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Fig. 1: Trajectories of taxi rides in Beijing: (a) A line-based visualization of the trajectories is cluttered and convoluted; (b) Using a
density plot eliminates clutter, but the continuation of the trends is ambiguous, e.g., it looks like taxis follow the prominent, circular route
around the city center; (c) Pixel-based colorization reveals clusters, we see that taxis mostly stay in one part of the city.

Abstract—Line-based density plots are used to reduce visual clutter in line charts with a multitude of individual lines. However, these
traditional density plots are often perceived ambiguously, which obstructs the user’s identification of underlying trends in complex
datasets. Thus, we propose a novel image space coloring method for line-based density plots that enhances their interpretability. Our
method employs color not only to visually communicate data density but also to highlight similar regions in the plot, allowing users to
identify and distinguish trends easily. We achieve this by performing hierarchical clustering based on the lines passing through each
region and mapping the identified clusters to the hue circle using circular MDS. Additionally, we propose a heuristic approach to assign
each line to the most probable cluster, enabling users to analyze density and individual lines. We motivate our method by conducting
a small-scale user study, demonstrating the effectiveness of our method using synthetic and real-world datasets, and providing an
interactive online tool for generating colored line-based density plots.

Index Terms—Trajectory data, times series, density-based visualization, clustering, coloring

1 INTRODUCTION

Line-based plots are a popular way to visualize time series data [20]
and trajectory data [10]. These plots are widely used across domains,
such as finance, healthcare, and navigation, to highlight evolving trends
in complex datasets. To emphasize patterns and gain insights, two
effective techniques are line coloring and density plots. By using line
coloring, different lines in a plot can be assigned distinct colors, making
it easier to distinguish between different groups or categories. This
technique is particularly useful when dealing with multiple time series
or trajectories that are plotted together. Alternatively, density plots
show the distribution of data at each point in time or space. These
plots use color or shading to indicate areas of high or low data density,
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providing a more detailed picture of the underlying patterns in the data.
Line coloring assigns a color to each line. However, even in small

datasets, line intersections can cause overplotting, where lines are
drawn on top of each other, making it difficult to interpret the data.
This problem becomes more pronounced in complex datasets with
a larger number of lines, resulting in visual clutter that can obscure
underlying trends [30], see Fig. 1a. Mainly, this has been addressed
by replacing individual lines through visual abstractions [17, 42, 73],
which use abstract glyphs to display statistical information about the
lines.

Using density plots [34,44] shifts the focus from visualizing individ-
ual data items to aggregating data attributes in image space, commu-
nicating the structure of the data better. By using a continuous color
map to visually communicate the density at a given position, density
plots can effectively reduce visual clutter. However, the individual line
information is lost. Such plots do not reveal which and how lines inter-
act at a specific position. To alleviate this issue, interaction techniques
have to be used (e.g., timebox [23]) with representative lines (such as
kd-box [81]) being used to explore patterns of interest.

In general, due to the continuous nature of time series and trajectory
data, line-based density plots are more challenging to interpret than,
e.g., point-based density plots. Visual ambiguity within the perceived
patterns often leads to false conclusions, as the Gestalt principles of
good continuation and similarity strongly influence the perception of in-
teracting lines. Similarly, the Principle of Unambiguous Data Depiction



introduced by Kindlmann and Scheidegger [33] describes visualiza-
tions that fail to be unambiguous as having so-called “confusers”. This
means different data inputs can result in visualizations that are not
distinguishable. For example, in Fig. 1b, it looks like most taxis drive
on the circular route around the city center. The question is if this
observed trend exists in the data or if other combinations of patterns
could result in a similar visualization. Both line coloring and traditional
density plots offer no solution to help users to identify the existence,
continuation, and intertwinement of trends. Clustering the data using
our method shows that there is no main circular trend around the city
center; rather, taxis mostly drive within local segments of the city.

Our idea is to use an image-space coloring method to analyze line-
based density plots. In comparison to traditional density plots, we use
color not just as an indicator for density but also to visually highlight
similar regions in the plot. Each region is characterized by the lines
passing through it. As a result, regions with similar lines are colored
similarly, allowing users to identify and distinguish trends. To obtain
the colors, we perform hierarchical clustering based on the lines passing
through regions and subsequently map the identified cluster to the hue
circle using circular MDS. To provide additional line-based analysis,
once the bins in the density plot are clustered, we suggest a heuristic
approach to allocate each line to the most probable cluster. This enables
the user to explore not only the density plot but also individual lines.
We demonstrate the capabilities of our method using selected synthetic
and real-world datasets. Our main contributions of this paper are:

• A novel image space coloring scheme to enrich line-based density
plots with similarity information;

• A heuristic method to assign lines to their most likely cluster;

• A motivational user study to demonstrate the ambiguous percep-
tion of line-based density plots; and

• An interactive online tool to generate colored density plots.
In the subsequent sections, we illustrate ambiguities in the perception

of trends in line-based density plots using various examples, propose
our novel image-based coloring method, and perform a user study to
identify ambiguities in line-based density plots.

2 RELATED WORK

In our discussion of related work, we focus on density plot generation,
visual ambiguities and illusions, line-based analysis, and color mapping
techniques.

2.1 Density-based Visualizations
Density plots are a popular method to generate uncluttered scatter
plots [8]. There are several techniques to visualize density, including
opacity blending [39], kernel density estimation (KDE) [16, 59], and
binning followed by summing for color mapping [74]. To reduce visual
clutter, density-based adaptations of various types of visualizations for
different data types have been proposed. For example, Artero et al. [3]
used density-based filtering for parallel coordinates, while Zinsmaier et
al. [83] proposed an interactive rendering method for large-scale graphs
using KDE-based node aggregation. Scheepens et al. [58] used variable
KDE kernel radii for user-customizable trajectory exploration with
density maps and extended their technique to combine density fields
of multiple attributes in a single visualization [57]. Wickham [74] em-
ployed binning, summarizing, and smoothing to abstract large datasets
and emphasize patterns, while Jerding and Stasko [31] introduced a
reduced representation of line charts by using gray-scale values based
on the level of overlap. Lampe et al. [34] extended KDE to curves and
called their method curve density estimates (CDE). Recently, Moritz
and Fisher [44] proposed DenseLines, a discretized CDE variation
that allows parallel computing on the GPU. However, all these works
focus on calculating pixel density and do not consider the relationships
between pixels.

2.2 Visual Ambiguities and Illusions
Much research has been done to tackle visual ambiguities or illusions
that lead humans to draw wrong conclusions. Feng et al. [16] visually

encoded uncertainty present in the data in scatter plots and parallel
coordinates to prevent users from drawing false conclusions about the
data. Pomerenke et al. [51] explored the relationship between slope
and the perceived prominence of lines in ghost clusters and proposed
a slope-dependent density correction method to reduce visual errors.
For scatter plots, Liu et al. [37] refine the orientation of marks to guide
the users in estimating trends to prevent imprecise estimations biased
by human vision. Hong et al. [26] studied how the size and lightness
in scatterplots affect the perceived mean. Some other methods use
additional visual coding to reduce visual ambiguities and illusions.
Novotný and Hauser [46] proposed an outlier preserving method for
parallel coordinates. They extract outliers by binning in the adjacent
dimensions and detect outlier bins. Trautner et al. [64] highlight outliers
by overlaying additional visual coding on the scatter-based density
map. Unfortunately, there is no current work that focuses on visual
ambiguities and illusions in line-based density plots.

2.3 Line-based Analysis
Line-based data analysis methods use lines as fundamental units of
data and enable various analyses, including clustering, abstraction, and
interactive exploration. Line clustering uses different metrics [80] to
measure the distance between 2D or 3D lines, such as the Euclidean
distance [11,55], curvature or torsion [41,75], and user-specified stream-
line predicates [56]. Dynamic time warping (DTW) [45] is another
widely used metric to measure similarity between time series data. The
clustering of lines can be achieved by applying these similarity metrics.
To obtain cluster centers for clustering time series data, Petitjean et
al. [49] proposed a global averaging method based on DTW, while
Gaffney and Smyth [21] presented a framework for clustering curves
based on probabilistic curve alignment models. Some methods use
Euclidean space vectors to represent the line curves and then apply
Euclidean distance-based clustering methods [9, 55].

However, even after obtaining clustering information, further analy-
sis remains a challenge because lines can still be cluttered, and cluster-
ing methods are sensitive to noise. Uncertainty visualizations therefore
use glyphs to visualize statistical information and enable overviews.
Mirzargar et al. [42] generalized the curve boxplot for ensembles of
curves by introducing a functional band depth. Ferstl et al. [17] applied
clustering to construct curve-boxplot-like abstractions of multiple line
bundles. Palmas et al. [48] abstracted clusters in parallel coordinates
through edge bundling, facilitating further interaction with clusters.
These visualization methods are effective only for regularly distributed
lines and are not suitable for noisy datasets.

In addition to the previously introduced clustering approaches that
either visually cluster lines by color or abstract them, edge bundling
techniques [24, 25, 66] alter the course of individual lines to combine
them into bundles to reduce visual clutter. To incorporate geographical
restrictions like roads, specially tailored edge bundling techniques [62,
79] were proposed. Recently Wallinger et al. [68, 69] proposed an
edge-path bundling method that reduced the ambiguities introduced
by edge bundling. Our method is focused on reducing the ambiguity
while not altering the original data, as edge bundling does.

Interaction methods are also important for analyzing lines. For ex-
ample, QuerySketch [71] allows users to sketch freely and query the
data lines that match the shape of the sketched line. Hurter et al. [28]
introduced interactive paradigms to extract trajectories of interest from
large-scale airline trajectory data. Hochheiser and Shneiderman [23]
presented Timebox to query data that passes through a box, represent-
ing a range of positions within a certain time. Recently, Zhao et al. [81]
proposed KD-Box by using a KD-tree to speed up the timebox query
and introduce representative lines to assist analysts in exploring the
local pattern details of interest. However, these methods require sig-
nificant user interaction and learning costs, and the small number of
representative lines may not fully reflect the overall composition of
patterns.

2.4 Color Mapping
Color maps are an important aspect of data visualization, as they have
a significant impact on how effectively the viewer perceives and un-



(a) Illusory patterns (b) Ambiguous continuation (c) Disconnected clusters

Fig. 2: Three examples of ambiguities in line-based density plots. Each density plot in the lower row could be a superposition of one of the two
trends in the upper row. (a) The density could come from two trends with varying densities or from a clear trend and added noise. (b) The pattern
could be two touching trends or two crossing ones. (c) The trend could be a single, continuous trend, or a combination of two trends that diverge.

derstands the underlying data. Zhou and Hansen [82] conducted a
comprehensive survey of color map generation methods and classified
them into four categories: procedural-based [43, 50, 53, 65], user-study-
based [22,32,54], rule-based [4,52,63], and data-driven [35,60,61,70].
In the context of density plots, sequential color maps are typically used
to display the gradual changes in density values. The Brewer color
palettes, established by Brewer et al. [5–7], provide a set of commonly
used sequential, diverging, and qualitative color maps and guidelines
for selecting appropriate colors for different types of visualizations.

Color maps may introduce visual artifacts or lack perceptual consis-
tency. Perceptually consistent color maps are designed to match the
human perception of color and are constructed using color spaces such
as HCL [27]. Zeileis et al. [78] proposed a perceptually consistent
single-hue color map for density visualizations. Lu et al. [38] proposed
Palettailor to optimize categorical colorization. It can be used to obtain
perceptually consistent colors while maintaining the discriminability of
positionally close categories. However, coloring methods for categori-
cal data (e.g., multiclass scatterplots) are not applicable to our problem,
as the colors they assign do not carry density information. Our goal
is twofold: we want to visualize a cluster membership while retaining
density information. Therefore, multiple single-hue colormaps based
on HCL color space are well suited for this problem. They convey
clustering information using hues while maintaining visual consistency
for the same density. In addition, the hue harmonic method proposed by
Cohen-Or et al. [12] can be used to further optimize the hue selection.

3 DENSITY PLOTS OF LINES

We follow the process proposed by Moritz and Fisher [44] to create
the line-based density plot. Firstly, the visual area is divided into bins
(in the smallest case, a bin is one pixel). For each bin, the number of
entities — points in scatter plots and lines in line charts — are counted,
and the density is mapped to a sequential color palette. This is the
application of Wickham’s bin-summarize-smooth [74] paradigm to line
data. In the subsequent paragraphs, we provide a detailed overview
of sources of ambiguity in the interpretation of line-based density
plots. In Section 6, we use the three defined sources of ambiguities to
show in a small-scale motivational user study how participants perceive
ambiguous line-based density plots.

3.1 Time series and Trajectory Definition

Mirzargar et al. [42] define trajectories mathematically as parametric
curves mapping from a domain D to a potentially higher dimensional
co-domain R. As we aim to generate two-dimensional density plots,
we restrict our consideration of trajectories to one and two-dimensional
co-domains. For one-dimensional co-domains, the trajectory is a time
series representation. Two-dimensional co-domains can represent, for
example, geospatial data, like traffic data or human movements, or
more abstract spaces, like eye-tracking trajectories.

3.2 Ambiguities in Density Plots

While phenomena like visual ambiguities and visual artifacts intro-
duced by scatter plots [40] and line-based plots have been studied [51],
little research has been done on density plots. Compared to density
representations of scatter plots, which are straightforward to interpret,
the interplay of multiple lines in a line-based density plot might add
visual ambiguities hampering their clarity. Investigating line-based
density plots of real-world datasets, we found patterns with ambiguities
and further compiled a list of three abstracted types of patterns (Fig. 2).
We focus ourselves on these three recurring patterns in our investigation
and do not claim the list to be complete. In Section 6, we show the
results of our user study, underpinning that users perceive line-based
density plots ambiguously. The upper rows of each subfigure show
possibilities of individual trends that, when combined, form a similar
pattern. Even if only two trends are superimposed, it is challenging to
decide which individual trends the density plot is composed of.
Illusory patterns. The combined density plot in the lower row of
Fig. 2a is visually dominated by the central horizontal line. An ob-
server could assume this dominant region is superimposed on a less
dense but noisy region surrounding it. This perceived continuation is
also supported by the Gestalt principle of good continuity [72]. Our
example illustrates that this perception is deceptive, as the observed
pattern is actually a composition of the two patterns on the top left.
This ambiguity is often present in real-world datasets, such as ship
trajectories before and after passing through a strait (see Fig. 6). We
refer to patterns that appear to have a high-density trend only in the
combined line-based density plot that is not present in the individual
underlying patterns as “illusory patterns”.
Ambiguous continuation. If multiple independent, well-separated
trends partly overlap with a similar orientation in the overlapping re-
gion, their continuation is ambiguous. In the lower row of Fig. 2b, it
is not clear how the individual trends continue after intersecting. Both
combinations on the top could create such a pattern. Thus, their contin-
uation remains unclear. This ambiguity frequently appears in data we
have observed, such as time series data with crossovers and overlaps
between trends (see Fig. 4).
Disconnected clusters. Dense regions in plots attract attention. If a
line-based density plot contains multiple dense regions, it is ambiguous
if they belong to the same trend. A line-based density plot with two
such dense regions is shown in the lower row of Fig. 2c. Due to their
visual saliency and similar density, they appear to be related. Perceptual
psychology explains this with the Gestalt principle of similarity. How-
ever, this impression is deceptive since the pattern is actually composed
of the two completely independent patterns on the left of the upper row
of Fig. 2c. Thus it is ambiguous if the combined density plot consists of
two line bundles fanning out in the center of the plot or two independent
trends. It is common to see disconnected clusters in real-world datasets,
an example can be observed in Fig. 5. Even these straightforward
examples show that interpreting line-based density plots is challenging,
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Fig. 3: Processing pipeline: per region (bin) sets of features (line IDs) are obtained by checking which lines pass through a bin. By sampling, we
obtain a subset of the bins that allow us to cluster them efficiently. Hierarchical clustering is then applied to find similar bins. Using circular MDS we
map cluster centers to the HCL color space to create the rendition.

and identifying the underlying trends is often ambiguous. Patterns in
real-world data are even more complex than our examples. We ac-
knowledge the possibility of the existence of other types of ambiguities,
which is an interesting topic for further research. Already just the three
types which we identified show that there is a need to visually better
convey trends and patterns. This is the motivation for us to propose our
density plot coloring method that helps to identify individual patterns
within line-based density plots. Our method assigns similar colors to
regions with similar lines passing through (Figs. 8a, 8c, and 8e), which
helps users intuitively understand the true composition of the related
line patterns and their relationships.

4 METHOD

Our goal is to reduce ambiguities in line-based density plots, identifying
and highlighting similar regions. Previously introduced data-space
clustering methods cluster individual data items, like lines or scatter
points. In contrast, we apply clustering in the image-space, grouping
regions based on the lines passing through them.

Generally, creating density plots involves three main steps: discretiz-
ing the canvas into 2D bins, counting the data items that touch each
bin, calculating the bin’s density, and optionally applying a smoothing
method, e.g., a kernel method. This bin-summarize-smooth paradigm
was introduced by Wickham [74]. Our method assigns colors to bins in
the image space based on their similarity. Similar bins are grouped into
clusters with hue values assigned to them.

Our pipeline (see Fig. 3) consists of four main steps: bin-based
feature set extraction, reduction of the number of bins by sampling
and thresholding, hierarchical clustering, and finally, the assignment of
colors to bins. We implemented our method as a web-based analysis
tool that offers various user-controllable parameters to analyze the data
and steer the colorization.

4.1 Feature Set Extraction
As a first step, we discretize the plot’s canvas into bins. We see a bin as
an atomic unit of the density plot, which can contain multiple pixels,
but each bin can only have one color, i.e., the number of bins can be
considered as the logical resolution. For simplicity, in the following,
a bin is equivalent to a pixel. We define a feature set for each bin that
contains the identifiers of all lines touching it. This feature set expresses
the relationship between a bin p and every line L = {L1,L2, . . . ,LN} in
the dataset. It encodes which lines of L are spatially close to the center
of p. For each bin, we obtain a feature set S(p):

S(p) = {i | Li ∈ L∧distance(Li, p)< T} . (1)

where distance(Li, p) is the closest distance between line Li and center
of bin p. The parameter T is conceptually the radius of a disc positioned
at the center of p, defining the extraction area for that bin. As default,
we set T = 1. Due to the circular distance measure, the disc created
by T may cover a slightly larger area than the bin. The feature set
S(p) then contains the identifiers of all lines running through the disc
at position p. Increasing T expands the extraction area of bins, which
will result in more similar feature sets for adjacent bins.

4.2 Bin Sampling
If the bins correspond to individual pixels, the number of feature sets
S(p) is equal to the number of pixels in the density plot. Even a
medium-resolution density plot with a resolution of 1000×500 pixels

contains 500,000 bins. In the subsequent step of our pipeline, we
use agglomerative hierarchical clustering [29] to group bins based
on their similarity. It has a time complexity of O(n2 log(n)), which
makes it challenging to use it to cluster such a large number of bins.
One potential way to reduce the number of bins is to increase the bin
size. However, this inevitably sacrifices details and results in a loss of
resolution. Alternatively, we can either sample bins or exclude bins
of low-density regions. Using sampling has the advantage that we can
exploit the continuous nature of the line-based datasets that underlay
the visualization - feature sets of neighboring bins are typically similar
due to the spatial continuity of lines. Thus sampling does roughly
retain the distribution of the feature sets. In addition, users are typically
interested in sufficiently dense regions. Low-density bins (e.g., those
touching fewer than ten lines) typically contain a lot of noise and
are less noticeable to the user. To filter out such bins, we provide a
user-customizable minimum density threshold.

4.3 Hierarchical Clustering
We group the sampled bins using agglomerative hierarchical clustering.
To cluster the bins, we have to use a distance metric that is appropriate
for set-type data. Commonly employed are the Jaccard index J(A,B) =
|A∩B|
|A∪B| and Sørensen-Dice coefficient DSC(A,B) = 2|A∩B|

|A|+|B| for sets A
and B. A ratio close to 1 indicates a high degree of similarity. As
densities across line plots can vary greatly, the sizes of the feature
sets also differ heavily. Because the Jaccard index and Sørensen-Dice
coefficient are susceptible to variations in the set size, their values tend
to be lower when comparing sets of vastly different sizes, even if one is
a subset of the other. Therefore, for line-based density plots the overlap
coefficient [67] seems to be more suitable:

overlap(A,B) =
|A∩B|

min(|A|, |B|)
(2)

It is insensitive to differences in set sizes as the denominator is solely
determined by the smaller set. In a line-based density plot, the feature
set of a bin in a low-density region (with dispersed lines) is typically a
subset of the feature set of a bin in high-density areas. Because lines
passing through a lower-density bin are likely to also pass through a
higher-density bin, where the lines are more aggregated. In this case,
we expect the two sets to have a high degree of similarity. The over-
lap coefficient accurately reflects this phenomenon. A more detailed
comparison is available in Section 2 of the supplementary material.

We use average linkage hierarchical clustering [15] as it can be used
with arbitrary distance metrics, and the number of clusters does not
have to be specified in advance. Additionally, the user can interactively
divide the clusters to analyze the data further. We did not use well-
established partitioning clustering methods such as PAM to identify the
clusters since, here, the number of clusters has to be known in advance.

4.4 Cluster Assignment
In the previous step, we grouped the sampled bins into clusters based
on their similarity. However, the bins that were not part of the sample
have not been attributed to a cluster as of now. To assign clusters to
these bins, we have to calculate the similarity between clusters and bins,
which is not easily possible using the above-mentioned overlap measure.
Since only the similarity between bins can be calculated, we would
have to calculate the overlap coefficient similarity of an unassigned bin



to all bins of each cluster, which is time-consuming. To solve this, we
instead compute a mean feature vector M(C) for each cluster C. The
feature vector V(p) of the feature set S(p) of a bin is a binary vector
with entries set to 1 if the identifier i of the line Li is contained in S(p)
and 0 otherwise:

V(p) = (vp
0 ,v

p
1 , . . . ,v

p
n), vp

i =

{
1, i ∈ S(p)
0, otherwise.

(3)

The mean feature vector of a cluster C is defined as the element-wise
sum of the binary feature vectors V(p) of all its bins p, divided by the
number of bins in C.

M(C) =
1
|C| ∑

p∈C
V(p) (4)

To assign a cluster to each bin, we identify the most similar cluster C
for this bin p. To calculate the distance between the bin’s feature vector
V(p) and the mean feature vector M(C) of the cluster C, we use the
Euclidean distance as a similarity measure. Note that when calculating
the distance, we only consider the position where vp

i is 1:

D(p,C) = ∑
i∈S(p)

(1−M(C)i)
2 (5)

This is similar to our rationale for choosing the overlap coefficient
because if we consider all vp

i , it would also count the lines not touching
the bin, which leads to an unreasonable increase in the distance.

4.5 Cluster Colorization
In the next step, we assign colors to clusters so that these colors visually
represent the similarities among them – bins of similar clusters should
be colored similarly, while dissimilar clusters should be colored differ-
ently. Thus, a bin’s color solely depends on the cluster it is assigned to
and does not, e.g., reflect the orientation of the lines passing through it.
A bin’s color should visually communicate both the bin’s assignment to
a cluster and the density of the bin. Changing a bin’s cluster assignment
should not drastically alter its perceived density. Therefore, we use the
perceptually uniform color space HCL (Hue-Chroma-Luminance) [27]
that uses hue, chroma, and luminance as its dimensions. Since it is
derived from perception science [78], it is increasingly used for vi-
sualization. Luminance can be altered independently of chroma and
hue [78]. Different clusters with the same density should ideally be
perceptually comparable to enable the user to compare densities across
multiple clusters colored with different hues. Mapping density only to
luminance would allow for an easy comparison of densities, but the
resulting color map would not be not rich in contrast. Similar to [78],
we map the density of a bin simultaneously to chroma and luminance.
It seems more desirable to map densities to a contrast-rich color map
that matches the typical characteristics of density plot colorizations,
such as darker colors for high density and light colors lower density.

Hue values can be represented as values on a hue circle in the range
[0,2π]. Therefore we need a mapping from the high dimensional mean
feature vector M(C) of a cluster to the hue circle that preserves the
similarity between feature vectors.

Circular multidimensional scaling (MDS) is a nonlinear, non-metric
dimensionality reduction method that was developed for exactly this
application. It differs from the commonly used MDS, which uses the
Euclidean metric. The stress measure in this variant of MDS [13] is
defined as follows:

S =

√√√√∑i< j
(
δ
(
xi, j

)
−di, j

)2

∑i< j d2
i, j

(6)

Here, δ (xi, j) is the linear scaling of the distance between points i and
j to the distance on the circle, and di j is the distance between points i
and j after dimensionality reduction to the unit circle. In contrast to the

approximate distances used by TF Cox et. al. [14], the di j in our case
is the accurate distances along the circular arc:

di j =

{∣∣θi −θ j
∣∣ , ∣∣θi −θ j

∣∣≤ π

2π −
∣∣θi −θ j

∣∣ , ∣∣θi −θ j
∣∣> π

(7)

Therefore, for the unit circle, δ (xi, j) ∈ [0,π]. We use the partial deriva-
tive ∂S

∂θk
(details see the Section 1 of the supplementary materials) of the

stress S with respect to the angle θk of a point k for allowing gradient
descent. By doing so we optimize the angle of each point and this way
determine the hue value corresponding to each cluster center.

4.6 Cluster-based Line Filtering
Our coloring method identifies the main trends and highlights them
through colorization. While being able to analyze individual trends in
isolation and identifying the lines contributing to them is an important
task, traditional density plots and our colorization aggregate lines in
bins and thus do not directly provide a correspondence between trends
in the density plot and individual lines. Therefore, we have to assign
each line to a cluster of the density plot. To determine the cluster of
a line, we focus on two aspects: grouping the bins of each cluster
and summing up their weights. Counting the bins of each cluster that
a line passes through already gives us a good intuition about which
cluster may describe the line best. However, the perceived trends
mainly depend on high-density regions, so bins of these regions should
be more influential. Inspired by density-based edge clustering [36]
and representative line selection [81], we, therefore, also consider the
density of the bins a line passes through. Bins are expressed as:

Ci
k =

{
p j | p j ∈Ci ∧ i ∈ S(p j)

}
(8)

where Ci
k represents the set of bins of the k-th cluster Ck that line i

passes through. Then, we compute the sum of densities of the bins in
the set Ci

k as follows:
W i

k = ∑
p j∈ci

k

D(p j) (9)

where D(p j) is the density of bin p j. Thus, we assign line i to the
cluster Ck with the greatest summed-up weight W i

k . This allows users
to analyze the details of the lines matched to each cluster.

5 RESULTS

To demonstrate the effectiveness of our approach and compare it to
traditional coloring schemes of density plots. We selected four datasets:
two common time-series datasets that have been used in [44, 81] and
two trajectory datasets: Hellenic Trench AIS data [18] and taxi rides in
Beijing [76, 77] (featured in the Fig. 1).
Temperature data. This dataset contains 293,175 weekly maximum
temperature values of 6187 time series obtained from stations across
the United States [1]. The line plot in Fig. 4a is highly convoluted and
offers no insight into the underlying trends in the data. The conventional
density plot in Fig. 4b visually separates high from low-density regions,
but there are ambiguities about how individual trends continue after
crossing, e.g., in the region marked “A” on the right. In addition, the
parts of the trends circled as “B” show zigzag features and align with
the ambiguous continuation problem shown in Fig. 2b. Our coloring
method in Fig. 4c helps to reduce these ambiguities and reveals patterns
that are not easily visible otherwise. In particular, the blue cluster is
visually separated from other trends, indicating areas with consistently
high temperatures, which makes region “B” more clearly stand out.
Meanwhile, the purple and green trends intersect at two positions
(marked as “A” in Fig. 4c), revealing areas that experience sudden
temperature changes, making them more anomalous at certain times.
The line counts for these clusters were 2180 (blue, Fig. 4d), 793 (green,
Fig. 4e), and 742 (purple, Fig. 4d). This demonstrates that there are
indeed many lines that follow the trend of these clusters. The lines in
the blue cluster remain at higher temperatures, while lines of the green
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Fig. 4: Time series of temperature values (6187 lines) visualized using (a) line-based visualization, (b) line–based density plot, and (c) our line-based
density plot colorization scheme. (d) - (f): Individual trends selected using our interactive tool.
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Fig. 5: Daily closing prices of 4393 stock at the New York Stock Exchange from 2005 - 2017 visualized using (a) line-based visualization, (b)
line-based density plot, and (c) our line-based density plot colorization scheme. (d) - (f): Individual trends selected using our interactive tool.
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Fig. 6: Hellenic Trench AIS data [18]: (a) density-based visualization of randomly selected 10,000 trajectories with 1,048,575 points. A “U”-shaped
trend seems to dominate the plot; (b) The colored density-based plot instead highlights several high-density trends that intersect; (c) The lines
associated with the green cluster show a converging pattern of the cluster after vessels passed the channel (from west to east) between two islands.



and purple clusters cross at certain positions, supporting our previous
conclusions drawn from the colored line-based density plot.
Stock market data. In the upper row of Fig. 5, we show 552,559
daily closing prices of 4393 stocks (with prices between 0 and 100;
we removed stocks with only one close price) at the New York Stock
Exchange [2] from 2005 to 2017. Although the raw line-based visual-
ization in Fig. 5a is cluttered, it is still possible to observe that there are
many lines at the bottom of the graph. The pattern (highlighted as “A”)
at the bottom of the density plot in Fig. 5b aligns with this observation.
However, there is another high-density pattern, which is shorter and
concentrated towards the end of the graph (highlighted as “B”), that
only appears in the density plot. These two disconnected high-density
patterns show the issue of disconnected clusters we presented in Fig. 2c
in a real-world dataset. Our colorization in Fig. 5c illustrates that the
clusters marked “A” and “B” are actually disconnected. The cluster
“B” does not start from the beginning of the time period but instead
starts from in between. This is because many stocks were newly listed
after 2010 and did not have corresponding records before that time
(see Fig. 5d). After matching lines to the three clusters in the colored
line-based density plot, the lines of the individual clusters are shown in
the lower row of Fig. 5. The green cluster represents the main trends
and contains to more than half of the total lines (Fig. 5e). It represents
a large number of stocks fluctuating at lower prices. The red cluster
contains fewer lines, but the prices of those stocks are relatively high,
although they are more scattered (Fig. 5f).
Ship trajectories. The Hellenic Trench AIS dataset [18], containing
more than 170,000 vessel trajectories, was originally collected to ana-
lyze the impact of ship routes on the survival of Mediterranean sperm
whales [19]. At first, we cleaned the dataset by removing trajectories
crossing land, likely introduced by GPS recording errors. Due to the
memory limitation of the browser, we randomly selected 10,000 tra-
jectories with 1,048,575 points to generate the density plot and our
colorized version. The density plot in Fig. 6a highlights several inter-
secting high-density trends. Visually, a dominant “U”-shaped trend
(marked as “A” in Fig. 6a) begins west of the Peloponnese and con-
tinues eastwards of Athens. Similar to Fig. 2a, based on the density
map alone, it is unclear if the trend is illusory or not. After coloring the
density plot by our method (Fig. 6b), the western and eastern parts of
the “U”-shaped trend are colored blue and green. Thus they are likely
two separate patterns. Through our line assignment method, 2604 lines
were assigned to the green cluster, as shown in Fig. 6c. The lines of the
green cluster are almost on the same route after entering the channel
but beforehand come from various directions. Although there are some
trajectories that match the visual “U”-shaped trend, such lines are not
as dense as indicated in the original density map. Our method succeeds
in finding lines that match other clusters and is able to decompose them
into several clusters of line bundles. Another point worth noting is that
the pixels in the lower left corner of Fig. 6b (marked as “B”) look like
the lines are headed in one direction, but they have been grouped into
different clusters. This reflects a limitation of our approach: it is not
able to, e.g., measure parallelism or other geometric features of lines.
Taxi trajectories. The Beijing taxi trajectory dataset [76, 77] contains
GPS trajectories of 10,357 taxis on February 2-8, 2008. As this dataset
is very large, loading it in our tool exceeded the browser’s memory lim-
itations. Thus, we sampled 6502 trajectories of 500 taxis with 734,967
individual time points to generate Fig. 1. The line plot in Fig. 1(a)
shows severe overplotting, hiding most of the dataset’s structure. How-
ever, although the line-based density plot in Fig. 1(b) reveals the road
network of Beijing, it fails to display frequent taxi routes, e.g., it is
ambiguous if the taxis circle around the city center or if they drive
outwards or inwards from there. Our method allows to identify differ-
ent clusters. The lines associated with the green and purple clusters
in Fig. 1 are shown in Fig. 7. While the green cluster represents taxis
driving along the airport highway, where many taxis exit at the toll
booths to reach different destinations, the purple cluster represents taxis
traveling within the eastern part of Beijing. This can be explained by
the presence of a large residential area east of Beijing. Similar patterns
can be observed for the other clusters. Taxis are unlikely to circle the
city center but are likely to drive in one part of the city.

(a) Airport taxi trajectory cluster (1032 lines) (b) East urban taxi trajectory cluster (1973 lines)

Fig. 7: Filtered lines from two clusters of Fig. 1.
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(a) Colored line-based density plot: illusory pattern (b) Colored lines: illusory pattern

(c) Colored line-based density plot: ambiguous contin-
uation (d) Colored lines: ambiguous continuation

(e) Colored line-based density plot: disconnected clus-
ters (f) Colored lines: disconnected clusters

Fig. 8: Comparison between colorized line-based density plots and line-
based clustering for the scenarios of Fig. 2.

5.1 Comparison to Line Clustering Approaches

We use the three synthetic datasets shown in Fig. 2 to illustrate the
results of coloring lines by clusters. The dataset used for Fig. 2a
contains 400 lines representing the actual pattern and, additionally, 100
lines of background noise. Figs. 2b and 2c contain 200 lines per pattern.

Existing methods treat lines as basic data units and focus on line-
based analysis to find trends in the data [17] using clustering. To assign
colors, the lines are clustered using a similarity measure tailored to
line data. While these approaches work well for lines with distinct
line bundles, they do not work well for noisy data. To highlight the
limitations of such methods, we use the state-of-the-art line-based
method proposed by Ferstl et al. [17] and compare their results to ours.
Their approach involves embedding lines into a higher-dimensional
vector space, followed by clustering in a lower-dimensional Euclidean
space after using PCA.

To compare our approach to the line-based method, we apply both
methods to the examples shown in Fig. 2. While the line-based method
fails to distinguish the line bundles in two of the three cases due to a
less separable data distribution in low-dimensional space, our approach
effectively reveals the underlying structure. For instance, in Fig. 8a,
our method colors the pixels with two colors, showing that the pattern
is not a continuous trend (marked as “A”, “B”, “C”) but is composed
of different individual patterns. In contrast, the result of the line-based
approach in Fig. 8b cannot reveal the actual components of the trend.
Similarly, in Fig. 8c, our method provides a clear view of the trends of
the two line bundles, achieving results that are similar to the line-based
method (Fig. 8d). Finally, our approach successfully divides the pixels
of the disconnected clusters (Fig. 8e), whereas the line-based method
(Fig. 8f) fails to provide valuable information in this case. Section 5 of



the supplementary material, contains further comparative results based
on real-world datasets.

5.2 Implementation and Interaction
Implementation. Results were obtained using an Apple Silicon
M1 processor with 16GB RAM. Our interactive system (https://
color-line-density-plot.github.io/) is written in Javascript
and does not utilize the GPU. We used Firefox for the runtime tests.
The time necessary to calculate the overlap coefficients is dependent
on the size of the dataset, resulting in longer computation times for
larger sets. For 10,000 lines, our hierarchical tree construction needs
about 10s. Classifying all bins per division of clusters took less than 4s.
The processing speed improves significantly with decreasing cluster
sizes. In summary, our method can complete pre-processing (including
threshold filtering, sampling, and hierarchical tree construction) for all
datasets presented in this paper within 20s. Interactions to separate
clusters took less than 4s, mostly between 1s and 2s.
Density threshold and sampling rate. Section 4.2 outlines the sam-
pling strategy that requires setting density threshold and sampling rate.
To enhance the intuitiveness of the minimum threshold, bins below the
threshold are hidden using a corresponding slider. The user is informed
when the selected bins exceed the processing capacity.
Cluster operations. Users can set the number of clusters as well as
interactively separate clusters. After setting a number, clusters will be
divided accordingly, based on the distance between the nodes of the
hierarchical tree. Clicking on a cluster allows the user to split it into
two sub-clusters. The feature vectors of these sub-clusters will then
be mapped using circular MDS to find appropriate hue values. Users
can select cluster colors that are fixed in the hue circle. Then, during
gradient descent, only unfixed points are moved.
Hue adjusting and harmonization. In Section 4.5, we describe our
use of multidimensional scaling (MDS) to ensure that the distance rela-
tionships between hues within each cluster correspond to their distance
relationship in high-dimensional data space. Nonetheless, users can
modify the hues assigned to the clusters themselves. Additionally, we
provide users with eight harmonic templates, as defined by Cohen-Or et
al. [12]. Once a template is selected, the hues for each cluster will be
mapped to the corresponding area, with the movement of the dots being
constrained accordingly.

6 MOTIVATIONAL USER STUDY

Here, we present the findings of a small motivational user study we
performed to understand the ability of users to identify and trace trends
in line-based density plots. We explored whether users have issues
separating trends of lines. Additionally, we investigated if users are
even aware of potential ambiguities in given plots. We did not include a
comparison between our proposed colorization method and traditional
density plots. We expected participants to perceive different trends
overall, but as long as the line-based density plot remains visually
similar, even if it is generated based on different underlying data, their
perceptions should remain unchanged. We posed the following two
hypotheses:
H1: There are different understandings when participants perceive
trends in ambiguous line-based density plots.
H2: The participants are mostly unaware of the ambiguities in line-
based density plots.

6.1 Experimental Design
We conducted a browser-based online user study with university stu-
dents and Ph.D. candidates. A total of ten line datasets were included,
all presented in the form of line-based density plots. Participants had to
identify trends in line-based density plots and complete three tasks for
each dataset. All plots used in the user study and the trends they are
composed of are available in Section 3 of the supplementary material.
Tasks:

• Tracing task. The participants were asked to trace each dominant
trend they identified.

• Counting task. Participants were asked to count the number of
trends they perceived for each line-based density plot.
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Fig. 9: Responses to the Likert scale of 25 participants for 10 ambiguous
line-based density plots. The left bars represent the participant’s certainty
about the number of trends they identified. The right bars represent the
participant’s certainty about the trends they traced.

• Certainty task. We let participants rate how certain they were
about their judgments on the number and tracing of trends.

Ambiguous pattern generation. We generated ten line datasets in
total based on the three types of ambiguities introduced in Section 3.2.
For each kind of ambiguous pattern, we provided multiple examples
with varying degrees of ambiguity or different numbers of trends. In
the first three datasets, we used illusory patterns, similar to Fig. 2a. The
line-based density plot of the first dataset was composed of a horizontal
trend superimposed on noise, which is similar to the right trends in
the figure. For the following two datasets, we combined trends like
the ones on the left in the top row of the figure. We increased the
fan out in the center of each individual trend. Thus the plots were
getting progressively less ambiguous, as seen in Fig. 10b. As the
second kind of ambiguous pattern, we added ambiguous continuations
to datasets 4 to 6. The combined patterns from Fig. 2b, both the
upper left and the upper right composition, are used for datasets 4
and 5. In addition, we added another line dataset whose density plot
was composed of three individual trends (dataset 6). The third kind
of pattern showed disconnected clusters. In the last four datasets, the
density plots contained potentially disconnected clusters. datasets 7 and
8 were composed of distinct patterns. On one hand, dataset 7 consisted
of a continuous trend with a central fan-out region superimposed on
low-density noise, as shown on the right side of the upper row in Fig. 2c.
On the other hand, dataset 8 comprised two independent trends, which
are illustrated in Fig. 10d. To decrease the ambiguity of the pattern, we
increased the horizontal length of the high-density regions of the two
independent trends to create datasets 9 and 10. This reduced the size of
the central overlapping region as shown in Fig. 10e.
Experiment organization. We displayed the line-based density plots
of the datasets colored using a multi-hue color map, one dataset per
page, on our survey website. All participants had to fulfill the three
tasks for each of the ten datasets in the same order. For the datasets
with illusory patterns (datasets 1 to 3), because we were interested
in whether participants could tell if multiple trends were combined,
we asked them to trace only the main trends. For the datasets with
ambiguous continuation (datasets 4 to 6), we asked participants to
trace the individual trends they perceived with different color. For the
disconnected clusters (datasets 7 to 10), we asked participants to mark
the trends they thought were connected with the same color of strokes,
and if they thought they were disconnected, use different colors.
Participants. In total, we collected inputs from 25 participants who
completed our user study effectively. Three other participants were
excluded as they either did not trace any trends or entered numbers of
perceived trends that vastly differed from the trends they actually drew.
We gathered the traces for all ten tasks drawn by each participant. The
participants’ age was, on average, 26 years with a standard deviation of
4. The gender distribution among our participants was 56% male, 36%
female, and 8 % preferring not to tell their gender.
Procedure. Each participant went through the following procedure: (1)
completing a short questionnaire with questions about age, gender, and
familiarity with line charts and density plots; (2) viewing an introduc-
tion about the tasks based on an already marked density plot; and (3)
performing the tasks for each dataset.

https://color-line-density-plot.github.io/
https://color-line-density-plot.github.io/


6.2 Experimental Results
Fig. 9 illustrates the participant’s responses using a Likert scale to the
questions about their certainty regarding the number of trends and the
tracings of the trends. Fig. 10 shows the distribution of the number of
trends the participants perceived for each line-based density plot.
Illusory patterns. Most participants perceived a central horizontal
trend in the density plots of the illusory patterns shown in Fig. 10a.
The first dataset, consisting of only a horizontal trend superimposed
by noise, was correctly identified by all participants and traced using
a horizontal line. For all datasets with illusory patterns, more than
70% participants stated that they were “Moderately certain” or “Ex-
tremely certain” about the number of trends and their tracings. However,
increasing the fan-out region of the combined trends in the illusory pat-
tern, as shown in Fig. 10b, decreased the participant’s certainty about
how many trends they perceived and how they traced them. Fig. 9
shows a decrease in the portion of participants being “Extremely cer-
tain” about the number of trends they identified and how they traced
them from the first dataset to the third. Additionally, the portion of
participants perceiving at least two trends increased from 0% to 16%,
as shown in Fig. 10. This indicates that participants were increasingly
unsure about the trends in the density plots. Still, even though datasets
2 and 3 were created from data containing multiple trends, participants
mostly perceived only a single trend for all datasets (92% and 84%,
respectively), which supports H2.
Ambiguous continuation. All participants correctly identified, with
moderate to high certainty, that the combined line-based density plots
of the individual ambiguous pattern shown in Fig. 2b are composed of
two trends. For dataset 6, consisting of three trends, all participants
except for one correctly identified the number of trends. In the trac-
ing task, 88% of the participants identified the same trends in both
datasets 4 and 5. 60% of the participants traced the combination of
two “U”-shaped trends in both plots. While 28% of the participants
traced crossing trends for both plots in an “X” shape. For datasets 4 and
5, whose density plots are almost identical, we expect participants to
perceive them ambiguously. For dataset 4, 16 participants identified a
“U”-shaped pattern and 9 an “X”-shaped. For dataset 5, 17 participants
traced a “U” and 8 an “X”. For dataset 6, which contains a combination
of three trends, the participants’ understandings are more diverse. We
only offered the ability to trace a single trend in the data. Participants
were aware that there might be multiple possible trends in the plot
but drew only the most dominant one. Therefore, the results do not
show whether participants potentially perceived multiple patterns. The
distribution of participants among both identified trends indicates that
there was no consensus on which trend was dominantly perceived. We
conclude that this supports H1 with respect to the group of participants,
but not for an individual participant.
Disconnected clusters. While participants largely agreed on the num-
ber of perceived trends in the previous patterns, they were torn about
whether the disconnected clusters in Fig. 2c contained one or two trends.
For dataset 7 56% and for dataset 10 64% of the participants indicated
that the trends were independent, like in the left example of Fig. 2c.
The remaining portion of participants highlighted just one continuous
trend, as shown on the right. Thus participants did not agree, while
over 80% of them were at least moderately certain about the number of
patterns they identified and their tracings. Fig. 10c shows the disagree-
ment of the participants regarding the number of trends for datasets
7-10. As the density plots of datasets 7 and 8 are almost identical but
contain different trends, we expect participants to give similar answers.
For dataset 7, 44% of the participants answered one trend, and 56%
of the participants answered two. While for dataset 8, it is 40% and
60%, respectively. For datasets 9 and 10, the participation response
percentages are still similar, although they are less ambiguous. This
further supports H1.

6.3 Experimental Findings
While our user study was meant to exemplarily show that the user’s
understanding of line-based density plots is ambiguous, it is not a
large-scale study with extensive possibilities for statistical evaluations.
Nevertheless, it supports our hypothesis H1 and H2 and shows trends in
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Fig. 10: Line-based density plots with illusory trends with varying fan-out
of lines from (a) to (b) and disconnected clusters with varying separation
from (d) to (e). (c) Distribution of the number of perceived trends in 10
line-based density plots.

line-based density plots are perceived ambiguously. While participants
can correctly identify the number of trends for the patterns that showed
ambiguous continuation, they disagreed about the flow of the trends.
Our results indicate that although there is a great deal of disagreement
among the participants regarding the underlying trends, the individual
participants seemed to be fairly certain about the number of trends
and their tracing. Thus it is important to support users in identifying
individual trends and avoiding wrong perceptions.

7 DISCUSSION AND CONCLUSION

In this paper, we presented a novel coloring method for line-based
density plots. Although our approach is an image-based analysis of line
data, it could be applied to density plots of parallel coordinates or even
other types of data. In contrast to the in Section 2 introduced line-based
methods, which group similar lines by colorization of the lines, abstract
them with statistical information of ensembles, or combine them by
altering their paths using edge-bundling, we aggregate the individual
line into line-based density plots and enrich them by clustering similar
regions in the image space.
Future works and limitations. The basic unit of data for our pre-
sented method is pixels, which means the higher the resolution of the
visualization, the more computationally demanding it is. However, it is
unnecessary to perform binning for each pixel. Different bin sizes can
be used in different areas depending on the distribution of the data. For
example, a larger bin size can be used for unimportant areas. So the
plot could be divided into differently-sized bins to reduce the number of
bins. Therefore, the next step would be to explore automatic methods
for finding the best binning strategy. In subsequent works, we also
want to reduce the number of clustering errors by investigating other
sampling strategies.

Edge bundling is a widely used approach to address the clutter in line-
based visualizations. Recent methods address the issue of ambiguities
introduced by edge bundling. Our method could also be applied to
disambiguate further the results generated by edge bundling methods.

With an increasing number of clusters, the angle between assigned
colors on the hue wheel decreases, which decreases their distinguisha-
bility. Already for 7 different colors (see Fig. 6b), the colors start to
be barely distinguished. Furthermore, perception depends on cluster
sizes, spacing of hues, and positional relationships between clusters.
Conducting a user study could shed light on these aspects.

Our small-scale motivational study was only concerned with show-
ing whether and to what extent the perception of trends in line-based
density plots is ambiguous. It encompassed only university students
and Ph.D. candidates. But it underpinned our hypothesis that line-based
density plots are indeed perceived ambiguously by users. We investi-
gate only whether the user’s understanding of line-based density plots
is ambiguous. Therefore, we did not include a comparison of line-based
coloring methods and our method in the user study. A further study
should have a larger and more diverse population, including perception
and understanding of our results.

We currently summarize three types of ambiguities in line-based
density plots, but more types may exist. In future work, we plan to
propose a more comprehensive taxonomy to classify the ambiguities in
line-based density plots.
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