “selector”: “.y-axis-label,
.rectangle”. Yet, they only share one data attribute Category
and thus can form a two-level mark unit tree, limiting its
expressiveness.

To overcome this limitation, we extend the Canis grammar
with a nested mark selection that allows for re-selecting the
selected marks as an individual sub-group and specifying
the timing and animation attributes for each sub-group. For
example, the tick label in the y-axis and all rectangles that
share the Category attribute can be selected together by
“selector”: “.y-axis-label, .rectangle” (Figure 8 (d, e)), and
the re-selected rectangles can be further partitioned by the
additional attribute Country, if needed. In doing so, CAST+
supports various types of visual marks in the same keyframe
group. By setting the duration and delay to each sub-group,
users can achieve different pauses between the animation of
marks in the same row and between rows.

Semantic Zooming. As our keyframes show the chart’s
thumbnail, the animation sequence in the specification panel
can become too long to be easily accessed. To address this issue,
we employ semantic zooming [57] with an aim to preserve the
hierarchical grouping structures of keyframe sequences, while
maintaining the visibility of visual marks when zoomed out.

To achieve this goal, CAST+ sets [ zoom levels where the
sizes and numbers of keyframes and keyframe groups are
gradually reduced with the same scaling factor. At level [,
each keyframe group consists of three child components: the
first, second, and last keyframe groups or keyframes at the
next level (see the keyframe sequence at the zoom level 8 in
Figure 9) and the second keyframes in each keyframe group
are removed at level [ — 1. As the zooming level decreases by
one, the mark unit tree is traversed one level up, and the second
keyframe group of the sibling groups at the corresponding level
is removed (see the sequences at the zoom level 6 in Figure 9).

When the zooming level is less than [ /2, the mark appearance
is modulated with two strategies to improve visibility (R2).
First, all 2D visual marks are enlarged a little after being shrunk
with the scale factor. For example, the area of the closed marks
(e.g., circles) or the path related marks (e.g., links) is enlarged
by increasing the radius or thickness with (I/2 — 1) x 2 pixels.
Second, the text related marks (label, title, and legend) become
hard to read and thus we generate the bounding boxes of them
to indicate their existence. In doing so, the bounding boxes
provide navigational assistance while directing users to focus
on data-encoded visual marks. In our experiment, we found
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Fig. 8: Comparing the Canis specifications for achieving the animation of the Mekko chart in Scenario 2 without (a) and with
the nested selection (d). (b,e) the intermediate mark-unit trees generated during the compilation of the given specifications
in (a,d); (c) aligning two timelines corresponding to two types of visual marks requires careful specification of duration and
delays; whereas the one in (f) is inherently represented as a linear line.
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Fig. 9: An example illustrating how the keyframe sequence is changed with semantic zooming on different zoom levels. We
present this keyframe sequence on three zoom levels since it shows the same number of keyframes or keyframe groups under
level 6, while the size is scaled; The last keyframe in the first keyframe group is highlighted with an orange frame to illustrate

the changes when zooming.

that [ = 8 is enough in most cases since the depth of the mark
unit tree in most animations is less than 5.

F. Implementation Details

CAST+ is an HTMLS5 web application implemented with
TypeScript and Webpack, following the Redux architecture [63].
It maintains the State, which records the status of all compo-
nents in the system. Specifically, the status of the animation
specification panel is described using a Canis Specification.
The access and alteration of the State are controlled by the
“Store” part of Redux. For each editing interaction on this panel,
an “Action” as the payload carrying the update information
will be emitted to the Store and then the store alters the Canis
specification in the state according to the received information.

Once the state is successfully updated, the renderer will be
invoked by the store to update components on the animation
specification panel. The other components in CAST+ share the
same mechanism.

Incremental Compiling. With original Canis, any small
changes lead to recompiling the entire specification. This
might become too slow to achieve interactivity when authoring
complex or expressive animations. To address this issue, we
extended Canis with an incremental compilation [64] that
re-compiles only a portion of the specification affected by
modifications. Given a modified specification resulting from
user interaction, we first use the diff mechanism to quickly
locate its difference with the previous version and generate the
changeset. Then, we apply the build-bind-evaluate operator to
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update the mark-unit tree in terms of the changeset. Specifically,
the build operator locally updates the tree structure in terms
of the new grouping specification. Once the tree is updated,
the bind and evaluate operators update the effect and timing
properties of each mark unit.

IV. EVALUATION

To demonstrate the expressive power of CAST+, we created
a wide variety of chart animations with diverse charts and
animation effects. Figure 2 shows eight examples from our
gallery and the full gallery can be found on the website, along
with animations, detailed descriptions, and videos illustrating
the creation processes.

The visualization research community has acknowledged the
challenges and limitations of comparative studies for evaluating
authoring systems (especially designed for communication
purposes) [65], [66]. We face similar issues: there are no prior
works that allow people to easily create chart animations. In
addition, as our system introduces a new visual specification,
the authors first need to learn and understand the specification
to use the system for authoring chart animations. We therefore
decided not to conduct a comparative study, but instead
designed a study to evaluate both the visual specification and
the system as described below.

After performing a user study with the initial version, i.e.,
CAST, we addressed the major issues identified from the
study in CAST+ by improving auto-completion algorithms and
refining the user interaction and interface. To compare CAST
and CAST+, we employ the keystroke-level model [67] to
analyze the number of user interactions required to reproduce
the same animation. This comparison highlights the advantages
of CAST+ in reducing low-level interactions and minimizing
users’ cognitive load

A. User Study

Our user study consists of two parts. Part 1 (Under-
standing Animation Specification) assesses if people can
learn and understand CAST’s visual specification. Part 2
(Reproducing Chart Animations) determines if people can
reproduce customized animations using CAST, following
a similar methodology used for evaluating chart authoring
tools [47], [68]-[71].

Participants. We recruited 18 participants (6 females; 12 males)
from a local university, all with normal or corrected-to-normal
vision. Their ages ranged from 22 to 32, with an average of
25. They major in computer science and most of them have
the experience of using video or animation editors, such as
Camtasia [72], Adobe After Effect [9], iMovie [73], and Movie
Maker [74].

Apparatus. We used a desktop computer with an Intel 17-8700K
3.7GHz CPU and 16GB RAM, with two 27-inch LCD displays
placed side-by-side, both running at 1920 x 1080 resolution.
In part 1, we used only one display and recorded participants’
choices for each task. In part 2, the input chart, target animation,
and animation description were shown on the left monitor, and
asked the participants to reproduce animations on the right

monitor. We logged all of the participant’s interactions with
CAST, recording the time taken by participants for completing
each task. We also captured the whole reproduction process
using a screen recorder.

Tasks. We prepared three tasks (Figure 2 (a-c)) for part
1, covering visual elements and layouts used in the visual
specifications, and four animation reproduction tasks (Figure 2
(d-g)) for part 2, encompassing basic interactions in CAST.
For both part, the expressiveness and complexity of subsequent
tasks increased.

Procedure. After briefly introducing the study goals and
procedure, we asked participants to fill out a pre-study
questionnaire. We then provided a tutorial on how to read the
visual specification with three animations. After completing
three training tasks to expand the understanding of the visual
specifications, participants can click the “Start Task” button to
perform part 1 of the study. We asked participants to verbally
describe the animation from the visual specification, so that
we can ensure that they understood it. Finally, we asked
participants to complete a questionnaire asking about the visual
specifications in terms of easy to learn and easy to understand
by using a 5-point Likert scale (1: Strongly Disagree and 5:
Strongly Agree).

After a 10-minute break, the participants proceeded to part
2. We first taught the participants how to use CAST by
demonstrating the basic features with two animations. We
then asked the participants to complete four training tasks to
familiarize themselves with the system. The participants then
performed the four reproduction tasks. Before they started each
task, in addition to showing the input visualization chart and
target animation, we provided the description of key animation
features including the duration and delay, effect type, and easing
function because these features are not easily recognizable
from the video. We also asked the participants to describe
the animation to us to ensure that they understood the task.
When they were ready, they could click the “Load Chart”
button to load the input chart in CAST and start the task.
During the reproduction process, we asked participants to think
aloud about their experience with CAST, and provided hints
to the participants when they asked for help. After participants
finished all four tasks, we asked them to rate CAST on four
criteria using a 5-point Likert scale (1: Strongly Disagree and
5: Strongly Agree). On average, the entire session lasted about
80 minutes (30 for Part 1, 40 for Part 2, and 10 for a break).

Study Results. Fifteen out of 18 participants found the correct
animation in all three tasks without any hints. Two participants
(P15 and P17) made an incorrect choice in Task 1: they
interpreted that the keyframe sequence is grouped first by month
and then by mortality, but it is grouped by mortality first. One
participant (P3) was confused with the relative timing between
keyframes and keyframe groups in Task 2. The responses from
the post-study questionnaire (Figure 10 (a)) indicate that the
visual representations and the visual specifications are easy to
learn (M = 4.7) and easy to understand (M = 4.6).

Seventeen out of 18 participants successfully reproduced the
target animations in all four tasks. Nine participants completed
them without any hints, and eight participants needed only a
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Q1: The visual specifications

—
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the visual representation.
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create chart animations.
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Fig. 10: Results of the user study. (a) The 95% confidence interval in scores to two satisfaction questions in part 1 and four
questions in part 2: the higher score the better. (b) The completion time in seconds for four reproduction tasks in part 2: error

bars represent the standard deviations.

few hints. The one remaining participant failed to reproduce
Task 4, forgetting how to further partition an existing keyframe
sequence and rearrange the order of keyframe sequences of
different marks.

The average task completion time (Figure 10 (b)) was less
than two minutes except for Task 4 (282 seconds). Note that
we did not explicitly ask the participants to complete the task
as quickly as possible. With regards to subjective ratings, as
shown in Figure 10 (a), participants indicated that CAST is
easy to learn (Avg = 4.5) and use (Avg = 4.7), and that they can
efficiently create chart animations (Avg = 4.7) and enjoy the
tool (Avg = 4.6). Our participants were generally positive about
various features of CAST. Participants appreciated the direct
manipulation of relative timing between keyframes or keyframe
groups. Six participants mentioned that the auto-completion of
the keyframe sequence impressed them most.

However, we also identified some usability issues of CAST.
The areas and affordances for dragging of the keyframe and
keyframe group are quite different: drag bar on the bottom for
the keyframe and the tab on the top left corner for the keyframe
group. As they do not clearly convey how they can be interact
with, participants were sometimes confused about which one
should be dragged (keyframe or keyframe group) and to where,
especially when there is only one keyframe in the keyframe
group. In addition, sometimes during a component is dragged,
multiple signals might be emitted to the system. For example,
dragging a keyframe group to cross multiple keyframe groups
may send several timing update signals to the system. This
may cause some unintended results (e.g., losing focus of the
cursor to the dragging component). Both issues have been
resolved in CAST+, where the headers of the nested boxes
of keyframes and keyframe groups are used for consistent
dragging (see Section III-C) and revised the implementation
to avoid unintended interaction feedback.

B. Comparison between CAST and CAST+

To assess the relative interaction complexity of CAST and
CAST+, we use both systems to author four animations
(Table I), which encompass a variety of visual marks and
keyframe sequences. Instead of using click count as a proxy
metric [70], we count the number of semantic actions performed
by the user to specify an animation [75], as this metric
effectively captures cognitive load by focusing on essential

authoring actions. There are three stages to specify keyframes:
(i) constructing keyframes, (ii) choosing among the suggested
next keyframes, and (iii) dragging and dropping keyframes on
top of each other to synchronize keyframes. The interactions in
three stages often require complex decision-making regarding
the information within keyframes, contributing significantly to
the cognitive complexity of the task. Note that we did not count
repetitive interactions to fine-tune the animation timing and
effect properties, assuming that one such interaction yielded
the desired result.

We report the number of interactions required at each stage
of keyframe manipulation separately in Table I. At stage (i), we
report the number of specified keyframes and the interactions,
including clicks (to select mark units), drag-and-drops (to move
selected marks to the keyframe list), and brushes (to select
specific regions of visual marks within the chart panel). At stage
(ii), we report the number of specified keyframes and the total
number of suggested next keyframes. At stage (iii), we report
the number of manipulated keyframes and keyframe groups,
along with the number of drag-and-drops. As the process for
creating them is the same in both systems, we did not consider
the interactions related to the initial keyframes.

Table I shows the comparison results, demonstrating that
CAST+ offers lower interaction complexity and supports a
broader range of scenarios, whereas CAST cannot support the
animation in Scenario 4 (Gantt Chart). Except for Scenario
1 (Faceted Dot Plot), CAST+ requires fewer interactions in
Scenarios 2 (Mekko Chart) and 3 (Connected Scatterplot), both
of which involve synchronizing keyframe groups of multiple
mark types. Since CAST+ allows for constructing keyframes
that include various types of marks, it eliminates the need
for interactions at stage (iii) and reduces them at Stage (i).
In Scenario 3 (Connected Scatterplot), CAST+ completes the
entire keyframe sequence based on the keyframes constructed
at Stage (i), eliminating suggestions at Stage (ii). Although
CAST+ suggests three next-keyframes with different types
of marks at stage (ii) in Scenario 2 (Mekko Chart), its total
interaction count is still less than that of CAST. For detailed
counts of each action, please refer to the supplemental material.

Overall, CAST+ not only reduces the number of low-level
interactions but also minimizes the cognitive load on users by
automating complex synchronization tasks. This leads to a more
efficient workflow, especially when dealing with animations
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TABLE I: Comparing the number of keyframe specifications and required actions across three stages—keyframe construction,
next-keyframe selection, and keyframe synchronization when authoring chart animations across different charts and systems,
where actions include clicking (CL), brushing (BR), and drag-and-drop (DD).

Stage (i) Stage (ii) Stage (iii)
char | Svsen [T cvanidd | 5 | contur | iy | 20
Scenario 1 (Faceted dot plot) gﬁ§¥+ 1 ; 1 2 8 8
Scenario 2 (Mekko Chart) gﬁg;_ i ; 2 g é é
Scenario 3 (Connected Scatterplot) gi§¥+ ; Z é g é é
Scenario 4 (Gantt Chart) g?g;;. 1Not| Suppor;ed lNot |Suppor;ed Nolt Sufporied

that involve multiple types of marks and intricate timing
requirements. Note that the actual number of specification
actions may vary based on the user’s familiarity and exact
order of creation. As such, these numbers should be interpreted
as providing a general sense of the interaction complexity.

V. DISCUSSIONS

General Reactions. The encouraging results—task completion
time and subjective rations—of our user study indicate that the
design of the visual specification and CAST facilitate the easy
creation of chart animations. In general, our study participants
also expressed excitement about the expressive animations
CAST enabled. P18, for example, was particularly satisfied
with the animation he created with CAST, and remarked,

“I was attracted by the animations at first sight, since

I never thought those charts can be animated in such

an expressive manner. Meanwhile, I was worried that

I would spend a lot of time and effort on authoring

those animations. However, after only a few steps

of playing around with the graphics, the animation

which just amazed me is now created by myself.”

Participants appreciated the direct manipulation and the

auto-completion of the keyframe sequence CAST offered. For
example, P4, who is interested in designing visual analytic
systems, commented,

“The suggestion on mark selection and sequence

construction impressed me most, it provided me with

multiple possible animations and simplified my au-

thoring procedure. And the direct visual manipulation

and system feedback on the graphics also ensures

the consistency of my interaction with the system.”

Furthermore, the expressiveness of the resulting animations
combined with the simple yet interesting graphical interactions

seemed to make the animation authoring process a fun activity.

For example, P10 noted, “The authoring process is like playing
a game, I can get such a fancy animation while having fun.”

Study Limitations. Our study participants were all students
majoring in computer science. Even though their daily job
does not necessarily involve creating chart animations (or
even visualizations), they are presumed to be able to perform

computational thinking. It could be helpful to conduct further
studies to assess if people with different backgrounds (e.g.,
design, marketing) can also create expressive chart animations
with CAST.

Our user study employed a reproduction study [65], the
approach commonly used for evaluating visualization authoring
systems, including Data Illustrator [47], Datalnk [69], and
Charticulator [70]. We assessed if people could produce chart
animations using CAST when provided with a reference
animation and a short training (the tutorial and training took
about 25 minutes in part 2). Furthermore, CAST requires a
chart design to craft animations. With our study, which inherits
the limitation of this study methodology, we cannot conclude if
people will be able to create expressive animations using CAST.
In the future, we hope to evaluate CAST+’s expressiveness
with designers in a hackathon setting, allowing enough time to
think about creative animations, and to collect chart animations
people create.

We also note that our work can be complemented with
further studies. For example, it will be useful to conduct a study
focusing on auto-completion as a technique and investigate
how it can help users create chart animations. In addition,
in-depth studies on what animation types and effects are more
challenging, contribute more to expressivity, and require the
use of auto-completion.

To design our questionnaire, we also referred to the ques-
tionnaires used in previous reproduction studies to evaluate
chart authoring tools [65]. However, the positive framing of
questionnaire statements (e.g., the visual specifications are
easy to learn) might have biased participants to give a higher
rating [76]. In future studies, we will use statements framed
more neutrally (e.g., To what extent do you feel that the
visual specifications are easy/difficult to learn) to avoid framing
influence on participants’ subjective ratings.

Differences from CAST. Because CAST supports data-driven
animations, it can cover a wide range of charts including
highly expressive ones: the examples in our galley leveraged
charts created with Charticualtor [70] and D3 [10]. In terms
of the types of animation (using DataClip’s taxonomy [6]),
CAST currently supports four types of animations: creation,
deconstruction, accumulation, and transition even though most
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animations used in the paper can be categorized as the creation
and accumulation.

After developing CAST, we enhanced the expressiveness
and efficiency in CAST+. In terms of expressiveness, CAST+
allows the creation of animations using various types of visual
marks within a keyframe group and offers visual components
for binding data attributes to animation duration and delay.
For efficiency, we proposed new generalized selection-based
auto-completion algorithms for constructing keyframes and
keyframe sequences, which leads to fewer interactions for
authoring similar animations.

We acknowledge that while CAST+ is a robust tool, it
is still unable to generate all the animations that Canis can
do due to limitations in the visual specifications. It does not
currently support multi-view animations, which are instrumental
for facilitating side-by-side comparisons. In addition, it does
not allow some essential interactions for authoring transition
animations, such as dragging the keyframe to specify mark
units that animate successively in one chart. This restriction
is in place as it could lead to invalid visual mappings during
transitions between multiple charts.

VI. CONCLUSION

Despite the effectiveness and popularity of chart animation, it
is not easy for people without programming skills to craft one,
especially with bespoke charts: This is partly due to the lack of
authoring tools specifically designed for chart animations. In
this paper, we presented CAST+, an interactive chart animation
authoring tool that helps people easily author expressive
animations through keyframe direct manipulation using a
wide variety of chart designs. Unlike most existing timeline-
based animation authoring tools, CAST+ introduces the visual
specifications specifically designed for chart animations to
foster an easy understanding of the animation process. It
also leverages the direct graphical manipulation of the visual
elements and auto-completion of keyframe and keyframe
sequences to facilitate the easy construction of animations.
We explained the design principles of CAST+ to achieve
our goal of helping people who lack programming skills to
easily create chart animations. With five usage scenarios, we
illustrated how the visual specification and interface of CAST+
enables a rapid animation creation process. We also explained in
detail about the auto-completion based on generalized selection
which improves the authoring efficiency and further extends the
algorithms to support the animation with various types of visual
marks within one keyframe group. Through a two-part user
study, we assessed the learnability and understandability of the
visual specifications, and CAST+’s learnability, and usability,
CAST+ is available at https://canisstudio.github.io/CASTPlus
to see the animation, along with our example gallery that
demonstrates the system’s expressiveness.
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